资源简介 把关提分类中考真题专练:第四章图形的相似一.选择题1.(2020?毕节市)已知=,则的值为( )A.B.C.D.2.(2020?云南)如图,平行四边形ABCD的对角线AC,BD相交于点O,E是CD的中点.则△DEO与△BCD的面积的比等于( )A.B.C.D.3.(2020?广西)如图,在△ABC中,BC=120,高AD=60,正方形EFGH一边在BC上,点E,F分别在AB,AC上,AD交EF于点N,则AN的长为( )A.15B.20C.25D.304.(2020?昆明)在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有( )A.4个B.5个C.6个D.7个5.(2020?永州)如图,在△ABC中,EF∥BC,=,四边形BCFE的面积为21,则△ABC的面积是( )A.B.25C.35D.636.(2020?益阳)如图,在矩形ABCD中,E是DC上的一点,△ABE是等边三角形,AC交BE于点F,则下列结论不成立的是( )A.∠DAE=30°B.∠BAC=45°C.D.7.(2020?海南)如图,在?ABCD中,AB=10,AD=15,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,若BG=8,则△CEF的周长为( )A.16B.17C.24D.258.(2020?海南)如图,在矩形ABCD中,AB=6,BC=10,点E、F在AD边上,BF和CE交于点G,若EF=AD,则图中阴影部分的面积为( )A.25B.30C.35D.409.(2020?大庆)已知两个直角三角形的三边长分别为3,4,m和6,8,n,且这两个直角三角形不相似,则m+n的值为( )A.10+或5+2B.15C.10+D.15+310.(2020?眉山)如图,正方形ABCD中,点F是BC边上一点,连接AF,以AF为对角线作正方形AEFG,边FG与正方形ABCD的对角线AC相交于点H,连接DG.以下四个结论:①∠EAB=∠GAD;②△AFC∽△AGD;③2AE2=AH?AC;④DG⊥AC.其中正确的个数为( )A.1个B.2个C.3个D.4个二.填空题11.(2020?锦州)如图,在△ABC中,D是AB中点,DE∥BC,若△ADE的周长为6,则△ABC的周长为 .12.(2020?盘锦)如图,△AOB三个顶点的坐标分别为A(5,0),O(0,0),B(3,6),以点O为位似中心,相似比为,将△AOB缩小,则点B的对应点B'的坐标是 .13.(2020?大连)如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,CE与BD相交于点F.设DE=x,BF=y,当0≤x≤8时,y关于x的函数解析式为 .14.(2020?山西)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为 .15.(2020?鞍山)如图,在菱形ABCD中,∠ADC=60°,点E,F分别在AD,CD上,且AE=DF,AF与CE相交于点G,BG与AC相交于点H.下列结论:①△ACF≌△CDE;②CG2=GH?BG;③若DF=2CF,则CE=7GF;④S四边形ABCG=BG2.其中正确的结论有 .(只填序号即可)16.(2020?东营)如图,P为平行四边形ABCD边BC上一点,E、F分别为PA、PD上的点,且PA=3PE,PD=3PF,△PEF、△PDC、△PAB的面积分别记为S、S1、S2.若S=2,则S1+S2= .三.解答题17.(2020?朝阳)如图所示的平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣3,2),B(﹣1,3),C(﹣1,1),请按如下要求画图:(1)以坐标原点O为旋转中心,将△ABC顺时针旋转90°,得到△A1B1C1,请画出△A1B1C1;(2)以坐标原点O为位似中心,在x轴下方,画出△ABC的位似图形△A2B2C2,使它与△ABC的位似比为2:1.18.(2020?南京)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C'.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.19.(2020?凉山州)如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?20.(2020?泰州)如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.21.(2020?济宁)如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.22.(2020?杭州)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.(1)求证:△BDE∽△EFC.(2)设,①若BC=12,求线段BE的长;②若△EFC的面积是20,求△ABC的面积.23.(2020?杭州)如图,在正方形ABCD中,点E在BC边上,连接AE,∠DAE的平分线AG与CD边交于点G,与BC的延长线交于点F.设=λ(λ>0).(1)若AB=2,λ=1,求线段CF的长.(2)连接EG,若EG⊥AF,①求证:点G为CD边的中点.②求λ的值.参考答案一.选择题(共10小题)1.解:∵=,∴设a=2x,b=5x,∴==.故选:C.2.解:∵平行四边形ABCD的对角线AC,BD相交于点O,∴点O为线段BD的中点.又∵点E是CD的中点,∴线段OE为△DBC的中位线,∴OE∥BC,OE=BC,∴△DOE∽△DBC,∴=()2=.故选:B.3.解:设正方形EFGH的边长EF=EH=x,∵四边EFGH是正方形,∴∠HEF=∠EHG=90°,EF∥BC,∴△AEF∽△ABC,∵AD是△ABC的高,∴∠HDN=90°,∴四边形EHDN是矩形,∴DN=EH=x,∵△AEF∽△ABC,∴=(相似三角形对应边上的高的比等于相似比),∵BC=120,AD=60,∴AN=60﹣x,∴=,解得:x=40,∴AN=60﹣x=60﹣40=20.故选:B.4.解:如图,所以使得△ADE∽△ABC的格点三角形一共有6个.故选:C.5.解:∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∴S△AEF=S△ABC.∵S四边形BCFE=S△ABC﹣S△AEF=21,即S△ABC=21,∴S△ABC=25.故选:B.6.解:∵四边形ABCD是矩形,△ABE是等边三角形,∴AB=AE=BE,∠EAB=∠EBA=60°,AD=BC,∠DAB=∠CBA=90°,AB∥CD,AB=CD,∴∠DAE=∠CBE=30°,故选项A不合题意,∴cos∠DAE==,故选项D不合题意,在△ADE和△BCE中,,∴△ADE≌△BCE(SAS),∴DE=CE=CD=AB,∵AB∥CD,∴△ABF∽△CEF,∴,故选项C不合题意,故选:B.7.解:∵在?ABCD中,CD=AB=10,BC=AD=15,∠BAD的平分线交BC于点E,∴AB∥DC,∠BAF=∠DAF,∴∠BAF=∠F,∴∠DAF=∠F,∴DF=AD=15,同理BE=AB=10,∴CF=DF﹣CD=15﹣10=5;∴在△ABG中,BG⊥AE,AB=10,BG=8,在Rt△ABG中,AG===6,∴AE=2AG=12,∴△ABE的周长等于10+10+12=32,∵四边形ABCD是平行四边形,∴AB∥CF,∴△CEF∽△BEA,相似比为5:10=1:2,∴△CEF的周长为16.故选:A.8.解:过点G作GN⊥AD于N,延长NG交BC于M,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵EF=AD,∴EF=BC,∵AD∥BC,NG⊥AD,∴△EFG∽△CBG,GM⊥BC,∴GN:GM=EF:BC=1:2,又∵MN=AB=6,∴GN=2,GM=4,∴S△BCG=×10×4=20,∴S△EFG=×5×2=5,S矩形ABCD=6×10=60,∴S阴影=60﹣20﹣5=35.故选:C.9.解:当3,4为直角边,6,8也为直角边时,此时两三角形相似,不合题意;当三边分别为3,4,,和6,8,2,此时两三角形相似,不合题意舍去当3,4为直角边,m=5;则8为另一三角形的斜边,其直角边为:=2,故m+n=5+2;当6,8为直角边,n=10;则4为另一三角形的斜边,其直角边为:=,故m+n=10+;故选:A.10.解:∵四边形ABCD,四边形AEFG都是正方形,∴∠EAG=∠BAD=90°,∠FAG=∠AFG=∠DAC=∠ACB=45°,AF=AG,AC=AD,∴∠EAG﹣∠BAG=∠BAD﹣∠BAG,∴∠EAB=∠DAG,故①正确;∵AF=AG,AC=AD,∴=,∵∠FAG=∠CAD=45°,∴∠FAC=∠DAG,∴△FAC∽△DAG,故②正确,∴∠ADG=∠ACB=45°,延长DG交AC于N,∵∠CAD=45°,∠ADG=45°,∴∠AND=90°,∴DG⊥AC,故④正确,∵∠FAC=∠FAH,∠AFG=∠ACF=45°,∴△AFH∽△ACF,∴,∴AF2=AH?AC,∴2AE2=AH?AC,故③正确,故选:D.二.填空题(共6小题)11.解:∵DE∥BC,∴△ADE∽△ABC,∵D是AB的中点,∴=,∴=∵△ADE的周长为6,∴△ABC的周长为12,故答案为:12.12.解:如图,∵△OAB∽△OA′B′,相似比为3:2,B(3.6),∴B′(2,4),根据对称性可知,△OA″B″在第三象限时,B″(﹣2,﹣4),∴满足条件的点B′的坐标为(2,4)或(﹣2,﹣4).故答案为(2,4)或(﹣2,﹣4).13.解:在矩形中,AD∥BC,∴△DEF∽△BCF,∴,∵BD==10,BF=y,DE=x,∴DF=10﹣y,∴,化简得:,∴y关于x的函数解析式为:,故答案为:.14.解:如图,过点F作FH⊥AC于H.在Rt△ABC中,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵CD⊥AB,∴S△ABC=?AC?BC=?AB?CD,∴CD=,AD===,∵FH∥EC,∴=,∵EC=EB=2,∴=,设FH=2k,AH=3k,CH=3﹣3k,∵tan∠FCH==,∴=,∴k=,∴FH=,CH=3﹣=,∴CF===,∴DF=﹣=,故答案为.15.解:∵ABCD为菱形,∴AD=CD,∵AE=DF,∴DE=CF,∵∠ADC=60°,∴△ACD为等边三角形,∴∠D=∠ACD=60°,AC=CD,∴△ACF≌△CDE(SAS),故①正确;过点F作FP∥AD,交CE于P点.∵DF=2CF,∴FP:DE=CF:CD=1:3,∵DE=CF,AD=CD,∴AE=2DE,∴FP:AE=1:6=FG:AG,∴AG=6FG,∴CE=AF=7GF,故③正确;过点B作BM⊥AG于M,BN⊥GC于N,∵∠AGE=∠ACG+∠CAF=∠ACG+∠GCF=60°=∠ABC,即∠AGC+∠ABC=180°,∴点A、B、C、G四点共圆,∴∠AGB=∠ACB=60°,∠CGB=∠CAB=60°,∴∠AGB=∠CGB=60°,∴BM=BN,又AB=BC,∴△ABM≌△CBN(HL),∴S四边形ABCG=S四边形BMGN,∵∠BGM=60°,∴GM=BG,BM=BG,∴S四边形BMGN=2S△BMG=2××=BG2,故④正确;∵∠CGB=∠ACB=60°,∠CBG=∠HBC,∴△BCH∽△BGC,∴,则BG?BH=BC2,则BG?(BG﹣GH)=BC2,则BG2﹣BG?GH=BC2,则GH?BG=BG2﹣BC2,当∠BCG=90°时,BG2﹣BC2=CG2,此时GH?BG=CG2,而题中∠BCG未必等于90°,故②不成立,故正确的结论有①③④,故答案为:①③④.16.解:∵PA=3PE,PD=3PF,∴==,∴EF∥AD,∴△PEF∽△PAD,∴=()2,∵S△PEF=2,∴S△PAD=18,∵四边形ABCD是平行四边形,∴S△PAD=S平行四边形ABCD,∴S1+S2=S△PAD=18,故答案为18.三.解答题(共7小题)17.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.18.(1)证明:∵=,∴=,∵==,∴==,∴△ADC∽△A′D′C',∴∠A=∠A′,∵=,∴△ABC∽△A′B′C′.故答案为:==,∠A=∠A′.(2)如图,过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.∵DE∥BC,∴△ADE∽△ABC,∴==,同理,==,∵=,∴=,∴=,同理,=,∴=,即=,∴=,∵==,∴==,∴△DCE∽△D′C′E′,∴∠CED=∠C′E′D′,∵DE∥BC,∴∠CED+∠ACB=180°,同理,∠C′E′D′+∠A′C′B′=180°,∴∠ACB=∠A′C′B′,∵=,∴△ABC∽△A′B′C′.19.解:∵四边形EGFH为正方形,∴BC∥EF,∴△AEF∽△ABC;设正方形零件的边长为xmm,则KD=EF=x,AK=80﹣x,∵EF∥BC,∴△AEF∽△ABC,∵AD⊥BC,∴=,∴=,解得:x=48.答:正方形零件的边长为48mm.20.解:(1)∵PD∥AB,∴,∵AC=3,BC=4,CP=x,∴,∴CD=,∴AD=AC﹣CD=3﹣,即AD=;(2)根据题意得,S=,∴当x≥2时,S随x的增大而减小,∵0<x<4,∴当S随x增大而减小时x的取值范围为2≤x<4.21.解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC∴PD∥AB.22.(1)证明:∵DE∥AC,∴∠DEB=∠FCE,∵EF∥AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)解:①∵EF∥AB,∴==,∵EC=BC﹣BE=12﹣BE,∴=,解得:BE=4;②∵=,∴=,∵EF∥AB,∴△EFC∽△BAC,∴=()2=()2=,∴S△ABC=S△EFC=×20=45.23.解:(1)∵在正方形ABCD中,AD∥BC,∴∠DAG=∠F,又∵AG平分∠DAE,∴∠DAG=∠EAG,∴∠EAG=∠F,∴EA=EF,∵AB=2,∠B=90°,点E为BC的中点,∴BE=EC=1,∴AE==,∴EF=,∴CF=EF﹣EC=﹣1;(2)①证明:∵EA=EF,EG⊥AF,∴AG=FG,在△ADG和△FCG中,∴△ADG≌△FCG(AAS),∴DG=CG,即点G为CD的中点;②设CD=2a,则CG=a,由①知,CF=DA=2a,∵EG⊥AF,∠GCF=90°,∴∠EGC+∠CGF=90°,∠F+∠CGF=90°,∠ECG=∠GCF=90°,∴∠EGC=∠F,∴△EGC∽△GFC,∴,∵GC=a,FC=2a,∴,∴,∴EC=a,BE=BC﹣EC=2a﹣a=a,∴λ=. 展开更多...... 收起↑ 资源预览