资源简介 小升初数学总复习易错点知识总结 常用单位换算 ★长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 ★面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 ★体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 ★重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 ★人民币单位换算 1元=10角 1角=10分 1元=100分 ★时间单位换算 1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天 闰年2月29天 平年全年365天 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 基本概念 ★ 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 ★ 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数); 一个数,如果除了1和它本身还有别的因数,这样的数叫做合数; 公因数只有1的两个数,叫做互质数。 ★ 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。 ★乘法分配律: 两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加。 即(a+b)×c=a×c+b×c 。 ★减法的性质: 从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。 ★平均数问题:平均数是等分除法的发展。 解题关键:在于确定总数量和与之相对应的总份数。 算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和÷数量的个数=算术平均数。 ★鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只的一类应用题。通常称为“鸡兔问题”又称鸡兔同笼问题 解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。 解题规律:(总腿数-鸡腿数×总头数)÷一只鸡兔腿数的差=兔子只数 兔子只数=(总腿数-2×总头数)÷2 如果假设全是兔子,可以有下面的式子: 鸡的只数=(4×总头数-总腿数)÷2 兔的头数=总头数-鸡的只数 例 鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只? 兔子只数 ( 170-2 × 50 )÷ 2 =35 (只) 鸡的只数 50-35=15 (只) ★什么是体积、容积 体积:就是物体所占空间的大小。 容积:箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。 ★列方程解答应用题的步骤: * 弄清题意,确定未知数并用x表示; * 找出题中的数量之间的相等关系; * 列方程,解方程; * 检查或验算,写出答案。 ★1.条形统计图 优点:很容易看出各种数量的多少。 2.折线统计图能够清楚地表示出数量增减变化的情况 3扇形统计图清楚地表示出各部分同总数之间的关系。 ★小学数学几何形体周长 面积 体积计算公式 长方形的周长=(长+宽)×2 C=(a+b)×2 正方形的周长=边长×4 C=4a 长方形的面积=长×宽 S=ab 正方形的面积=边长×边长 S=a.a= a? 三角形的面积=底×高÷2 S=ah÷2 平行四边形的面积=底×高 S=ah 梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 直径=半径×2 d=2r 半径=直径÷2 r= d÷2 圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 圆的面积=圆周率×半径×半径 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高 公式:V=abh 长方体(或正方体)的体积=底面积×高 公式:V=abh 正方体的体积=棱长×棱长×棱长 公式:V=aaa 圆的周长=直径×π 公式:L=πd=2πr 圆的面积=半径×半径×π 公式:S=πr? 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=底面×积高。公式:V=Sh ★分数加减乘除的计算原理 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 数量关系的计算公式 每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数 7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数×因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数 ★比及比例问题 1、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或 2、比的基本性质:比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。 3、什么叫比例:表示两个比相等的式子叫做比例。 如3:6=9:18 4、比例的基本性质:在比例里,两外项之积等于两内项之积。 5、解比例:求比例中的未知项,叫做解比例。 如3:χ=9:18 6、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定) 7、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定) ★常用积量: 3.14×2=6.28 11=121 2=8 3.14×3=9.42 12=144 3=27 3.14×4=12.56 13=169 4=64 3.14×5=15.70 14=196 5=125 3.14×6=18.84 15=225 6=216 3.14×7=21.98 16=256 7=343 3.14×8=25.12 17=289 8=512 3.14×9=28.26 18=324 9=729 展开更多...... 收起↑ 资源预览