资源简介 人教版2020年九年级上册第21章《一元二次方程》测试卷满分120分一.选择题(共10小题,满分30分,每小题3分)1.一元二次方程3x2=8x化成一般形式后,其中二次项系数和一次项系数分别是( )A.3,8B.3,0C.3,﹣8D.﹣3,﹣82.下列方程中,一元二次方程共有( )①3x2+x=20②2x2﹣3xy+4=0③x3﹣x=1④x2=1A.1个B.2个C.3个D.4个3.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是( )A.﹣7B.7C.3D.﹣34.方程x(x﹣5)=x﹣5的根是( )A.x=5B.x=0C.x1=5,x2=0D.x1=5,x2=15.若x2+mx+19=(x﹣5)2﹣n,则m+n的值是( )A.﹣16B.16C.﹣4D.46.关于x的方程k2x2+(2k﹣1)x+1=0有实数根,则下列结论正确的是( )A.当k=时,方程的两根互为相反数B.当k=0时,方程的根是x=﹣1C.若方程有实数根,则k≠0且k≤D.若方程有实数根,则k≤7.若m,n是方程x2+2019x﹣2020=0的两个实数根,则m+n﹣mn的值为( )A.﹣4039B.﹣1C.1D.40398.有5人患了流感,经过两轮传染后共有605人患流感,则第一轮后患流感的人数为( )A.10B.50C.55D.459.某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程( )A.180(1﹣x)2=461B.180(1+x)2=461C.368(1﹣x)2=442D.368(1+x)2=44210.如图,在△ABC中,∠ACB=90°,BC=a,AC=b.以点B为圆心,BC的长为半径画弧,交线段AB于点D,以点A为圆心,AD长为半径画弧,交线段AC于点E.下列哪条线段的长度是方程x2+2ax﹣b2=0的一个根( )A.线段BC的长B.线段AD的长C.线段EC的长D.线段AC的长二.填空题(共7小题,满分28分,每小题4分)11.关于x的方程(m﹣2)x|m|+x﹣1=0是一元二次方程,则m的值为 .12.一元二次方程x2+3x﹣1=0根的判别式的值为 .13.解方程:(x﹣2)2=25.x1= ,x2= .14.已知:(x2+y2)(x2+y2﹣1)=20,那么x2+y2= .15.等腰(非等边)三角形的边长都是方程x2﹣6x+8=0的根,则此三角形的面积为 .16.已知关于x的一元二次方程mx2﹣2x+n﹣3=0有两个相等实数根,则﹣n的值是 .17.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒.则剪去的正方形的边长为 cm.三.解答题(共8小题,满分62分)18.(8分)解方程:(1)x2﹣2x﹣3=0.(2)3x2+2x﹣1=0.19.(7分)如图,小华要为一个长3分米,宽2分米的长方形防疫科普电子小报四周添加一个边框,要求边框的四条边宽度相等,且边框面积与电子小报内容所占面积相等,小华添加的边框的宽度应是多少分米?20.(7分)已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使得等式+=k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.21.(7分)有一个人患了流感,经过两轮传染后共有81人患了流感.(1)试求每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人会患流感?22.(8分)某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?23.(8分)已知:平行四边形ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么?ABCD的周长是多少?24.(8分)适逢中高考期间,某文具店平均每天可卖出30支2B铅笔,卖出1支铅笔的利润是1元,经调查发现,零售单价每降0.1元,每天可多卖出10支铅笔,为了使每天获取的利润更多,该文具店决定把零售单价下降x元(0<x<1).(1)当x为多少时,才能使该文具店每天卖2B铅笔获取的利润为40元?(2)该文具店每天卖2B铅笔获取的利润可以达到50元吗?如果能,请求出,如果不能,请说明理由.25.(9分)先阅读下面的内容,再解决问题:问题:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣4a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像这样,先添一适当项,使式中出现完全平方式,再减去这项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:a2﹣8a+15= ;(2)若△ABC的三边长是a,b,c,且满足a2+b2﹣14a﹣8b+65=0,c边的长为奇数,求△ABC的周长的最小值;(3)当x为何值时,多项式﹣2x2﹣4x+3有最大值?并求出这个最大值.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:一元二次方程3x2=8x的一般形式3x2﹣8x=0,其中二次项系数3,一次项系数﹣8,常数项是0,故选:C.2.解:一元二次方程有:3x2+x=20,x2=1,共2个,故选:B.3.解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故选:A.4.解:∵x(x﹣5)﹣(x﹣5)=0,∴(x﹣5)(x﹣1)=0,则x﹣5=0或x﹣1=0,解得x=5或x=1,故选:D.5.解:(x﹣5)2﹣n=x2﹣10x+25﹣n,∴x2+mx+19=x2﹣10x+25﹣n,∴m=﹣10,25﹣n=19,解得,m=﹣10,n=6,∴m+n=﹣10+6=﹣4,故选:C.6.解:若k=0,则此方程为﹣x+1=0,所以方程有实数根为x=1,则B错误;若k≠0,则此方程是一元二次方程,由于方程有实数根,∴△=(2k﹣1)2﹣4k2=﹣4k+1≥0,∴k≤且k≠0;综上所述k的取值范围是k≤.故A错误,C错误,D正确.故选:D.7.解:∵m,n是方程x2+2019x﹣2020=0的两个实数根,∴m+n=﹣2019,mn=﹣2020,∴m+n+mn=﹣2019+2020=1.故选:C.8.解:设每轮传染中每人传染x人,依题意,得:5+5x+x(5+5x)=605,整理,得:x2+2x﹣120=0,解得:x1=10,x2=﹣12(不合题意,舍去),∴5+5x=55.故选:C.9.解:从2月份到4月份,该厂家口罩产量的平均月增长率为x,根据题意可得方程:180(1+x)2=461,故选:B.10.解:由勾股定理得,AB==,∴AD=﹣a,解方程x2+2ax﹣b2=0得x==±﹣a,∴线段AD的长是方程x2+2ax﹣b2=0的一个根.故选:B.二.填空题(共7小题,满分28分,每小题4分)11.解:由题意可知:,解得:m=﹣2.12.解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=9+4=13.所以一元二次方程x2+3x﹣1=0根的判别式的值为13.故答案为:13.13.解:∵(x﹣2)2=25,∴x﹣2=5或x﹣2=﹣5,解得x1=7,x2=﹣3,故答案为:7,﹣3.14.解:设t=x2+y2(t≥0),则t(t﹣1)=20.整理,得(t﹣5)(t+4)=0.解得t=5或t=﹣4(舍去).所以x2+y2=5.故答案是:5.15.解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,解得x1=2,x2=4,由题意得:这个三角形的三边长分别为2,2,4或2,4,4,(1)当这个三角形的三边长分别为2,2,4时,∵2+2=4,∴不满足三角形的三边关系,舍去;(2)当这个三角形的三边长分别为2,4,4时,∵2+4>4,∴满足三角形的三边关系,如图,设这个三角形为等腰△ABC,其中AB=AC=4,BC=2,过点A作AD⊥BC于点D,则BD=CD=BC=1(等腰三角形的三线合一),∴AD===,∴S△ABC===,即此三角形的面积为,故答案为:.16.解:∵关于x的一元二次方程mx2﹣2x+n﹣3=0有两个相等实数根,∴m≠0,△=(﹣2)2﹣4m(n﹣3)=0,解得:mn﹣3m=1,除以m得:n﹣3=,∴﹣n=﹣3,故答案为:﹣3.17.解:设底面长为acm,宽为bcm,正方形的边长为xcm,根据题意得:,解得a=10﹣2x,b=6﹣x,代入ab=24中,得:(10﹣2x)(6﹣x)=24,整理得:x2﹣11x+18=0,解得x=2或x=9(舍去),答;剪去的正方形的边长为2cm.故答案为:2.三.解答题(共8小题,满分62分)18.解:(1)x2﹣2x﹣3=0,分解因式得:(x+1)(x﹣3)=0,可得x+1=0或x﹣3=0,解得:x1=﹣1,x2=3;(2)3x2+2x﹣1=0,分解因式得:(x+1)(3x﹣1)=0,可得x+1=0或3x﹣1=0,解得:x1=﹣1,x2=.19.解:设小华添加的边框的宽度应是x分米,依题意,得:(3+2x)(2+2x)﹣3×2=3×2,整理,得:2x2+5x﹣3=0,解得:x1=,x2=﹣3(不合题意,舍去).答:小华添加的边框的宽度应是分米.20.解:(1)∵一元二次方程x2﹣2x+k+2=0有两个实数根,∴△=(﹣2)2﹣4×1×(k+2)≥0,解得:k≤﹣1.(2)∵x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根,∴x1+x2=2,x1x2=k+2.∵+=k﹣2,∴==k﹣2,∴k2﹣6=0,解得:k1=﹣,k2=.又∵k≤﹣1,∴k=﹣.∴存在这样的k值,使得等式+=k﹣2成立,k值为﹣.21.解:(1)设每轮传染中平均一个人传染x个人,根据题意得:1+x+x(x+1)=81,整理,得:x2+2x﹣80=0,解得:x1=8,x2=﹣10(不合题意,舍去).答:每轮传染中平均一个人传染8个人.(2)81+81×8=729(人).答:经过三轮传染后共有729人会患流感.22.解:(1)设口罩日产量的月平均增长率为x,根据题意,得20000(1+x)2=24200解得x1=﹣2.1(舍去),x2=0.1=10%,答:口罩日产量的月平均增长率为10%.(2)24200(1+0.1)=26620(个).答:预计4月份平均日产量为26620个.23.解:(1)∵四边形ABCD是菱形,∴AB=AD.又∵AB、AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根,∴△=(﹣m)2﹣4×(﹣)=(m﹣1)2=0,∴m=1,∴当m为1时,四边形ABCD是菱形.当m=1时,原方程为x2﹣x+=0,即(x﹣)2=0,解得:x1=x2=,∴菱形ABCD的边长是.(2)把x=2代入原方程,得:4﹣2m+﹣=0,解得:m=.将m=代入原方程,得:x2﹣x+1=0,∴方程的另一根AD=1÷2=,∴?ABCD的周长是2×(2+)=5.24.解:(1)根据题意得:(1﹣x)(100x+30)=40,整理得:10x2﹣7x+1=0,解得:x1=0.2,x2=0.5.答:当x为0.2或0.5时,才能使该文具店每天卖2B铅笔获取的利润为40元.(2)根据题意得:(1﹣x)(100x+30)=50,整理得:10x2﹣7x+2=0,△=b2﹣4ac=(﹣7)2﹣4×10×2=﹣31<0.答:该文具店每天卖2B铅笔获取的利润不可以达到50元.25.解:(1)a2﹣8a+15=(a2﹣8a+16)﹣1=(a﹣4)2﹣12=(a﹣3)(a﹣5);故答案为:(a﹣3)(a﹣5);(2)∵a2+b2﹣14a﹣8b+65=0,∴(a2﹣14a+49)+(b2﹣8b+16)=0,∴(a﹣7)2+(b﹣4)2=0,∴a﹣7=0,b﹣4=0,解得,a=7,b=4,∵△ABC的三边长是a,b,c,∴3<c<11,又∵c边的长为奇数,∴c=5,7,9,当a=7,b=4,c=5时,△ABC的周长最小,最小值是:7+4+5=16;(3)﹣2x2﹣4x+3,=﹣2(x2+2x+1﹣1)+3,=﹣2(x+1)2+5,∴当x=﹣1时,多项式﹣2x2﹣4x+3有最大值,最大值是5. 展开更多...... 收起↑ 资源预览