资源简介 最新最全高考数学基础知识总结集合【集合】 指定的某一对象的全体叫集合。集合的元素具有确定性、无序性和不重复性。【集合的分类】 【集合的表示方法】 名 称 定义 图示 性质子 集 真 子 集 交集 并集 补集 函数函数的性质 定义 判定方法函数的奇偶性 函如果对一函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数;函如果对一函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数 函数的单调性 对于给定的区间上的函数f(x):? 函数的周期性 对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数。不为零的常数T叫做这个函数的周期。 (1)利用定义 (2)利用已知函数的周期的有关定理。函数名称 解析式 定义域 值域 奇偶性 单 调 性正比例函数 R R 奇函数 反比例函数 奇函数 一次函数 R R 二次函数 R 不等式不等式 用不等号把两个解析式连结起来的式子叫做不等式不等式的性质 含绝对值不等式的性质?几个重要的不等式 一元一次不等式的解法 形式 解集 R 一元二次不等式的解法 R 绝对值不等式的解法 无理不等式的解法 三角函数角 一条射线绕着它的端点旋转所产生的图形叫做角。旋转开始时的射线叫角的始边,旋转终止时的射线叫角的终边,射线的端点叫做角的顶点。角的单位制 关系 弧 长 公 式 扇 形 面 积 公 式角度制 ?弧度制 角 的 终 边 位置 角 的 集 合 在x轴正半轴上 在x轴负半轴上 在x轴上 在y轴上 在第一象限内 在第二象限内 在第三象限内 在第四象限内 特 殊 角 的 三 角 函 数 值 函数/角 0 sina 0 1 0 -1 0 cosa 1 0 -1 0 1 tana 0 1 不存在 0 不存在 0 cota 不存在 1 0 不存在 0 不存在 三 角 函 数 的 性 质 函数 定义域 值域 奇偶性 周期性 单 调 性 y=sinx R 奇函数 y=cosx R 偶函数 y=tanx R 奇函数 y=cotx R 奇函数 诱 导 公 式 角/函数 正弦 余弦 正切 余切 -a -sina cosa -tana -cota 900a cosa sina cota tana 900+a cosa -sina -cota -tana 1800-a sina -cosa -tana -cota 1800+a -sina -cosa tana cota 2700-a -cosa -sina cota tana 2700+a -cosa sina -cota -tana 3600-a -sina cosa -tana -cota sina cosa tana cota 同角公式 倒数关系 商数关系 平方关系 和差角公式 倍角公式 万 能公式 半角公式 积化和差公式 和差化 积公式 数列名称 定义 通 项 公 式 前n项的和公式 其它数列 按照一定次序排成一列的数叫做数列,记为{an} 如果一个数列{an}的第n项an与n之间的关系可以用一个公式来表示,这个公式就叫这个数列的通项公式 等差数列 等比数列 数列前n项和与通项的关系: 无穷等比数列所有项的和: 数学归纳法 适用范围 证明步骤 注 意 事 项 只适用于证明与自然数n有关的数学命题 设P(n)是关于自然n的一个命题,如果(1)当n取第一个值n0(例如:n=1或n=2)时,命题成立(2)假设n=k时,命题成立,由此推出n=k+1时成立。那么P(n)对于一切自然数n都成立。 (1)第一步是递推的基础,第二步的推理根据,两步缺一不可 (2)第二步的证明过程中必须使用归纳假设。立体几何平面的基本性质 图形 作用公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。 (1)判定直线在平面内的依据 (2)判定点在平面内的方法公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线 。 (1)判定两个平面相交的依据 (2)判定若干个点在两个相交平面的交线上公理3:经过不在一条直线上的三点,有且只有一个平面。 (1)确定一个平面的依据 (2)判定若干个点共面的依据推论1:经过一条直线和这条直线外一点,有且仅有一个平面。 (1)判定若干条直线共面的依据 (2)判断若干个平面重合的依据 (3)判断几何图形是平面图形的依据 空间二直线 平行直线 公理4:平行于同一直线的两条直线互相平 等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。 异面直线 ? 空间直线和平面 位置关系 (1)直线在平面内——有无数个公共点 (2)直线和平面相交——有且只有一个公共点 (3)直线和平面平行——没有公共点 直线和平面平行 判定定理 性质定理 ? 直线与平面垂直 判 定 定 理 性 质 定 理 直线与平面所成的角 (1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角 (2)一条直线垂直于平面,定义这直线与平面所成的角是直角 (3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角三垂线定理 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直三垂线逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直空间两个平面 两个平面平行 判定 性质 (1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行 (2)垂直于同一直线的两个平面平行 (1)两个平面平行,其中一个平面内的直线必平行于另一个平面 (2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行 (3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 相交的两平面 二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面 二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角 平面角是直角的二面角叫做直二面角 两平面垂直 判定 性质 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 (1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面 (2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内多面体 定义 由若干个多边形所围成的几何体叫做多面体。 棱柱 斜棱柱:侧棱不垂直于底面的棱柱。 直棱柱:侧棱与底面垂直的棱柱。 正棱柱:底面是正多边形的直棱柱。 棱锥 正棱锥:如果棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫正棱锥。球 到一定点距离等于定长或小于定长的点的集合。欧拉定理 简单多面体的顶点数V,棱数E及面数F间有关系:V+F-E=2多面 体侧面积公式 体积公式 球 解析几何方程与曲线 概念 在平面直角坐标系中,如果某曲线C上的点的坐标(x,y)都是方程F(x,y)=0的解;反之方程F(x,y)=0的解为坐标的点(x,y)都在曲线C上,那么方程F(x,y)=0叫曲线C的方程,曲线C叫方程F(x,y)=0的曲线。 已知曲线求它的方程的步骤 (1)建立适当坐标系,用(x,y)表示曲线上任一点P的坐标; (2)写出适合条件M的点P的集合 (3)用坐标表示条件M(P),列出方程;f(x,y)=0 (4)化方程f(x,y)=0为最简形式 (5)证明化简后的方程的解为坐标的点都是曲线上的点 充分条件 必要条件 充要条件 直线 直线的方程 直线与x轴垂直不能用 直线与x轴垂直不能用 直线与坐标轴垂直不能用 直线与坐标轴垂直或过原点不能用 A、B不全为零 点到直线的距离 两条直线的关系及条件 平行 重合 垂直 斜交二直线的夹角 直线系 圆 定义:平面内到定点的距离等于定长的点的集合叫做圆,定点是圆心,定长是半径。 标准方程地 一般方程 点与圆的位置关系 直线与圆的位置关系 圆与圆的位置关系 定义:平面内到两个定点F1,F2的距离之和等于一个常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做焦点,两定点间的距离叫做焦距。标准方程 图象 焦点 F1(-c,0)? F2(c,0) F1(0,-c)? F2(0,-c)焦距 几何性质 范围 对称性 坐标轴是椭圆的对称由,原点是椭圆的对称中心。椭圆的对称中心叫做椭圆的中心。 顶点 离心率 双曲线 定义:平面内到两个定点F1,F2的距离之差的绝对值是常数(大于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做焦点,两定点间的距离叫做焦距。 标准方程 图象 焦点 F1(-c,0)? F2(c,0) F1(0,-c)? F2(0,-c) 焦 距 几何性质 范围 对称性 坐标轴是椭圆的对称由,原点是椭圆的对称中心。椭圆的对称中心叫做椭圆的中心。 顶点 渐近线 离心率 抛物线 定义:平面内与一个定点F和一条定直线L距离相等的的轨迹叫做抛物线,点F叫做抛物线的焦点,直线L叫做抛物线的准线。 标准方程 焦点 准线 图象 几何性质 范围 对称性 曲线关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴。 顶点 坐标原点(0,0) 离心率 e=1向量平面向量的概念 在平面内具有大小和方向的量叫做和向量运算性质 实数与向量的积 运算律 平面向量基本定量 ?向量平行 向量垂直 定比分点公式 空间向量的概念 在空间内具有大小和方向的量叫做和向量共线向量定理 共面向量定理 空间向量基本定理 两个向量的数量积 空间向量的数量积的性质 空间向量的坐标运算 两向量的夹角 复数复数的定义 引入虚数单位i,规定i2=1,i可以和实数一起进行通常的四则运算,运算时原有加乘运算仍然成立。形如:a+bi(a,b为实数) a---实部 b----虚部复数的表示形式 代数形式 三角形式 复数的运算 代数式 三角式 排列、组合分 类 计 数 原 理 分 步 计 数 原理做一件事,完成它有n类不同的办法。第一类办法中有m1种方法,第二类办法中有m2种方法……,第n类办法中有mn种方法,则完成这件事共有:N=m1+m2+…+mn种方法。 做一件事,完成它需要分成n个步骤。第一步中有m1种方法,第二步中有m2种方法……,第n步中有mn种方法,则完成这件事共有:N=m1 m2 … mn种方法。 注意:处理实际问题时,要善于区分是用分类计数原理还是分步计数原理,这两个原理的标志是“分类”还是“分步骤”。 排列 组合 从n个不同的元素中取m(m≤n)个元素,按照一定的顺序排成一排,叫做从n个不同的元素中取m个元素的排列。 从n个不同的元素中,任取m(m≤n)个元素并成一组,叫做从n个不同的元素中取m个元素的组合。 排列数 组合数 从n个不同的元素中取m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Pnm 从n个不同的元素中取m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记为Cnm 选排列数 全排列数 二项式定理 二项展开式的性质 (1)项数:n+1项 (2)指数:各项中的a的指数由n起依次减少1,直至0为止;b的指出从0起依次增加1,直至n为止。而每项中a与b的指数之和均等于n 。 (3)二项式系数: 各奇数项的二项式数之和等于各偶数项的二项式的系数之和? 展开更多...... 收起↑ 资源预览