资源简介 八年级数学(下)考点汇总一、分式【考点一】因式分解1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。2、因式分解的常用方法(1)提公因式法:(2)运用公式法:3、因式分解的一般步骤:(1)如果多项式的各项有公因式,那么先提取公因式。(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法.(3)分解因式必须分解到每一个因式都不能再分解为止。【考点四】分式1、分式的概念一般地,用A、B表示两个整式,A÷B就可以表示成的形式,如果B中含有字母,式子就叫做分式。其中,A叫做分式的分子,B叫做分式的分母。分式和整式通称为有理式。2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.3、分式的运算法则二、数据的分析【考点一】“三数”:平均数、众数、中位数1、平均数的概念(1)平均数:一般地,如果有n个数那么,叫做这n个数的平均数,读作“x拔”.(2)加权平均数:如果n个数中,出现次,出现次,…,出现次(这里),那么,根据平均数的定义,这n个数的平均数可以表示为,这样求得的平均数叫做加权平均数,其中叫做权.2、众数在一组数据中,出现次数最多的数据叫做这组数据的众数.3、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.【考点二】方差1、方差的概念在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.通常用“”表示,即2、标准差方差的算术平方根叫做这组数据的标准差,用“s”表示,即【考点五】频率分布1、频率分布的意义在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布.2、研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤是:①计算极差(最大值与最小值的差)②决定组距与组数③决定分点④列频率分布表⑤画频率分布直方图(2)频率分布的有关概念①极差:最大值与最小值的差②频数:落在各个小组内的数据的个数③频率:每一小组的频数与数据总数(样本容量n)的比值叫做这一小组的频率.二、一次函数与反比例函数【考点一】平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系.其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面.为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限.注意:x轴和y轴上的点,不属于任何象限.2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒.平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标.【考点二】不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限;点P(x,y)在第二象限点P(x,y)在第三象限;点P(x,y)在第四象限2、坐标轴上的点的特征点P(x,y)在x轴上,x为任意实数;点P(x,y)在y轴上,y为任意实数点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同.位于平行于y轴的直线上的各点的横坐标相同.5、关于x轴、y轴或原点对称的点的坐标的特征点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数点P与点p’关于原点对称横、纵坐标均互为相反数6、点到坐标轴及原点的距离(1)点P(x,y)到x轴的距离等于;(2)点P(x,y)到y轴的距离等于(3)点P(x,y)到原点的距离等于【考点三】函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量.一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数.2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式.使函数有意义的自变量的取值的全体,叫做自变量的取值范围.3、函数的三种表示法(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法.(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法.(3)图像法用图像表示函数关系的方法叫做图像法.4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.【考点四】正比例函数和一次函数1、正比例函数和一次函数的概念一般地,如果(k,b是常数,k0),那么y叫做x的一次函数.特别地,当一次函数中的b为0时,(k为常数,k0).这时,y叫做x的正比例函数.2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线.k的符号 b的符号 函数图像 图像特征k>0 b>0 y 0 x 图像经过一、二、三象限,y随x的增大而增大.b<0 y 0 x 图像经过一、三、四象限,y随x的增大而增大.K<0 b>0 y 0 x 图像经过一、二、四象限,y随x的增大而减小b<0 y 0 x 图像经过二、三、四象限,y随x的增大而减小.注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例.4、正比例函数的性质一般地,正比例函数有下列性质:(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小.5、一次函数的性质一般地,一次函数有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k.,确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b. 解这类问题的一般方法是待定系数法.【考点五】反比例函数1、反比例函数的概念一般地,函数(k是常数,k0)叫做反比例函数. 反比例函数的解析式也可以写成的形式. 自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数.2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称. 由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.3、反比例函数的性质反比例函数k的符号 k>0 k<0图像 y O x y O x性质 ①x的取值范围是x0, y的取值范围是y0;②当k>0时,函数图像的两个分支分别在第一、三象限. 在每个象限内,y随x 的增大而减小. ①x的取值范围是x0, y的取值范围是y0;②当k<0时,函数图像的两个分支分别在第二、四象限. 在每个象限内,y随x 的增大而增大.4、反比例函数解析式的确定确定解析式的方法仍是待定系数法. 由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式.5、反比例函数中反比例系数的几何意义如下图,过反比例函数图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMON的面积S=PMPN=..※ 函数平移规律:左加右减、上加下减三、相交线与平行线【考点一】相交线1、相交线中的角两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角. 有公共顶点且有一条公共边的两个角叫做邻补角.邻补角互补,对顶角相等.直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角.其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角.2、垂线两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直.其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”).垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直.性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短. 简称:垂线段最短.【考点二】平行线1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线. 平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”.同一平面内,两条直线的位置关系只有两种:相交或平行.注意:(1)平行线是无限延伸的,无论怎样延伸也不相交.(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行.2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行.简称:同位角相等,两直线平行.平行线的两条判定定理:(1)两条直线被第三条直线所截,内错角相等,两直线平行.简称:内错角相等,两直线平行.(2)两条直线被第三条直线所截,同旁内角互补,两直线平行.简称:同旁内角互补,两直线平行.补充平行线的判定方法:(1)平行于同一条直线的两直线互相平行.(2)垂直于同一条直线的两直线互相平行.(3)平行线的定义.4、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等. (3)两直线平行,同旁内角互补.四、三角形【考点一】三角形的边与角1、三角形的三边关系定理及推论三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围.③证明线段不等关系.2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于任何一个和它不相邻的内角.注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角.【考点二】全等三角形1、三角形全等的判定三角形全等的判定定理:(1)边边边公理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”).(2)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(3)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(4)角角边定理:有两角和其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)2、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换.全等变换包括以下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换.(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换.(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换.【考点三】等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边.即等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:三线合一).推论2:等边三角形的各个角都相等,并且每个角都等于60°.(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).③等腰三角形的三边关系:设腰长为a,底边长为b,则2a﹥b.2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.推论1:三个角都相等的三角形是等边三角形推论2:有一个角是60°的等腰三角形是等边三角形.推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.3、三角形中的中位线三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半.三角形中位线定理的作用:位置关系:可以证明两条直线平行.数量关系:可以证明线段的倍分关系.常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半.结论2:三条中位线将原三角形分割成四个全等的三角形.结论3:三条中位线将原三角形划分出三个面积相等的平行四边形.结论4:三角形一条中线和与它相交的中位线互相平分.结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等.五、四边形【考点一】四边形的相关概念1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°.四边形的外角和定理:四边形的外角和等于360°.推论:多边形的内角和定理:n边形的内角和等于180°;多边形的外角和定理:任意多边形的外角和等于360°.2、多边形的对角线条数的计算公式设多边形的边数为n,则多边形的对角线条数为.【考点二】平行四边形1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形.平行四边形用符号“□ABCD”表示,如平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”.2、平行四边形的性质(1)平行四边形的邻角互补,对角相等.(2)平行四边形的对边平行且相等. 推论:夹在两条平行线间的平行线段相等.(3)平行四边形的对角线互相平分.(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形(5)定理4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离.平行线间的距离处处相等.5、平行四边形的面积S平行四边形= 底边长×高 = ah【考点三】矩形1、矩形的定义有一个角是直角的平行四边形叫做矩形.2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长×宽=ab【考点四】菱形1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半【考点五】正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等.3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等.先证它是菱形,再证有一个角是直角.(2)判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形).4、正方形的面积设正方形边长为a,对角线长为b,S正方形=【考点六】梯形1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形.梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底.梯形中不平行的两边叫做梯形的腰.梯形的两底的距离叫做梯形的高.两腰相等的梯形叫做等腰梯形.一腰垂直于底的梯形叫做直角梯形.一般地,梯形的分类如下:一般梯形梯形 直角梯形特殊梯形等腰梯形2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形.(2)一组对边平行且不相等的四边形是梯形.3、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行.(3)等腰梯形的对角线相等.(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线.4、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形.5、梯形的面积(1)如图,(2)梯形中有关图形的面积:①;②;③6、梯形中位线定理梯形中位线平行于两底,并且等于两底和的一半.六、直角三角形【考点一】直角三角形的性质1、直角三角形的两个锐角互余可表示如下:∠C=90°∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半.∠A=30°可表示如下: BC=AB∠C=90°3、直角三角形斜边上的中线等于斜边的一半∠ACB=90°可表示如下: CD=AB=BD=ADD为AB的中点4、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即利用勾股定理,已知直角三角形任意两边,可以求出第三边.【考点二】直角三角形的判定1、有一个角是直角的三角形是直角三角形.2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.3、勾股定理的逆定理如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形.PAGE第1页 展开更多...... 收起↑ 资源预览