2012年高考化学复习学案:(8份)打包

资源下载
  1. 二一教育资源

2012年高考化学复习学案:(8份)打包

资源简介

本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
原子结构与性质
主要知识点:
〖复习〗必修中学习的原子核外电子排布规律:
(1)核外电子总是尽量先排布在能量较低的电子层,然后由里向外,依次排布在能量逐步升高的电子层(能量最低原理)。
(2)原子核外各电子层最多容纳2n2个电子。
(3)原于最外层电子数目不能超过8个(K层为最外层时不能超过2个电子)。
(4)次外层电子数目不能超过18个(K层为次外层时不能超过2个),倒数第三层电子数目不能超过32个。
说明:以上规律是互相联系的,不能孤立地理解。例如;当M层是最外层时,最多可排8个电子;当M层不是最外层时,最多可排18个电子
1. 能层与能级
由必修的知识,我们已经知道多电子原子的核外电子的能量是不同的,由内而外可以分为: 第一、二、三、四、五、六、七……能层
符号表示 K、 L、 M、 N、 O、 P、 Q……
能量由低到高
例如:钠原子有11个电子,分布在三个不同的能层上,第一层2个电子,第二层8个电子,第三层1个电子。由于原子中的电子是处在原子核的引力场中,电子总是尽可能先从内层排起,当一层充满后再填充下一层。理论研究证明,原子核外每一层所能容纳的最多电子数如下:
能 层 一 二 三 四 五 六 七……
符 号 K L M N O P Q……
最多电子数 2 8 18 32 50……
即每层所容纳的最多电子数是:2n2(n:能层的序数)
但是同一个能层的电子,能量也可能不同,还可以把它们分成能级(S、P、d、F),就好比能层是楼层,能级是楼梯的阶级。各能层上的能级是不一样的。
能级的符号和所能容纳的最多电子数如下:
能 层 K L M N O ……
能 级 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f ……
最多电子数 2 2 6 2 6 10 2 6 10 14 ……
各能层电子数 2 8 18 32 50 ……
(1) 每个能层中,能级符号的顺序是ns、np、nd、nf……
(2) 任一能层,能级数=能层序数
(3) s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍
各能层所包含的能级类型及各能层、能级最多容纳的电子数见下表:
能 层(n) 一 二 三 四 五 六 七
符 号 K L M N O P Q
能 级(l) 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s … ……
最 多 电 子 数 2 2 6 2 6 10 2 6 10 14 2 … ……
2 8 18 32 …… 2n2
2、构造原理
根据构造原理,只要我们知道原子序数,就可以写出几乎所有元素原子的电子排布。
即电子所排的能级顺序:1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s……
电子填充的先后顺序(构造原理)为:
1s 2s2p 3s3p 4s3d4p 5s4d5p 6s4f5d6p 7s5f6d7p ...
ns (n-2)f (n-1)d np
构造原理揭示了原子核外电子的能级分布。不同能层的能级有交错现象,
如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)等。
构造原理是书写基态原子电子排布式的依据,也是绘制基态原子电子排布图(即轨道表示式)的主要依据之一。如:Na:1s22s22p63s1,能级符号上面数字是该能级上的电子数。
元素原子的电子排布:(1—36号)
氢 H 1s1 ……
钠 Na 1s22s22p63s1 ……
钾 K 1s22s22p63s23p64s1 【Ar】4s1 ……
有少数元素的基态原子的电子排布对于构造原理有一个电子的偏差,如:
铬 24Cr [Ar]3d54s1 铜 29Cu [Ar]3d104s1
例如:写出17Cl(氯)、21Sc(钪)、35Br(溴)的电子排布
氯:1s22s22p63s23p5
钪:1s22s22p63s23p63d14s2
溴:1s22s22p63s23p63d104s24p5
3.电子云和原子轨道:
(1)电子运动的特点:①质量极小 ②运动空间极小 ③极高速运动。
因此,电子运动来能用牛顿运动定律来描述,只能用统计的观点来描述。我们不可能像描述宏观运动物体那样,确定一定状态的核外电子在某个时刻处于原子核外空间如何,而只能确定它在原子核外各处出现的概率。
概率分布图看起来像一片云雾,因而被形象地称作电子云。常把电子出现的概率约为90%的空间圈出来,人们把这种电子云轮廓图成为原子轨道。
S的原子轨道是球形的,能层序数越大,原子轨道的半径越大。
P的原子轨道是纺锤形的,每个P能级有3个轨道,它们互相垂直,分别以Px、Py、Pz为符号。P原子轨道的平均半径也随能层序数增大而增大。
s电子的原子轨道都是球形的(原子核位于球心),能层序数,2越大,原子轨道的半径越大。这是由于1s,2s,3s……电子的能量依次增高,电子在离核更远的区域出现的概率逐渐增大,电子云越来越向更大的空间扩展。这是不难理解的,打个比喻,神州五号必须依靠推动(提供能量)才能克服地球引力上天,2s电子比1s电子能量高,克服原子
核的吸引在离核更远的空间出现的概率就比1s大,因而2s电子云必然比1s电子云更扩散。
(2) [重点难点]泡利原理和洪特规则
量子力学告诉我们:ns能级各有一个轨道,np能级各有3个轨道,nd能级各有5个轨道,nf能级各有7个轨道.而每个轨道里最多能容纳2个电子,通常称为电子对,用方向相反的箭头“↑↓”来表示。
一个原子轨道里最多只能容纳2个电子,而且自旋方向相反,这个原理成为泡利原理。
推理各电子层的轨道数和容纳的电子数。
当电子排布在同一能级的不同轨道时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则是洪特规则。
洪特规则的特例:对于同一个能级,当电子排布为全充满、半充满或全空时,是比较稳定的。
特例: 24Cr 1s22s22p63s23p63d54s1 29Cu 1s22s22p63s23p63d104s1
3d 3d
半充满 全充满
轨道表示式:用“□”表示轨道,用“↑”或“↓”表示容纳的电子。
1s 1s
如:1H 2He
1s 2s 1s 2s 2p
3Li 6C
注意:、ns能级各有1个轨道,np能级各有3个轨道,nd能级各有5个轨道,nf能级各有7个轨道。而每个轨道里最多能容纳2个电子,通常称为电子对,用方向相反的箭头“↑↓”来表示。“↑” “↓”表示自选方向相反。
4. 基态、激发态、光谱
1.基态:最低能量状态。如处于最低能量状态的原子称为基态原子。
2.激发态:较高能量状态(相对基态而言)。如基态原子的电子吸收能量后,电子跃迁至较高能级成为激发态原子。
3.光谱:不同元素的原子发生跃迁时会吸收(基态→激发态)和放出(基态→激发态)能量,产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。
小结:原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。处于最低能量的原子叫做基态原子。
当基态原子的电子吸收能量后,电子会跃迁到较高能级,变成激发态原子。电子从较高能量的激发态跃迁到较低能量的激发态乃至基态时,将释放能量。光(辐射)是电子释放能量的重要形式之一。
不同元素的原子发生跃迁时会吸收或释放不同的光,可以用光谱仪摄取各种元素的电子的吸收光谱或发射光谱,总称原子光谱。许多元素是通过原子光谱发现的。在现代化学中,常利用原子光谱上的特征谱线来鉴定元素,称为光谱分析。
【例题解析】
例1 下列有关电子云和原子轨道的说法正确的是( )
A.原子核外的电子象云雾一样笼罩在原子核周围,故称电子云
B.s能级的原子轨道呈球形,处在该轨道上的电子只能在球壳内运动
C.p能级的原子轨道呈纺锤形,随着能层的增加,p能级原子轨道也在增多
D.与s电子原子轨道相同,p电子原子轨道的平均半径随能层的增大而增大
分析 电子云是对电子运动的形象化描述,它仅表示电子在某一区域内出现的概率,并非原子核真被电子云雾所包裹,故选项A错误。原子轨道是电子出现的概率约为90%的空间轮廓,它表明电子在这一区域内出现的机会大,在此区域外出现的机会少,故选项B错误。无论能层序数n怎样变化,每个p能级都是3个原子轨道且相互垂直,故选项C错误。由于按1p、2p、3p……的顺序,电子的能量依次增高,电子在离核更远的区域出现的概率逐渐增大,电子云越来越向更大的空间扩展,原子轨道的平均半径逐渐增大。
答案 D
例2 已知锰的核电荷数为25,以下是一些同学绘制的基态锰原子核外电子的轨道表示式(即电子排布图),其中最能准确表示基态锰原子核外电子运动状态的是( )
A B C D
分析 由构造原理可知E(4s)<E(3d),而选项A、B中 E(3d)<E(4s)。洪特规则指出:“电子排布在同一能级的不同轨道时优单独占据一个轨道,且自旋方向相同”而选项A中未单独占据一个轨道,选项C 中虽然单独占据一个轨道但自旋方向不相同。根据泡利原理:“1个原子轨道里最多可容纳2个自旋方向相反的电子”而选项B中的s轨道的自旋方向相同。
答案 D
例3 若某基态原子的外围电子排布为4d15s2,则下列说法正确的是( )
A.该元素基态原子中共有3个电子 B.该元素原子核外有5个电子层
C.该元素原子最外层共有3个电子 D.该元素原子M能层共有8个电子
分析 : 根据核外电子排布规律,该元素基态原子的电子排布式为1s22s22p63s23p63d104s24p64d15s2。由此可见:该元素原子中共有39个电子,分5个电子层,其中M能层上有18个电子,最外层上有2个电子。
答案 B
【巩固练习】
1、下列有关电子云和原子轨道的说法正确的是( )
A、原子核外的电子象云雾一样笼罩在原子核周围,故称电子云
B、s能级的原子轨道呈球形,处在该轨道上的电子只能在球壳内运动
C、p能级的原子轨道呈纺锤形,随着能层的增加,p能级原子轨道也在增多
D、与s电子原子轨道相同,p电子原子轨道的平均半径随能层的增大而增大
2、当镁原子由1s22s22p63s2 →1s22s22p63p2时,以下认识正确的是( )
A、镁原子由基态转化成激发态,这一过程中吸收能量
B、镁原子由激发态转化成基态,这一过程中释放能量
C、转化后位于p能级上的两个电子处于同一轨道,且自旋方向相同
D、转化后镁原子与硅原子电子层结构相同,化学性质相似
3、一个电子排布为1s22s22p63s23p1的元素最可能的价态是 ( )
A、+1 B、+2 C、+3 D、—1
4、下列关于稀有气体的叙述不正确的是 ( )
A、原子的电子排布最外层都是以P6结束
B、其原子与同周期ⅠA、ⅡA族阳离子具有相同电子排布式
C、化学性质非常不活泼
D、一定条件下,也可以形成稀有气体化合物
4、下列基态原子的电子构型中,正确的是 ( )
A、3d94s2 B、3d44s2 C、4d105s0 D、4d85s2
5、同一原子的基态和激发态相比较 ( )
A、基态时的能量比激发态时高 B、基态时比较稳定
C、基态时的能量比激发态时低 D、激发态时比较稳定
6、若某基态原子的外围电子排布为4d15s2,则下列说法正确的是 ( )
A、该元素基态原子中共有3个电子 B、该元素原子核外有5个电子层
C、该元素原子最外层共有3个电子 D、该元素原子M能层共有8个电子
7、下表列出了核电荷数为21~25的元素的最高正化合价,回答下列问题:
元素名称 钪 钛 钒 铬 锰
元素符号 Sc Ti V Cr Mn
核电荷数 21 22 23 24 25
最高正价 +3 +4 +5 +6 +7
(1)写出下列元素基态原子的核外电子排布式:
Sc___ ___ ___ Ti_______________________________
V ____________________________ Mn ______________________________
(2)对比上述五种元素原子的核外电子排布与元素的最高正化合价,你发现的规律
是 ____________________________;出现这一现象的原因是_____________________。
8、以下列出的是一些原子的2p能级和3d能级中电子排布的情况。试判断,哪些违反了泡利不相容原理,哪些违反了洪特规则。
(1) (2) (3)
(4) (5)
违反泡利不相容原理的有 ,违反洪特规则的有 。
9、某元素的激发态原子的电子排布式为1s22s22p63s23p34s1,则该元素基态原子的电子排布式为 ;元素符号为 。
二、原子结构与元素的性质
(一)、原子结构与周期表
1、周期系:
随着元素原子的核电—荷数递增,每到出现碱金属,就开始建立一个新的电子层,随后最外层上的电子逐渐增多,最后达到8个电子,出现稀有气体。然后又开始由碱金属到稀有气体,如此循环往复——这就是元素周期系中的一个个周期。例如,第11号元素钠到第18号元素氩的最外层电子排布重复了第3号元素锂到第10号元素氖的最外层电子排布——从1个电子到8个电子;再往后,尽管情形变得复杂一些,但每个周期的第1个元素的原子最外电子层总是1个电子,最后一个元素的原子最外电子层总是8个电子。可见,元素周期系的形成是由于元素的原子核外屯子的排布发生周期性的重复。
2、周期表
在周期表中,把能层数相同的元素,按原子序数递增的顺序从左到右排成横行,称之为周期,有7个;在把不同横行中最外层电子数相同的元素,按能层数递增的顺序由上而下排成纵行,称之为族,共有18个纵行,16 个族。16个族又可分为主族、副族、0族。
元素在周期表中的位置由原子结构决定:原子核外电子层数决定元素所在的周期,原子的价电子总数决定元素所在的族。
S区元素价电子特征排布为nS1~2,价电子数等于族序数。
d区元素价电子排布特征为(n-1)d1~10ns1~2;价电子总数等于副族序数;
ds区元素特征电子排布为(n-1)d10ns1~2,价电子总数等于所在的列序数;
p区元素特征电子排布为ns2np1~6;价电子总数等于主族序数。
原子结构与元素在周期表中的位置是有一定的关系的。
(1)原子核外电子总数决定所在周期数 周期数=最大能层数(钯除外)46Pd [Kr]4d10,
最大能层数是4,但是在第五周期。
(2)外围电子总数决定排在哪一族,如:29Cu 3d104s1, 10+1=11尾数是1所以,是IB。
元素周期表是元素原子结构以及递变规律的具体体现。
(二)、元素周期律
1、原子半径
同周期主族元素从左到右,原子半径逐渐减小。其主要原因是由于核电荷数的增加使核对电子的引力增加而带来原子半径减小的趋势大于增加电子后电子间斥力增大带来原子半径增大的趋势。
同主族元素从上到下,原子半径逐渐增大。其主要原因是由于电子能层增加,电子间的斥力使原子的半径增大。
原子半径的大小取决于两个相反的因素:一是电子的能层数,另一个是核电荷数。显然电子的能层数越大,电子间的负电排斥将使原子半径增大,所以同主族元素随着原子序数的增加,电子层数逐渐增多,原子半径逐渐增大。而当电子能层相同时,核电荷数越大,核对电子的吸引力也越大,将使原子半径缩小,所以同周期元素,从左往右,原子半径逐渐减小。
粒子半径大小的比较
1、原子半径大小比较:电子层数越多,其原子半径越大。当电子层数相同时,随着核电荷数增加,原子半径逐渐减小。最外层电子数目相同的原子,原子半径随核电荷数的增大而增大
2、核外电子排布相同的离子,随核电荷数的增大,半径减小。
3、同种元素的不同粒子半径关系为:阳离子<原子<阴离子,并且价态越高的粒子半径越小。
2、电离能
(1)定义:气态原子或气态离子失去一个电子所需要的最小能量叫做电离能.
①常用符号I表示,单位为KJ mol-1
②意义:通常用电离能来表示原子或离子失去电子的难易程度。
(2)元素的第一电离能:处于基态的气态原子失去1个电子,生成+1价气态阳离子所需要的能量称为第一电离能,常用符号I1表示。
原子为基态原子,保证失去电子时消耗能量最低。电离能用来表示原子或分子失去电子的难易程度。电离能越大,表示原子或离子越难失电子;电离能越小,表示原子或离子易失电子。气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能。上述表述中的“气态”“基态”“电中性”“失去一个电子”等都是保证“最低能量”的条件。
原子的第一电离能有什么变化规律
1、递变规律
周一周期 同一族
第一电离能 从左往右,第一电离能呈增大的趋势 从上到下,第一电离能呈增大趋势。
2、第一电离能越小,越易失电子,金属的活泼性就越强。因此碱金属元素的第一电离能越小,金属的活泼性就越强。
3.气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能(用I1表示),从一价气态基态正离子中再失去一个电子所需消耗的能量叫做第二电离能(用I2表示),依次类推,可得到I3、I4、I5……同一种元素的逐级电离能的大小关系:I14、Be有价电子排布为2s2,是全充满结构,比较稳定,而B的价电子排布为2s22p1,、比Be不稳定,因此失去第一个电子B比Be容易,第一电离能小。
5、Na的I1,比I2小很多,电离能差值很大,说明失去第一个电子比失去第二电子容易得多,所以Na容易失去一个电子形成+1价离子;Mg的I1和I2相差不多,而I2比I3小很多,所以Mg容易失去两个电子形成十2价离子;Al的I1、I2、I3相差不多,而I3比I4小很多,所以A1容易失去三个电子形成+3价离子。而电离能的突跃变化,说明核外电子是分能层排布的。
电离能的应用
、根据电离能数据,确定元素核外电子的排布
如Li I1<根据电离能数据,确定元素在化合物中的化合价。
如K元素 I1<判断元素的金属性、非金属性强弱
I1越大,元素的非金属性越强,I1越小,元素的金属性越强。
需要我们注意的是,金属活动性表示的是在水溶液中金属单质中的原子失去电子的能力,而电离能是指金属元素在气态时失去电子成为气态阳离子的能力,二者对应条件不同,所以排列顺序不完全一致。
3、电负性
(1) 键合电子:元素相互化合时,原子中用于形成化学键的电子称为键合电子
孤电子:元素相互化合时,元素的价电子中没有参加形成化学键的电子的孤电子。
(2)定义:用来描述不同元素的原子对键合电子吸引力的大小。
(3)意义:元素的电负性越大,表示其原子在化合物中吸引电子的能力越强;反之,电负性越小,相应原子在化合物中吸引电子的能力越弱。
(4) 电负性大小的标准:以F的电负性为4.0和Li的电负性为1.0作为相对标准。
元素的电负性用于判断一种元素是金属元素还是非金属元素,以及元素的活泼性。通常,电负性小于2的元素,大部分是金属元素;电负性大于2的元素,大部分是非金属元素。非金属元素的电负性越大,非金属元素越活泼;金属元素的电负性越小,金属元素越活泼。例如,氟的电负性为4,是最强的非金属元素;钫的电负性为0.7,是最强的金属元素,
(5) 元素电负性的应用
元素的电负性与元素的金属性和非金属性的关系
金属的电负性一般都小于1.8,非金属的电负性一般都大于1.8,而位于非金属三角区边界的“类金属”(如锗、锑等)的电负性在1.8左右,它们既有金属性,又有非金属性。
 电负性与化合价的关系
电负性数值的大小能够衡量元素在化合物中吸引电子能力的大小。电负性数值小的元素在化合物中吸引电子的能力弱,元素的化合价为正值;电负性数值大的元素在化合物中吸引电子的能力强,元素的化合价为负价
③判断化学键的类型
一般电负性差值大的元素原子间形成的主要是离子键,电负性差值小于1.7或相同的非金属原子之间形成的主要是共价键;当电负性差值为零时,通常形成非极性键,不为零时易形成极性键。当电负性差值大于1.7,形成的是离子键
对角线规则:元素周期中处于对角线位置的元素电负性数值相近,性质相似。
Li、Mg在空气中燃烧产物分别为Li2O、MgO,Be(OH)2、Al(OH)3均为两性氢氧化物,硼和硅的含氧酸均为弱酸,由此可以看出对角线规则的合理性。Li、Mg的电负性分别为1.0、1.2,Be、Al电负性均为1.5,B、Si的电负性分别为2.0、1.8数值相差不大,故性质相似.)
电负性的周期性变化
1、金属元素越容易失电子,对键合电子的吸引能力越小,电负性越小,其金属性越强;非金属元素越容易得电子,对键合电子的吸引能力越大,电负性越大,其非金属性越强;故可以用电负性来度量金属性与非金属性的强弱。周期表从左到右,元素的电负性逐渐变大;周期表从上到下,元素的电负性逐渐变小。电负性的大小可以作为判断元素金属性和非金属性强弱的尺度。金属的电负性一般小于1.8,非金属的电负性一般大于1.8,而位于非金属三角区边界的“类金属”的电负性则在1.8左右,他们既有金属性又有非金属性。
2、同周期元素从左往右,电负性逐渐增大,表明金属性逐渐减弱,非金属性逐渐增强。同主族元素从上往下,电负性逐渐减小,表明元素的金属性逐渐减弱,非金属性逐渐增强。
[小结]原子半径、电离能、电负性的周期性变化规律:在元素周期表中同周期元素从左到右,原子半径逐渐减小,第一电离能逐渐增大(趋势),电负性逐渐增大。在元素周期表中同主族从上到下原子半径逐渐增大,第一电离能逐渐减小,电负性逐渐减小。
典例解析
例1:镁的第一电离能比铝的大,磷的第一电离能比硫的大,为什么呢?
Mg:1s22s22p63s2 P:1s22s22p63s23p3
解析:那是因为镁原子、磷原子最外层能级中,电子处于半满或全满状态,相对比较稳定,失电子较难。如此相同观点可以解释N的第一电离能大于O,Mg的第一电离能大于Al,Zn的第一电离能大于Ga。
例2.下列说法正确的是( )
A.第3周期所含的元素中钠的第一电离能最小
B.铝的第一电离能比镁的第一电离能大
C.在所有元素中,氟的电离能最大
D.钾的第一电离能比镁的第一电离能大
解析:考查元素第一电离能的变化规律,一般同周期从左到右第一电离能逐渐增大,碱金属元素的第一电离能最小,稀有气体最大故A正确C不正确;但有反常,第ⅢA和VA族元素比同周期相邻两种元素第一电离能都低。同主族从上到下元素的第一电离能逐渐减小。,由于核外价电子排布镁为3S2,Al为3S23P1,故Al的第一电离能小于Mg的,所以B错误;根据同主族同周期规律可以推测:第一电离能K例3.下列原子的价电子排布中,对应于第一电离能最大的是( )
A、ns2np1 B、ns2np2 C、ns2np3 D、ns2np4
解析:当原子轨道处于全满、半满时,具有的能量较低,原子比较稳定,电离能较大。
答案:C
例4: 已知元素的电负性和元素的化合价等一样,也是元素的一种基本性质。下面给出14种元素的电负性:
元素 Al B Be C Cl F Li Mg N Na O P S Si
电负性 1.5 2.0 1.5 2.5 2.8 4.0 1.0 1.2 3.0 0.9 3.5 2.1 2.5 1.7
已知:两成键元素间电负性差值大于1.7 时,形成离子键,两成键元素间电负性差值小于1.7时,形成共价键。
①根据表中给出的数据,可推知元素的电负性具有的变化规律是 。
②.判断下列物质是离子化合物还是共价化合物?
Mg3N2 BeCl2 AlCl3 SiC
解析:元素的电负性是元素的性质,随原子序数的递增呈周期性变化。据已知条件及上表中数值:Mg3N2电负性差值为1.8,大于1.7,形成离子键,为离子化合物;BeCl2 AlCl3 SiC电负性差值分别为1.3、1.3、0.8,均小于1.7,形成共价键,为共价化合物。
答案:1.随着原子序数的递增,元素的电负性与原子半径一样呈周期性变化。2.Mg3N2;离子化合物。SiC,BeCl2、AlCl3均为共价化合物。
[随堂练习]
1、电负性的大小也可以作为判断金属性和非金属性强弱的尺度下列关于电负性的变化规律正确的是 ( )
A.周期表从左到右,元素的电负性逐渐变大
B.周期表从上到下,元素的电负性逐渐变大
C.电负性越大,金属性越强
D.电负性越小,非金属性越强
2、已知X、Y元素同周期,且电负性X>Y,下列说法错误的是( )
A、X与Y形成化合物是,X可以显负价,Y显正价
B、第一电离能可能Y小于X
C、最高价含氧酸的酸性:X对应的酸性弱于于Y对应的
D、气态氢化物的稳定性:HmY小于HmX
3、根据对角线规则,下列物质的性质具有相似性的是 ( )
A、硼和硅 B、铝和铁 C、铍和铝 D、铜和金
巩固练习参考答案:
1、D 2、A 3、C 4、AB 5、C 6、B
7、1s22s22p63s23p63d14s2 1s22s22p63s23p63d24s2
1s22s22p63s23p63d34s2 1s22s22p63s23p63d54s2
8、(1) (2)(4)(5) 9、1s22s22p63s23p4 S
A C C
↓↑
↓↑
①↓↑
(↓↑
乙↓↑
(↑
a↑
(↑
(↑

↓↑


↓↑
↓↑


↓↑


↑↑


↓↑


↓↑



↓↑




↓↑
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
第十二讲 分子的性质
主要知识点:
一、共价键及其分类
1、按成键方式分:σ键和Π键
σ键:对于含有未成对的s电子或p电子的原子,它可以通过s-s、s-p、p-p等轨道“头碰头”重叠形成共价键。σ键构成分子的骨架,可单独存在于两原子间,两原子间只有一个σ键
Π键:当两个p轨道py-py、pz-pz以“肩并肩”方式进行重叠形成的共价键,叫做Π键。Π键的原子轨道重叠程度不如σ键大,所以Π键不如σ键牢固。Π键不像σ键那样集中在两核的连线上,原子核对电子的束缚力较小,电子能量较高,活动性较大,所以容易断裂。因此,一般含有共价双键和三键的化合物容易发生化学反应。
2、按成键的共用电子对情况可分为:单键、双键、三键、配位键
单键一般是σ键,以共价键结合的两个原子间只能有1个σ键。双键是由一个σ键和一个Π键组成的,而单双键交替结构是由若干个σ键和一个大Π键组成的。三键中有1个σ键和2个Π键组成的。而配位键是一种特殊的共价键,如果共价键的形成是由两个成键原子中的一个原子单独提供一对孤对电子进入另一个原子的空轨道共用而成键,这种共价键称为配位键。
由不同原子形成的共价键,电子对会发生偏移,是极性键,极性键中的两个键合原子,一个呈正电性(δ+),另一个呈负电性(δ一)。
3、按成键原子的电负性差异可分为极性键和非极性键
(1)、极性键:由不同原子形成的共价键。吸电子能力较强一方呈正电性(δ+),另一个呈负电性(δ-)。
(2)、非极性键:由同种元素的原子形成的共价键是非极性共价键。
成键原子的电负性差值越大,键的极性就愈强。当成键原子的电负性相差很大时,可以认为成键电子对完全移到电负性很大的原子一方。这时原子转变成为离子,从而形成离子键。
分子有极性分子和非极性分子之分。我们可以这样认为,分子中正电荷的作用集中于一点,是正电中心;负电荷的作用集中于一点,是负电中心。在极性分子中,正电荷中心和负电中心不重合,使分子的某一个部分呈正电性(δ+),另一部分呈负电性(δ一);非极性分子的正电中心和负电中心重合。如果正电中心和负电中心重合,这样的分子就是非极性分子
二、分子的极性
1、极性分子和非极性分子:极性分子中,正电荷中心和负电中心不重合;非极性分子的正电中心和负电中心重合。
例1:根据上图,思考和回答下列问题:
1、以下双原子分子中,哪些是极性分子,分子哪些是非极性分子?H2 02 C12 HCl
2.以下非金属单质分子中,哪个是极性分子,哪个是非极性分子 P4 C60
3.以下化合物分子中,哪些是极性分子,哪些是非极性分子?
CO2 HCN H20 NH3 BF3 CH4 CH3Cl
解:1、H2、02、C12 极性分子 HCl ,非极性分子。
2、P4、C60都是非极性分子。
3、CO2 BF3 CH4 为非极性分子,CH3Cl HCN H20 NH3为极性分子。
分子的极性是分子中化学键的极性的向量和。只含非极性键的分子也不一定是非极性分子(如O3);含极性键的分子有没有极性,必须依据分子中极性键的极性的向量和是否等于零而定。如果分子结构是空间对称的,则键的极性相互抵消,各个键的极性和为零,整个分子就是非极性分子,否则是极性分子。
小结:共价键的极性与分子极性的关系
分子 共价键的极性 分子中正负电荷中心 结论 举例
同核双原子分子 非极性键 重合 非极性分子 H2、O2、N2
异核双原子分子 极性键 不重合 极性分子 CO、HF、HCl
异核多原子分子 分子中各键的向量和为零 重合 非极性分子 CO2、BF3、CH4
分子中各键的向量和不为零 不重合 极性分子 H2O、NH3、CH3Cl
一般规律:
a. 以极性键结合成的双原子分子是极性分子。如:HCl、HF、HBr
b. 以非极性键结合成的双原子分子或多原子分子是非极性分子。如:O2、H2、P4、C60。
c. 以极性键结合的多原子分子,有的是极性分子也有的是非极性分子。
d. 在多原子分子中,中心原子上价电子都用于形成共价键,而周围的原子是相同的原
子,一般是非极性分子。
2、分子的对称性
(1)定义:具有一定空间构型的分子中的原子会以某一个面成一个轴处于相对称的位置,即分子具有对称性。
例如CH4分子,相对于通过其中两个氢原子和碳原子所构成的平面,分子被分割成相同的两部分,这个面即为对称面。
(2)关系:非极性分子具有对称性,极性分子中原子不位于对称位置。
3、分子的极性对物质的熔点、沸点的影响
分子极性越大,分子间的电性作用越强,克服分子间的引力使物质熔化或汽化所需外界能量就越多,故熔点、沸点越高。
4、ABm型分子极性的判断方法
(1) 化合价法
ABm型分子中中心原子的化合价的绝对值等于该元素的价电子数时,该分子为非极性分子,此时分子的空间结构对称。若中心原子的化合价的绝对值不等于其价电子数目,则分子的空间结构不对称,其分子为极性分子。
化学式 BF3 CO2 PCl5 SO3(g) H2O NH3 SO2
中心原子化合价绝对值 3 4 5 6 2 3 4
中心原子价电子数 3 4 5 6 6 5 6
分子极性 非极性 非极性 非极性 非极性 极性 极性 极性
(2) 物理模型法:
将ABm型分子的中心原子看做一个受力物体,将A、B间的极性共价键看做作用于中心原子上的力,根据ABm的空间构型,判断中心原子和平衡,如果受力平衡,则ABm型分子为非极性分子,否则为极性分子。
(3) 根据所含键的类型及分子的空间构型判断
当ABm型分子的空间构型是对称结构时,由于分子中正负电荷重心可以重合,故为非极性分子,如CO2是直线型,BF3是平面正三角型,CH4是正四面体形等均为非极性分子。当ABm型分子的空间构型不是空间对称结构时,一般为极性分子,如H2O为V型,NH3为三角锥形,它们均为极性分子。
(4)根据中心原子最外层电子是否全部成键判断
中心原子即其他原子围绕它成键的原子。分子中的中心原子最外层电子若全部成键,此分子一般为非极性分子;分子中的中心原子最外层电子未全部成键,此分子一般为极性分子。
小结:空间构型、键的极性和分子极性的关系
类型 实例 两个键之间的夹角 键的极性 分子的极性 空间构型
X2 H2、N2 非极性键 非极性分子 直线形
XY HCl、NO 极性键 极性分子 直线形
XY2(X2Y) CO2、CS2 180° 极性键 非极性分子 直线形
SO2 120° 极性键 极性分子 V形
H2O、H2S 104°30′ 极性键 极性分子 V形
XY3 BF3 120° 极性键 非极性分子 平面三角锥形
NH3 107°18′ 极性键 极性分子 三角锥形
XY4 CH4、CCl4 109°30′ 极性键 非极性分子 正四面体
巩固练习:
1、下列说法中不正确的是 ( )
A、共价化合物中不可能含有离子键 B、有共价键的化合物,不一定是共价化合物
C、离子化合物中可能存在共价键 D、原子以极性键结合的分子,肯定是极性分子
2、以极性键结合的多原子分子,分子是否有极性取决于分子的空间构型。下列分子属极性分子的是( )
A、H2O B、CO2 C、BCl3 D、NH3
3、下列各分子中所有原子都满足最外层8电子稳定结构且共用电子对发生偏移的是( )
A、BeCl2 B、 PCl3 C、PCl5 D、N2
4、分子有极性分子和非极性分子之分。下列对极性分子和非极性分子的认识正确的是( )
A、只含非极性键的分子一定是非极性分子 B、含有极性键的分子一定是极性分子
C、非极性分子一定含有非极性键 D、极性分子一定含有极性键
5、请指出表中分子的空间构型,判断其中哪些属于极性分子,哪些属于非极性分子,并与同学讨论你的判断方法。
分子 空间构型 分子有无极性 分子 空间构型 分子有无极性
O2 HF
CO2 H2O
BF3 NH3
CCl4
6、根据下列要求,各写一实例:
(1)、只含有极性键并有一对孤对电子的分子 ;
(2)、只含有离子键、极性共价键的物质 ;
(3)、只含有极性共价键、常温下为液态的非极性分子 。
三、分子间作用力及其对物质的影响
1、分子间作用力
(1) 定义:把分子聚集在一起的作用力叫做分子间作用力,又称范德华力,其实质是分子间的电性引力
从气体在降低温度、增大压强时能够凝结成液态或固态(在这个过程中,气体分子间的距离不断缩小,并由不规则运动的混乱状态转变成为规则排列)的事实可以证明分子存在着相互作用。
范德华力:分子之间存在着相互作用力。范德华力很弱,约比化学键能小l-2数量级。相对分子质量越大,范德华力越大;分子的极性越大,范德华力也越大。
(2)大小判断:
1 影响分子间作用力的主要因素:分子的相对分子质量、分子的极性等
2 组成和结构相似的物质,相对分子质量越大,分子间作用力越大。
3 分子的极性越强,分子间作用力越大。
如:卤素单质从F2~I2的熔、沸点越来越高?相对分子质量越大,范德华力越大,熔、沸点越来越高。
能量远小于化学键能,分子间作用力一般只有每摩尔几千焦至几十千焦,比化学能小1-2个数量极,分子间作用力主要影响分子晶体类型物质的物理性质,而化学键主要影响物质的化学性质。存在于分子之间,且分子间充分接近时才有相互间的作用力,如固体和液体物质中。
思考:夏天经常见到许多壁虎在墙壁或天花板上爬行,却掉不下来,为什么?
壁虎为什么能在天花板土爬行自如 这曾是一个困扰科学家一百多年的谜。用电子显微镜可观察到,壁虎的四足覆盖着几十万条纤细的由角蛋白构成的纳米级尺寸的毛。壁虎的足有多大吸力 实验证明,如果在一个分币的面积土布满100万条壁虎足的细毛,可以吊起20kg重的物体。近年来,有人用计算机模拟,证明壁虎的足与墙体之间的作用力在本质上是它的细毛与墙体之间的范德华力。
为什么水、氟化氢和氨的沸点出现反常。
四、氢键及其对物质性质的影响
为了解释水的这些奇特性质,人们提出了氢键的概念。氢键是除范德华力外的另一种分子间作用力,它是由已经与电负性很强的原子形成共价键的氢原子(如水分子中的氢)与另一个分子中电负性很强的原子(如水分子中的氧)之间的作用力。
1、氢键:是由已经与电负性很强的原子形成共价键的氢原子(如水分子中的氢)与另一个分子中电负性很强的原子(N、O、F)之间的作用力。
以HF为例,在HF分子中,由于F原子吸引电子的能力很强,H-F键的极性很强,共用电子对强烈地偏向F原子,亦即H原子的电子云被F原子吸引,使H原子几乎成为“裸露”为质子。这个半径很小、带部分正电荷的H核,与另一个HF分子带部分负电荷的F原子相互吸引。这种静电吸引作用就是氢键。
2、氢键表示方法:X—H…Y。
氢键不是化学键,为了与化学键相区别,在下图中用“…”来表示氢键,注意三个原子要在同一条直线上。
在用X-H…Y表示的氢键中,氢原子位于其间是氢键形成的最重要条件之一,同时,氢原子两边的X原子和Y原子所属元素具有很强的电负性、很小的原子半径是氢键形成的另一个条件。由于X原子和Y原子具有强烈吸引电子的作用,氢键才能存在。这类原子应该是位于元素周期表的右上角元素的原子,主要是氮原子、氧原子和氟原子。有机物分子中含有羟基时,通常能形成氢键。
3、氢键的形成条件
由于氢键的存在,大大加强了水分子之间的作用力,使水的熔、沸点较高。另外,实验还证明,接近水的沸点的水蒸气的相对分子质量测定值比用化学式H2O计算出来的相对分子质量大一些。用氢键能够解释这种异常性:接近水的沸点的水蒸气中存在相当量的水分子因氢键而相互“缔合”,形成所谓“缔合分子”。后来的研究证明,氢键普遍存在于已经与N、O、F等电负性很大的原子形成共价键的氢原子与另外的N、O、F等电负性很大的原子之间。例如,不仅氟化氢分子之间以及氨分子之间存在氢键,而且它们跟水分子之间也存在氢键。
4、氢键的类型:分子间氢键、分子间内氢键
氢键既可以存在于分子之间,也可存在于分子内部的原子团之间。如邻羟基苯甲醛在分子内形成了氢键,在分子之间不存在氢键,对羟基苯甲醛不可能形成分子内氢键,只能在分子间形成氢键,因而,前者的沸点低于后者的沸点。
分子内氢键和分子间氢键
尽管人们把氢键也称作“键”,但与化学键比较,氢键属于一种较弱的作用力,其大小介于范德华力和化学键之间,约为化学键的十分之几,不属于化学键。
下面,让我们回到之前的问题,为什么水、氟化氢和氨的沸点出现反常。如上图所示,NH3、HF和H2O的沸点反常,分子间形成氢键会使物质的熔点和沸点升高,这是因为固体熔化或液体汽化时必须破坏分子间的氢键,从而需要消耗较多能量的缘故。
5、氢键对物质的影响:分子间氢键使物质熔点升高;分子内氢键使物质熔点降低
以水为例,由于水分子间形成的氢键,增大了水分子间的作用,使水的熔沸点比同周期元素中H2S高。当水结冰时,体积膨胀,密度减小。这些反应的性质均与氢键有关。
在水蒸气中水以单个H2O 分子形式存在;在液态水中,经常是几个水分子通过氢键结合起来,形成(H2O)n;在固态水(冰)中,水分子大范围地以氢键互相联结,形成相当疏松的晶体,从而在结构中有许多空隙,造成体积膨胀,密度减少,因此冰能浮在水面上。水的这种性质对水生物生存有重要的意义。
除此之外,接近水的沸点时,用实验测定的水蒸气的相对分子质量比用化学式H2O计算出来的相对分子质量大一些。这也是由于氢键的存在使接近水的沸点的水蒸气中存在相当量的水分子相互“缔合”,形成了一些“缔合原子”的原因。
分子间作用力与氢键的比较
分类 分子间作用力(范德华力) 氢键
概念 物质分子之间存在的微弱相互作用(实际上也是静电作用) 分子中与氢原子形成共价键的非金属原子,如果吸引电子的能力很强,原子半径又很小,则使氢原子几乎成为“裸露”的质子,带部分正电荷。这样的分子之间,氢核与带部分负电荷的非金属原子相互吸引。这种静电作用就是氢键
存在范围 分子间 某些含氢化合物分子间(如HF、H2O、NH3)及某些有机化合物分子内
强度比较 比化学键弱得多 比化学键弱得多,比分子间作用力稍强
影响强度的因素 随着分子极性和相对分子质量的增大而增大。组成和结构相似的物质,相对分子质量越大,分子间作用力越大 形成氢键的非金属原子,其吸引电子的能力 越强、半径越小,则氢键越强。
巩固练习
1.下列各组物质的晶体中,化学键类型相同,熔化时所克服的作用力也完全相同的是( )
A.CO2和SiO2 B.NaCl和HCl C.(NH4)2CO3和CO(NH2)2 D.NaH和KCl
2.你认为下列说法不正确的是 ( )
A.氢键存在于分子之间,不存在于分子之内
B.对于组成和结构相似的分子,其范德华力随着相对分子质量的增大而增大
C.NH3极易溶于水而CH4难溶于水的原因只是NH3是极性分子,CH4是非极性分子
D.冰熔化时只破坏分子间作用力
3.沸腾时只需克服范德华力的液体物质是 ( )
A.水 B.酒精 C.溴 D.水银
4.下列物质中分子间能形成氢键的是 ( )
A.N2 B.HBr C.NH3 D.H2S
5.以下说法哪些是不正确的?
(1) 氢键是化学键
(2) 甲烷可与水形成氢键
(3) 乙醇分子跟水分子之间存在范德华力
(4) 碘化氢的沸点比氯化氢的沸点高是由于碘化氢分子之间存在氢键
6.乙醇(C2H5OH)和二甲醚(CH3OCH3)的化学组成均为C2H6O,但乙醇的沸点为78.5℃,而二甲醚的沸点为-23℃,为何原因?
五、溶解性
物质相互溶解的性质十分复杂,有许多制约因素,如温度、压强等。从分子结构的角度,存在“相似相溶”的规律。蔗糖和氨易溶于水,难溶于四氯化碳;而萘和碘却易溶于四氯化碳,难溶于水。如果分析溶质和溶剂的结构就可以知道原因了:蔗糖、氨、水是极性分子,而萘、碘、四氯化碳是非极性分子。通过对许多实验的观察和研究,人们得出了一个经验性的“相似相溶”的规律:非极性溶质一般能溶于非极性溶剂,极性溶质一般能溶于极性溶剂。
1、“相似相溶”的规律:非极性溶质一般能溶于非极性溶剂,极性溶质一般能溶于极性溶剂。
由于极性分子间的电性作用,使得极性分子组成的溶质易溶于极性分子组成的溶剂;难溶于非极性分子组成的溶剂;非极性分子组成的溶质易溶于非极性分子组成的溶剂。
水是极性溶剂,根据“相似相溶”,极性溶质比非极性溶质在水中的溶解度大。如果存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好。相反,无氢键相互作用的溶质在有氢键的水中的溶解度就比较小。
2、溶解度影响因素:
(1) 溶剂的极性
此外,“相似相溶”还适用于分子结构的相似性。例如,乙醇的化学式为CH3CH20H,其中的一OH与水分子的一OH相近,因而乙醇能与水互溶;而戊醇CH3CH2CH2CH2CH20H中的烃基较大,其中的一OH跟水分子的一OH的相似因素小得多了,因而它在水中的溶解度明显减小。
(2) 分子结构的相似性。
溶质分子与溶剂分子之间的范德华力越大,则溶质分子的溶解度越大。如CH4和HCl在水中的溶解情况,由于CH4与H2O分子间的作用力很小,故CH4几乎不溶于水,而HCl与H2O分子间的作用力较大,故HCl极易溶于水;同理,Br2、I2与苯分子间的作用较大,故Br2、I2易溶于苯中,而H2O与苯分子间的作用力很小,故H2O很难溶于苯中。
(3)分子间作用力和氢键
当溶质分子和溶剂分子间形成氢键时,会使溶质的溶解度增大。
另外,如果遇到溶质与水发生化学反应的情况,如SO2与水发生反应生成亚硫酸,后者可溶于水,因此,将增加SO2的溶解度。
例:1、比较NH3和CH4在水中的溶解度。怎样用相似相溶规律理解它们的溶解度不同?
解: NH3为极性分子,CH4为非极性分子,而水是极性分子,根据“相似相溶”规则,NH3易溶于水,而CH4不易溶于水。并且NH3与水之间还可形成氢键,使得NH3更易溶于水。
2.为什么在日常生活中用有机溶剂(如乙酸乙酯等)溶解油漆而不用水
解:油漆是非极性分子,有机溶剂如乙酸乙酯也是非极性溶剂,而水为极性溶剂,根据“相似相溶”规则,应当用有机溶剂溶解油漆而不能用水溶解油漆。
3、在一个小试管里放入一小粒碘晶体,加入约5mL蒸馏水,观察碘在水中的溶解性(若有不溶的碘,可将碘水溶液倾倒在另一个试管里继续下面的实验)。在碘水溶液中加入约1mL四氯化碳(CCl4),振荡试管,观察碘被四氯化碳萃取,形成紫红色的碘的四氯化碳溶液。再向试管里加入1mL浓碘化钾(KI)水溶液,振荡试管,溶液紫色变浅,这是由于在水溶液里可发生如下反应:I2+I—=I3—。实验表明碘在纯水还是在四氯化碳中溶解性较好 为什么
解: 实验表明碘在四氯化碳溶液中的溶解性较好。这是因为碘和四氯化碳都是非极性分子,非极性溶质一般能溶于非极性溶剂,而水是极性分子。
参考答案:
1、D 2、AD 3、B 4、AD
分子 空间构型 分子有无极性 分子 空间构型 分子有无极性
O2 直线型 无极性 HF 直线型 有极性
CO2 直线型 无极性 H2O V形 有极性
BF3 平面三角形 无极性 NH3 三角锥 有极性
CCl4 正四面体 无极性
6、(1)NH3或PH3 (2)NaOH或NH4Cl (3)CCl4或CS2
参考答案:1、D 2、AC 3、C 4、C
5、(1) 氢键不是化学键,而是教强的分子间作用力
(2) 由于甲烷中的碳不是电负性很强的元素,故甲烷与水分子间一般不形成氢键
(3) 乙醇分子跟水分子之间不但存在范德华力,也存在氢键
(4) 碘化氢的沸点比氯化氢的沸点高是由于碘化氢的相对分子质量大于氯化氢的,
相对分子质量越大,范德华力越大,沸点越高
6.乙醇(C2H5OH)和二甲醚(CH3OCH3)的化学组成相同,两者的相对分子质量也相同,但乙醇分子之间能形成氢键,使分子间产生了较强的结合力,沸腾时需要提供更多的能量去破坏分子间氢键,而二甲醚分子间没有氢键,所以乙醇的沸点比二甲醚的高。
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
共价键
主要知识点:
复习: 离子化合物和共价化合物的区别
比较项目 离子化合物 共价化合物
化学键 离子键或离子键与共价键 共价键
概念 含有离子键的化合物叫离子化合物 以共用电子对形成的化合物叫共价化合物
达到稳定结构的途径 通过电子得失达到稳定结构 通过形成共用电子对达到稳定结构
构成微粒 阴、阳离子 原子
构成元素 活泼金属与活泼非金属 不同种非金属
表示方法 电子式:(以NaCl为例)离子化合物的结构: NaCl的形成过程: 以HCl为例:结构式:H—C1电子式::HCl的形成过程:
1.σ键
①H2分子里的“s—s σ键”
氢原子形成氢分子的电子云描述
②HCl分子的s—p σ键的形成
③C1一C1的p—pσ键的形成
未成对电子的电子云互相靠拢 电子云互相重叠 形成共价单键的电子云图像理论分析:1.σ键是两原子在成键时,电子云采取“头碰头”的方式重叠形成的共价键,这种重叠方式符合能量最低,最稳定;σ键是轴对称的,可以围绕成键的两原子核的连线旋转。(1)H2分子里的σ键是由两个s电子重叠形成,称为“s—sσ键”;(2)HCl分子里的共价键是由氢原于提供的未成对电子,1s的原子轨道和氯原子提供的未成对电子3p的原子轨道重叠形成的,称为“s—pσ键”;(3)C12分子中的共价键是由两个氯原子各提供1个未成对电子3p的原予轨道重叠形成的,称为“p—pσ键”。
2. π键:p电子和p电子除能形成σ键外,还能形成π键。
C1一C1的p—pπ键的形成
π 键是电子云采取“肩并肩”的方式重叠,成键的电子云由两块组成,分别位于由两原子核构成平面的两侧,互为镜像,不可以围绕成键的两原子核的连线旋转。在分子结构中,共价单键是σ键。而双键中有一个是σ键,另一个是π 键;共价三键是由一个σ键和两个π 键组成的。
对比两个p电子形成的σ键和π键可以发现,σ键是由两个原子的p电子“头碰头”重叠形成的;而π键是由两个原子的p电子“肩并肩”重叠形成的π键的电子云形状与σ键的电子云形状有明显差别:每个π键的电子云由两块组成,分别位于由两原子核构成平面的两侧,如果以它们之间包含原子核的平面为镜面,它们互为镜像,这种特征称为镜像对称。π键与σ键不同,σ键的强度较大,π键不如σ键牢固,比较容易断裂。因而含有π键的化合物与只有σ键的化合物的化学性质不同,如我们熟悉的乙烷和乙烯的性质不同。
σ 键和π 键比较
键型项目 σ 键 π 键[来源
成键方向 沿轴方向“头碰头” 平行或“肩并肩”
电子云形状 轴对称 镜像对称
牢固程度 键强度大,不易断裂 x键强度较小,容易断裂
成键判断规律 共价单键全是σ键,共价双键中一个是σ键,另一个是π键;共价叁键中一个σ键,另两个为π键
一、共价键
1.共价键的形成及其本质
定义:原子间通过共用电子对形成的化学键
本质:成键原子相互接近时,原子轨道发生重叠,自旋方向相反的未成对电子形成共用电子对,两原子核间的电子云密度增加,体系能量降低。
两个1s1相互靠拢→电子云相互重叠→形成H2分子的共价键H-H。电子云在两个原子核间重叠,意味着电子出现在核间的概率增大,电子带负电,因而可以形象地说,核间电子好比在核间架起一座带负电的桥梁,把带正电的两个原子核“黏结”在一起了。
形成条件:
(1) 两原子电负性相同或相近
(2) 一般成键原子有未成对电子
(3) 成键原子的原子轨道在空间上发生重叠
电子配对理论:如果两个原子之间共用两个电子,一般情况下,这两个电子必须配对才能形成化学键。
思考:钠和氯通过得 失电子同样形成电子对,为什么这对电子不被钠原子和氯原子共用形成共价键而形成离子键呢?你能从电子的电负性的差别来理解吗?讨论后填写下表:
原子 Na Cl H Cl C O
电负性 0.9 3.0 2.1 3.0 2.5 3.5
电负性之差(绝对值) 2.1 0.9 1.0
结论:当原子的电负性相差很大,化学反应形成的电子对不会被共用,形成的将是离子键;而共价键是电负性相差不大的原子之间形成的化学键。
2.共价键的类型
(1)σ键:以形成化学键的两原子核的连线为轴作旋转操作,共价键电子云的图形不变,这种特征称为轴对称。如H-H键。类型:s—sσ、s—pσ、p—pσ等
HCl和C12中的共价键, HCl分子中的共价键是由氢原子提供的未成对电子ls的原子轨道和氯原子提供的未成对电子3p的原子轨道重叠形成s—pσ键,而C12分子中的共价键是由2个氯原子各提供一个未成对电子3p的原子轨道重叠形成p—pσ键。
形成σ键的原子轨道重叠程序较大,故σ键有较强的稳定性。共价单键为σ键,共价双键和叁键中存在σ键(通常含一个σ键)
(2)π键:由两个原子的p电子“肩并肩”重叠形成。
对比两个p电子形成的σ键和π键可以发现,σ键是由两个原子的p电子“头碰头”重叠形成的;而π键是由两个原子的p电子“肩并肩”重叠形成的π键的电子云形状与σ键的电子云形状有明显差别:每个π键的电子云由两块组成,分别位于由两原子核构成平面的两侧,如果以它们之间包含原子核的平面为镜面,它们互为镜像,这种特征称为镜像对称。π键与σ键不同,σ键的强度较大,π键不如σ键牢固,比较容易断裂。因而含有π键的化合物与只有σ键的化合物的化学性质不同,如我们熟悉的乙烷和乙烯的性质不同。
特点:肩并肩、两块组成、镜像对称、容易断裂。
3.共价键的特征:
由氢原子和氯原子的电子式可知两个原子都有一个未成对的电子,从分子的形成过程来看,只有未成对的电子才能形成共用电子对,因此H2、HCl、Cl2只能由两个原子各提供一个未成对电子形成一个共用电子对,因此H2、HCl、Cl2只能由两个原子形成。而不是3个、4个。这说明在原子间在形成共价键时有一定的特征。
(1)饱和性:在共价键的形成过程中,一个原于中的一个未成对电子与另一个原子中的一个未成对电子配成键后,一般来说就不能再与其他原于的未成对电子配成键,即每个原子所能形成共价键的数目或以单键连接的原于数目是一定的,饱和性决定了原子形成分子时相互结合的数量关系。共价键的饱和性决定了共价化合物的分子组成。
(2)方向性:形成共价键时,原子轨道重叠愈多,电子在核间出现的概率愈大,所形成的共价键就愈牢固,因此共价键将尽可能地沿着电子概率出现最大的方向形成,这就是共价键的方向性。如HX的稳定性:HF>HCl>HBr>HI。
例1:1.关于乙醇分子的说法正确的是 ( )
A.分子中共含有8个极性键 B.分子中不含非极性键
C.分子中只含σ键 D.分子中含有1个π键
解析:乙醇的结构简式为:CH3CH2OH。共有有8个共价键,其中C—H、C—O、O—H键为极性键,共7个,C—C键为非极性键,由于全为单键,故无π键。 (答案) C
小结: 通过物质的结构式,可以快速有效地判断键的种类及数目,判断成键方式时,需掌握规律:共价单键全是σ键,共价双键中一个是σ键,另一个是π键;共价叁键中一个σ键,另两个为π键。
巩固练习:
1.下列关于化学键的说法不正确的是( )
A.化学键是一种作用力 B.化学键可以是原子间作用力,也可以是离子间作用力
C.化学键存在于分子内部 D.化学键存在于分子之间
2.对δ键的认识不正确的是( )
A.δ键不属于共价键,是另一种化学键 B.S-Sδ键与S-Pδ键的对称性相同
C.分子中含有共价键,则至少含有一个δ键
D.含有π键的化合物与只含δ键的化合物的化学性质不同
3.下列物质中,属于共价化合物的是( )
A.I2 B.BaCl2 C.H2SO4 D.NaOH
4.下列化合物中,属于离子化合物的是( )
A.KNO3 B.BeCl C.KO2 D.H2O2
5.写出下列物质的电子式。
H2 N2 HCl H2O
MgF2 Na2S
二、键参数—键能、键长与键角
在第一章讨论过原子的电离能,我们知道,原子失去电子要吸收能量。反过来,原子吸引电子,要放出能量。因此,原子形成共价键相互结合,放出能量,由此形成了键能的概念。键能是气态基态原子形成l mol化学键释放的最低能量。例如,形成l mol H—H键释放的最低能量为436.0 kJ,形成1 molN三N键释放的最低能量为946 kJ,这些能量就是相应化学键的键能,通常取正值。
1.键能:气态基态原子形成l mol化学键释放的最低能量。通常取正值。键能越大,化学键越稳定。单位kJ/mol,大家要注意的是,应为气态原子,以确保释放能量最低。如:键能大小是:F-H>O-H>N-H。
2.键长:形成共价键的两个原子之间的核间距。键长越短,键能越大,共价键越稳定。单位:1pm(1pm=10-12m)键能越大,即形成化学键时放出的能量越多,意味着这个化学键越稳定,越不容易被打断。结构相似的分子中,化学键键能越大,分子越稳定。
3.键角:在原子数超过2的分子中,两个共价键间的夹角称为键角。键角决定了分子的空间构型。例如,三原子分子CO-的结构式为O=C=O,它的键角为180°,是一种直线形分子;又如,三原子分子H20的H—O—H键角为105°,是一种角形(V形)分子。多原子分子的键角一定,表明共价键具有方向性。键角是描述分子立体结构的重要参数,分子的许多性质都与键角有关。
分子空间构型 键角 实  例
正四面体 109°28′ CH4、CCl4、(NH4+)
60° 白磷:P4
平面型 120° 苯、乙烯、SO3、BF3等
三角锥型 107°18′ NH3
折线型 104°30′ H2O
直线型 180° CO2、CS2、CH≡CH
三、等电子原理
等电子原理:原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质是相近的。
类型 实例 空间构型
二原子10电子的等电子体 N2、CO、NO+、C22-、CN- 直线型
三原子16电子的等电子体 CO2、CS2、N2O、NCO-、NO2+、N3-、NCS-、BeCl2 直线型
三原子18电子的等电子体 NO2-、O3、SO2 V型
四原子24电子的等电子体 NO3―、CO32-、BO33-、CS33-、BF3、SO3 平面三角形
五原子32电子的等电子体 SiF4、CCl4、BF4-、SO42-、PO43- 四个σ键,正四面体形
七原子48电子的等电子体 SF6、PF6-、SiF62-、AlF63- 六个σ键,正八面体
巩固练习:
1.下列分子中,两核间距最大,键能最小的是(  )
 A.H2   B.Br2   C.Cl2   D.I2
2.下列说法中,错误的是(  )
 A.键长越长,化学键越牢固
 B.成键原子间原子轨道重叠越多,共价键越牢固
 C.对双原子分子来讲,键能越大,含有该键的分子越稳定
 D.原子间通过共用电子对所形成的化学键叫共价键
3.能够用键能解释的是(  )
 A.氮气的化学性质比氧气稳定
 B.常温常压下,溴呈液体,碘为固体
 C.稀有气体一般很难发生化学反应
 D.硝酸易挥发,硫酸难挥发
4.与NO3-互为等电子体的是(  )
 A.SO3  B.BF3  C.CH4  D.NO2
5.根据等电子原理,下列分子或离子与SO42-有相似结构的是(  )
 A.PCl5 B.CCl4 C.NF3 D.N
综合训练:
1.下列有关σ键的说法错误的是
A. 如果电子云图象是由两个s电子重叠形成的,即形成s--sσ键
B. s电子与p电子形成s--pσ键
C. p和p不能形成σ键
D. HCl分子里含有一个s--pσ键
2.下列分子中所有原子都满足最外层为8电子结构的是
A.BF3 B.H2O C.SiCl4 D.PCl5
3.下列分子中,只有σ键而没有π键的是
A.CH4 B.CH3CH3 C.CH2=CH2 D.CH≡CH
4.氮分子中的化学键是
A.3个σ键 B.1个σ键,2个π键
C.3个π键 D.个σ键,1个π键
5.对σ键的认识不正确的是( )
A.σ键不属于共价键,是另一种化学键
B.S-Sσ键与S-Pσ键的对称性相同
C.分子中含有共价键,则至少含有一个σ键
D.含有π键的化合物与只含σ键的化合物的化学性质不同
6.下列说法中正确的是
A.p轨道之间以“肩并肩”重叠可形成σ键
B.p轨道之间以“头对头”重叠可形成π键
C.s和p轨道以“头对头”重叠可形成σ键
D.共价键是两个原子轨道以“头对头”重叠形成的
7.在氯化氢分子中,形成共价键的原子轨道是
A. 氯原子的2p轨道和氢原子的1s轨道
B. 氯原子的2p轨道和氢原子的2p轨道
C.氯原子的3p轨道和氢原子的1s轨道
D.氯原子的3p轨道和氢原子的3p轨道
8.已知:元素X的电负性数值为2.5,元素Y的电负性数值是3.5,元素Z的电负性数值为1.2,元素W的电负性数值为2.4。你认为上述四种元素中,哪两种最容易形成离子化合物
A.X与Y B.X与W C.Y与Z D.Y与W
9. 下列说法中正确的是
A.双原子分子中化学键键能越大,分子越牢固
B.双原子分子中化学键键长越长,分子越牢固
C.双原子分子中化学键键角越大,分子越牢固
D.同一分子中,σ键要比π键的分子轨道重叠程度一样多,只是重叠的方向不同
10. 下列共价化合物中,共价键的键能最大的是
A.HCl      B.HF     C.HBr      D.HI
11. 下列粒子属于等电子体的是
A.CH4和NH4+ B.NO和O2
C.NH2-和H3O+ D.HCl和H2O
12. 按共价键的共用电子对理论,不可能有H3、H2Cl、和Cl3分子,这表明共价键具有 。
13. (1)原子轨道中相互重叠形成的 和 总称价键轨道,是分子结构的价键理论中最基本的部分。
(2)σ键强度 π键(填“>”“〈”或“=”)
(3)σ键的特征是:以形成 的两原子核的连线为轴作旋转操作,共价键的电子云 。
14.(1) 和 是衡量共价键稳定性的参数。
(2)键长是形成共价键的两个原子之间的 间距。键长越长,键能 (填“大”或“小”),键越 断裂,化学性质越 (填“稳定”或“不稳定”)。
(3)键角是描述 的重要参数,分子的许多性质都与键角有关。CO2是 形分子,键角 。H2O是 型分子,键角 。
15. 等电子体是指原子数相同, 也相同的微粒。例如: CO和
答案 1.D 2.A 3.C 4.AC
1.D 2.A 3.A 4.B 5.B
综合训练:
1.C 2. C 3.AB 4.B 5.A 6.C 7.C 8.C 9.A 10.B 11.AC
12. 饱和性
13. (1)σ键 π键
(2) >
(3) 共价键 图形不变
14. (1) 键能 键长
(2) 核 小 易 不稳定
(3) 分子立体结构 直线 角 105o 。
15. 价电子总数 N2
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
晶体、分子晶体与原子晶体
主要知识点:
一、晶体与非晶体
1、晶体与非晶体的本质差异
晶体有固定熔点,而非晶体无固定熔点,这只是晶体与非晶体的表观现象,
晶体与非晶体的本质差异
自范性 微观结构
晶体 有 原子在三维空间里呈周期性有序排列
非晶体 没有 原子排列相对无序
自范性:晶体能自发性地呈现多面体外形的性质。所谓自范性即“自发”进行,但这里得注意,“自发”过程的实现仍需一定的条件。例如:水能自发地从高处流向低处,但不打开拦截水流的闸门,水库里的水不能下泻。
注意:自范性需要一定的条件,其中最重要的条件是晶体的生长速率适当。
2、晶体形成的一般途径:
(1)熔融态物质凝固;
(2)气态物质冷却不经液态直接凝固(凝华);
(3)溶质从溶液中析出。
如:1、从熔融态结晶出来的硫晶体;2、凝华得到的碘晶体;3、从硫酸铜饱和溶液中析出的硫酸铜晶体。
从本质上来说,晶体的自范性是晶体中粒子在微观空间里所呈的现周期性。
3、晶体的特点:
(1)有固定的几何外形;(2)有固定的熔点;(3)有各向异性。
可以根据晶体特点区别某一固体属于晶体还是非晶体。然而,得出区别晶体与非晶体最可靠的方法是利用x-射线衍射实验。
4、晶体的定义:
质点(分子、离子、原子)在空间有规则地排列成的,具有整齐外型,以多面体出
现的固体物质。
二、晶胞
1. 定义:晶体结构中的基本单元叫晶胞。
2.晶胞中原子个数的计算方法:
位于晶胞顶点的微粒,实际提供给晶胞的只有1/8;
位于晶胞棱边的微粒,实际提供给晶胞的只有1/4;
位于晶胞面心的微粒,实际提供给晶胞的只有1/2;
位于晶胞中心的微粒,实际提供给晶胞的只有1。
晶体结构类习题最常见的题型就是已知晶胞的结构而求晶体的化学式。解答这类习题首先要明确一个概念:由晶胞构成的晶体,其化学式不一定是表示一个分子中含有多少个原子,而是表示每个晶胞中平均含有各类原子的个数,即各类原子的最简个数比。解答这类习题,通常采用分摊法。
在一个晶胞结构中出现的多个原子,这些原子并不是只为这个晶胞所独立占有,而是为多个晶胞所共有,那么,在一个晶胞结构中出现的每个原子,这个晶体能分摊到多少比例呢。这就是分摊法。分摊法的根本目的就是算出一个晶胞单独占有的各类原子的个数。
分摊法的根本原则是:晶胞任意位置上的一个原子如果是被x个晶胞所共有,那么,每个晶胞对这个原子分得的份额就是1/x。下面对立体晶胞进行详细分析。在立体晶胞中,原子可以位于它的顶点,也可以位于它的棱上,还可以在它的面上(不含棱),当然,它的体内也可以有原子;每个顶点被8个晶胞共有,所以晶胞对自己顶点上的每个原子只占1/8份额;每条棱被4个晶胞共有,所以晶胞对自己棱上的每个原子只占1/4份额;每个面被2个晶胞共有,所以晶胞对自己面上(不含棱)的每个原子只占1/2份额;晶胞体内的原子不与其他晶胞分享,完全属于该晶胞。
【典题解析】
例1:如下图所示的甲、乙、丙三种晶体:
试写出:(1)甲晶体化学式(X为阳离子)为 。
(2)乙晶体中A、B、C三种微粒的个数比是 。
(3)丙晶体中每个D周围结合E的个数是 个。
解析:明确由晶胞构成的晶体,其化学式不是表示一个分子中含有多少个原子,而是表示每个晶胞中平均含有各类原子的个数,即各类原子的最简个数比。解答这类习题,通常采用分割法。分割法的根本原则是:晶胞任意位置上的一个原子如果是被x个晶胞所共有,那么,每个晶胞对这个原子分得的份额就是。只要掌握晶体立方体中微粒实际占有“份额”规律:顶点微粒在立方体中实占,立方体面上微粒实占,立方体棱边上微粒实占,立方体内部微粒按有1算1统计。
甲中X位于立方体体心,算做1,Y位于立方体顶点,实际占有:×4=个,X:Y=1: =2:1,所以甲的化学式为X2Y。
乙中A占有:×8=1,B占有×6=3,C占有1个,由此推出A:B:C=1:3:1。丙中D周围的E的个数与E周围D的个数相同,E周围有8个D,所以D周围有8个E。
答案: X2Y 1:3:1 8
例2.美国《科学》杂志评选2001年世界科技十大成就中,名列第五的日本青山学院大学教授秋光纯发现的金属间化合物硼化镁超导转变温度高达39K,该金属间化合物的晶
体结构如上图。则它的化学式为( )
A.MgB B.Mg2B C.MgB2 D.Mg2B3
解析:观察硼化镁的结构为六方晶胞,位于棱柱顶点的每个镁原子被6个这样的结构单元共用,一个结构单元只用这个镁原子的六分之一,位于面上的镁原子被2个这样的结构单元共用,一个结构单元只用这个镁原子的二分之一,故这个结构单元中含镁原子的个数为:12X+2X=3;6个硼全部位于此结构单元中,则这个结构单元中硼原子的个数为6。
晶胞中镁原子与硼原子的个数比为:3: 6=1: 2,故化学式为MgB2 。
答案:C
例3.钛酸钡的热稳定性好,介电常数高,在小型变压器、话筒和扩音器中都有应用。钛酸钡晶体的结构示意图为右图,它的化学式是( )
A.BaTi8O12 B.BaTi4O6 C.BaTi2O4 D.BaTIO3
解析:结合识图考查晶体结构知识及空间想像能力。解题关键:由一个晶胞想象出在整个晶体中,每个原子为几个晶胞共用是解题的关键。仔细观察钛酸钡晶体结构示意图可知:Ba在立方体的中心,完全属于该晶胞;Ti处于立方体的8个顶点,每个Ti为与之相连的8个立方体所共用,即只有1/8属于该晶胞;O处于立方体的12条棱的中点,每条棱为四个立方体共用,故每个O只有1/4属于该晶胞。即晶体中Ba:Ti:O=1:(8×1/8):(12×1/4)=1:1:3。如果以为钛酸钡晶体就是一个个孤立的如题图所示的结构,就会错选C。 答案:D
巩固练习:
1.晶体与非晶体的严格判别可采用 ( )
A. 有否自范性 B.有否各向同性 C.有否固定熔点 D.有否周期性结构
2.某物质的晶体中含A、B、C三种元素,其排列方式如图所示(其中前后两面心上的B原子未能画出),晶体中A、B、C的中原子个数之比依次为( )
A.1:3:1 B.2:3:1 C.2:2:1 D.1:3:3
3.1987年2月,未经武(Paul Chu)教授等发现钛钡铜氧化合物在90K温度下即具有超导性。若该化合物的结构如右图所示,则该化合物的化学式可能是( )
A.YBa2CuO7-x B.YBa2Cu2O7-x C.YBa2Cu3O7-x D.YBa2Cu4O7-x
4.白磷分子如图所示:则31 g白磷分子中存在的共价键数目为( )
  A.4 NA B.NA  C.1.5 NA D.0.25 NA
5.某离子化合物的晶胞如右图所示立体结构,晶胞是整个晶体中最基本的重复单位。阳离子位于此晶胞的中心,阴离子位于8个顶点,该离子化合物中,阴、阳离子个数比是( )
A、1∶8 B、1∶4 C、1∶2 D、1∶1
6.如右图石墨晶体结构的每一层里平均每个最小的正六边形占有碳原子数目为( )
A、2 B、3 C、4 D、6
7.许多物质在通常条件下是以晶体的形式存在,而一种晶体又可视作若干相同的基本结构单元构成,这些基本结构单元在结构化学中被称作晶胞。已知某化合物是由钙、钛、氧三种元素组成的晶体,其晶胞结构如图所示,则该物质的化学式为( )
A.Ca4TiO3     B.Ca4TiO6 C.CaTiO3     D.Ca8TiO12
8.下列有关晶体的特征及结构的陈述中不正确的是( )
A 单晶一般都有各向异性 B 晶体有固定的熔点
C 所有晶体都有一定的规整外形 D 多晶一般不表现各向异性
9.晶体中最小的重复单元——晶胞,①凡处于立方体顶点的微粒,同时为 个晶胞共有;②凡处于立方体棱上的微粒,同时为 个晶胞共有;③凡处于立方体面上的微粒,同时为 个晶胞共有;④凡处于立方体体心的微粒,同时为 个晶胞共有。
10.现有甲、乙、丙(如图》三种晶体的晶胞:(甲中x处于晶胞的中心,乙中a处于晶胞的中心),可推知:甲晶体中x与y的个数比是__________,乙中a与b的个数比是_______,丙晶胞中有_______个c离子,有____________个d离子。
3、分子晶体
1.定义:含分子的晶体称为分子晶体
也就是说:分子间以分子间作用力相结合的晶体叫做分子晶体。如:碘晶体中只含有I2分子,就属于分子晶体。
2.较典型的分子晶体有非金属氢化物,部分非金属单质,部分非金属氧化物,几乎所有的酸,绝大多数有机物的晶体。
3.分子间作用力和氢键
分子间存在着一种把分子聚集在一起的作用力叫做分子间作用力,也叫范徳华力。分子间作用力对物质的性质有怎么样的影响。
一般来说,对与组成和结构相似的物质,相对分子量越大分子间作用力越大,物质的熔沸点也越高。但是有些氢化物的熔点和沸点的递变却与此不完全符合,如:NH3,H2O和HF的沸点就出现反常。
氢键形成的过程:
(1) 氢键形成的条件:半径小,吸引电子能力强的原子(N,O,F)与H核
(2) 氢键的定义:半径小、吸引电子能力强的原子与H核之间的静电吸引作用。氢键可看作是一种比较强的分子间作用力。
(3) 氢键对物质性质的影响:氢键使物质的熔沸点升高。
(4) 氢键的表示 如:冰一个水分子能和周围4个水分子从氢键相结合组成一个正四面体 。
在分子晶体中,分子内的原子以共价键相结合,而相邻分子通过分子间作用力相互吸引。
4.分子晶体的物理特性:熔沸点较低、易升华、硬度小。固态和熔融状态下都不导电。教师诱导:大多数分子晶体结构有如下特征:如果分子间作用力只是范德华力。以一个分子为中心,其周围通常可以有几个紧邻的分子。O2,C60,我们把这一特征叫做分子紧密堆积。如果分子间除范德华力外还有其他作用力(如氢键),如果分子间存在着氢键,分子就不会采取紧密堆积的方式
在冰的晶体中,每个水分子周围只有4个紧邻的水分子,形成正四面体。氢键不是化学键,比共价键弱得多却跟共价键一样具有方向性,而氢键的存在迫使四面体中心的每个水分子与四面体顶角方向的4个相邻水分子的相互吸引,这一排列使冰晶体中空间利用率不高,皆有相当大的空隙使得冰的密度减小。
还有一种晶体叫做干冰,它是固体的CO2的晶体。干冰外观像冰,干冰不是冰。其熔点比冰低的多,易升华。
干冰晶体中CO2分子之间只存在分子间力不存在氢键,因此干冰中CO2分子紧密堆积,每个CO2分子周围,最近且等距离的CO2分子数目有几个?
一个CO2分子处于三个相互垂直的面的中心,在每个面上,处于四个对角线上各有一个CO2分子周围,所以每个CO2分子周围最近且等距离的CO2分子数目是12个。
小结:
晶体类型 分子晶体
结构 构成晶体的粒子 分子
粒子间的相互作用力 分子间作用力
性质 硬度 小
熔沸点 较低
导电性 固态熔融状态不导电
溶解性 相似相溶
4、原子晶体
有的晶体的微观空间里没有分子,原子晶体就是其中之一。在原子晶体里,所有原子都以共价键相互结合,整块晶体是一个三维的共价键网状结构,是一个“巨分子”,又称共价晶体。
1、原子晶体:原子都以共价键相结合,是三维的共价键网状结构。
金刚石是典型的原子晶体。天然金刚石的单一晶体经常呈现规则多面体的外形,在金刚石晶体中,每个碳原子以四个共价单键对称地与相邻的4个碳原子结合,C--C--C夹角为109°28′,即金刚石中的碳取sp3杂化轨道形成共价键。
2、金刚石结构:正四面体网状空间结构,C--C--C夹角为109°28′,sp3杂化。
金刚石里的C--C共价键的键长(154 pm)很短,键能(347.7kJ/mo1)很大,这一结构使金刚石在所有已知晶体中硬度最大,而且熔点(>3 550℃)也很高。高硬度、高熔点是原子晶体的特性。特点:硬度最大、熔点高。
3、SiO2原子晶体:制水泥、玻璃、宝石、单晶硅、硅光电池、芯片和光导纤维等。
自然界里有许多矿物和岩石,化学式都是Si02,也是典型的原子晶体。SiO2具有许多重要用途,是制造水泥、玻璃、人造宝石、单晶硅、硅光电池、芯片和光导纤维的原料。
4、(1)某些非金属单质,如硼(B)、硅(Si)和锗(Ge)等;(2)某些非金属化合物,如碳化硅(SiC,俗称金刚砂)、氮化硼(BN)等;(3)某些氧化物,如氧化铝(A12O3)等。
总结:晶体熔沸点的高低比较
①对于分子晶体,一般来说,对于组成和结构相似的物质,相对分子质量越大,分子间作用力越大,物质的熔沸点也越高。
②对于原子晶体,一般来说,原子间键长越短,键能越大,共价键越稳定,物质的熔沸点越高,硬度越大。
[方法导引]
1.判断晶体类型的依据
(1)看构成晶体的微粒种类及微粒间的相互作用。
对分子晶体,构成晶体的微粒是______________,微粒间的相互作用是___________;
对于原子晶体,构成晶体的微粒是_______,微粒间的相互作用是___________键。
(2)看物质的物理性质(如:熔、沸点或硬度)。
一般情况下,不同类晶体熔点高低顺序是 ________晶体>_______晶体。原子晶体比分子晶体的熔、沸点高得多
(3)依据物质的分类判断
金属氧化物(如K2O、Na2O2等),强碱(如NaCl、KOH等)和绝大多数的盐类是离子晶体。大多数非金属单质(除金刚石、石墨、晶体硅、晶体硼外)、气态氢化物、非金属氧化物(除SiO2外)、酸、绝大多数有机物(除有机盐外)是分子晶体。常见的原子晶体单质有金刚石、石墨、晶体硅、晶体硼等;常见的原子晶体化合物有碳化硅、二氧化硅等。金属单质(除汞外)与合金都是金属晶体。
2.晶体熔、沸点比较规律:
(1)不同晶体类型的物质:原子晶体>分子晶体 。
(2)同一晶体类型的物质,需比较晶体内部结构粒子间作用力,作用力越大,熔沸点越高。
原子晶体:要比较共价键的强弱,一般地说,原子半径越小,形成共价键的键长越短,键能越大,其晶体熔沸点越高。如熔点:金刚石>碳化硅>晶体硅。
分子晶体:组成结构相似的物质,相对分子质量越大,熔沸点越高,如熔沸点:O2>N2, HI>HBr>HCl。组成结构不相似的物质,分子的极性越大,其熔沸点就越高,如熔沸点:CO>N2。
由上述可知,同类晶体熔沸点比较思路为:
原子晶体→共价键键能→键长→原子半径
分子晶体→分子间作用力→相对分子质量
典例剖析:
例1.共价键、离子键和范德华力是构成物质粒子间的不同作用方式,下列物质中,只含有上述一种作用的是 ( )
A.干冰 B.氯化钠 C.氢氧化钠 D.碘
解析:干冰是分子晶体,分于内存在共价键,分子间存在范德华力。NaCl是离子晶体只存在离子键。 NaOH是离子晶体,不仅存在离子键,还存在H—O间共价键。碘也是分子晶体,分子内存在共价键,分子间存在分子间作用力。
答案: B
[例2]单质硼有无定形和晶体两种,参考下表数据
金刚石 晶体硅 晶体硼
熔点 >3823 1683 2573
沸点 5100 2628 2823
硬度 10 7.0 9.5
①晶体硼的晶体类型属于____________晶体,理由是________________________。
已知晶体硼结构单元是由硼原子组成的正二十面体,其中有20个等边三角形的面和一定数目的顶点,每个项点上各有1个B原子。通过视察图形及推算,此晶体体结构单元由
____________________个硼原子构成。其中B—B键的键角为____________。
[解析]①原子,理由:晶体的熔、沸点和硬度都介于晶体Si和金刚石之间,而金刚石和晶体Si均为原予晶体,B与C相邻与Si处于对角线处,亦为原于晶体。
②每个三角形的顶点被5个三角形所共有,所以,此顶点完全属于一个三角形的只占到1/5,每个三角形中有3个这样的点,且晶体B中有20个这样的角形,因此,晶体B中这样的顶点(B原子)有3/5×20=12个。又因晶体B中的三角形面为正三角形,所以键角为60°
〔例3〕石墨的片层结构如右图1所示:试回答:
(1)片层中平均每个六元环含碳原子数为 个。
(2)在片层结构中,碳原子数、C—C键数、六元环数之比

【解析】在石墨的片层结构中,我们以一个六元环为研究对象,由于碳原子为三个六元环共用,即属于每个六元环的碳原子数为6×1/3=2;另外碳碳键数为二个六元环共用,即属于每个六元环的碳碳键数为6×1/2=3。
【答案】(1).2 (2).2:3:1
巩固练习:
1.下列晶体中属于原子晶体的是( )
A. 氖 B.食盐 C.干冰 D.金刚石
2.下列晶体由原子直接构成,且属于分子晶体的是( )
A.固态氢 B.固态氖 C.磷 D.三氧化硫
 3.下列晶体中不属于原子晶体的是 ( )
A.干冰 B.金刚砂 C.金刚石 D.水晶
4.在金刚石的网状结构中,含有共价键形成的碳原子环,其中最小的环上,碳原子数是( )
A.2个 B.3个 C.4个 D.6个
5.共价键、离子键和范德华力是构成物质粒子间的不同作用方式,下列物质中,只含有上述一种作用的是 ( )
A.干冰 B.氯化钠 C.氢氧化钠 D.碘
6.在解释下列物质性质的变化规律与物质结构间的因果关系时,与键能无关的变化规律是( )
A.HF、HCI、HBr、HI的热稳定性依次减弱
B.NaF、NaCl、NaBr、NaI的熔点依次减低
C.F2、C12、Br2、I2的熔、沸点逐渐升高
D.H2S的熔沸点小于H2O的熔、沸点
7.在金刚石的晶体中,含有由共价键形成的碳原子环,其中最小的环上所需碳原子数及每个碳原子上任意两个C--C键间的夹角是( )
A.6个120° B.5个108° C.4个109°28′ D.6个109°28′
8.结合课本上干冰晶体图分析每个CO2分子周围距离相等且最近的CO2分子数目为( )
A.6 B.8 C.10 D.12
9.干冰和二氧化硅晶体同属ⅣA元素的最高价氧化物,它们的熔沸点差别很大的原因是( )
A.二氧化硅分子量大于二氧化碳分子量 B.C、O键键能比Si、O键键能小
C.干冰为分子晶体,二氧化硅为原子晶体 D.干冰易升华,二氧化硅不能
10.最近科学家发现了一种新分子,它具有空心的类似足球的结构,分子式为C60,下列说法正确的是 ( )
A.C60是一种新型的化合物
B.C60和石墨都是碳的同素异形体
C.C60中虽然没有离子键,但固体为离子晶体
D.C60相对分子质量为720
11.支持固态氨是分子晶体的事实是( )
A.氮原子不能形成阳离子 B.铵离子不能单独存在
C.常温下,氨是气态物质 D.氨极易溶于水
参考答案 1.D 2.A 3 .C 4.C 5.D 6.A 7.C 8.D 9.8、4、2、1
10.解析:x:y=4:3 a:b=1:1 4个c 4个d 处于晶胞中心的x或a为该晶胞单独占有,位于立方体顶点的微粒为8个立方体共有,位于立方体棱边的微粒为四个立方体共有,位于立方体面的微粒为两个立方体共有,所以x:y=l:6×1/8=4:3;a:b=1:8×1/8=1:1;丙晶胞中c离子为12×1/4+1=4(个);d离子为8×1/8+6×1/2=4(个
第二节 分子晶体与原子晶体 答案
1.D 2.B 3.A 4.D 5.D 6.CD 7.D 8.D 9.C 10.BD 11.C 12.D 13.A 14.C 15.B 16.A
5.[解析]干冰是分子晶体,分于内存在共价键,分子间存在范德华力。NaCl是离子晶体只存在离子键。 NaOH是离子晶体,不仅存在离子键,还存在H—O间共价键。碘也是分子晶体,分子内存在共价键,分子间存在分子间作用力。故只有B符合题意。
6.[解析]HF、HCl、HBr、HI热稳定性依次减弱是它们的共价键键能逐渐减小的原因,与键能有关。NaF、 NaCl、NaBr、NaI的熔点依次减低是它们的离子键能随离子半径增大逐渐减小的原因。F2、C12、Br2、I2为分子晶体。熔、沸点逐渐降低由分子间作用力决定。H2S与H2O的熔沸点高低由分子间作用力及分子的极性决定。故选C、D。
7.D 根据金刚石的棱型结构特点可知最小环上碳原子数为6个,任意两个C—C键间夹角为109°28
8.D 根据干冰结构特点,干冰晶体是一种立方面心结构,每个CO2周围等距离最近的CO2有12个(同层4个,上层4个,下层4个)
15.解析:本题考查由物理性质特征推知晶体类型以及如何区别不同晶体的微粒间作用力。此题为信息迁移题,解答时先由氮化硅的性质(超硬、耐磨、耐高温),可推知是原子晶体。原子晶体熔化时,要克服共价键。然后分析比较各选项。答案B。
硅、晶体硅。[答案] A。
O
Ti
Ba



21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
金属晶体与离子晶体
主要知识点:
大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢?
一、金属键
1.金属键:在金属单质晶体中,使金属原子相互结合的强烈作用(金属离子与自由电子间的强烈的相互作用)叫金属键。
2.金属晶体:金属阳离子和自由电子之间通过金属键结合而形成的晶体
构成微粒:金属阳离子与自由电子;
微粒间的作用:金属键
物性特点:大部分金属熔点较高、质硬(少数质软),难溶于水(K、 Na、Ca 等与水反应),能导电、导热、有延展性等
金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。这种金属离子与自由电子之间的较强作用就叫做金属键。金属键可看成是由许多原子共用许多电子的一种特殊形式的共价键,这种键既没有方向性也没有饱和性,金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。金属键是一种遍布整个晶体的离域化学键。
注意:金属晶体是以金属键为基本作用力的晶体。
二、电子气理论及其对金属通性的解释
1.电子气理论
经典的金属键理论叫做“电子气理论”。它把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子形成可与气体相比拟的带负电的“电子气”,金属原子则“浸泡”在“电子气”的“海洋”之中。
2.金属通性的解释
金属共同的物理性质
容易导电、导热、有延展性、有金属光泽等。
⑴.金属导电性的解释
在金属晶体中,充满着带负电的“电子气”,这些电子气的运动是没有一定方向的,但在外加电场的条件下电子气就会发生定向移动,因而形成电流,所以金属容易导电。
思考:导热是能量传递的一种形式,它必然是物质运动的结果,那么金属晶体导热过程中电子气中的自由电子担当什么角色
金属容易导热,是由于电子气中的自由电子在热的作用下与金属原子频繁碰撞从而把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。
(2).金属延展性的解释
当金属受到外力作用时,晶体中的各原子层就会发生相对滑动,但不会改变原来的排列方式,弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用,所以在各原子层之间发生相对滑动以后,仍可保持这种相互作用,因而即使在外力作用下,发生形变也不易断裂。因此,金属都有良好的延展性。
阅读材料
1.超导体——一类急待开发的材料
一般说来,金属是电的良好导体(汞的很差)。 1911年荷兰物理学家H·昂内斯在研究低温条件下汞的导电性能时,发现当温度降到约4 K(即—269、)时汞的电阻“奇异”般地降为零,表现出超导电性。后又发现还有几种金属也有这种性质,人们将具有超导性的物质叫做超导体。
2.合金
两种和两种以上的金属(或金属与非金属)熔合而成的具有金属特性的物质,叫做合金,合金属于混合物,对应的固体为金属晶体。合金的特点①仍保留金属的化学性质,但物理性质改变很大;②熔点比各成份金属的都低;③强度、硬度比成分金属大;④有的抗腐蚀能力强;
⑤导电性比成分金属差。
3.金属的物理性质由于金属晶体中存在大量的自由电子和金属离子(或原子)排列很紧密,
使金属具有很多共同的性质。
(1)状态:通常情况下,除Hg外都是固体。
(2)金属光泽:多数金属具有光泽。但除Mg、Al、 Cu、Au在粉末状态有光泽外,其他金属在块状时才表现出来。
(3)易导电、导热:由于金属晶体中自由电子的运动,使金属易导电、导热。
(4)延展性
(5)熔点及硬度:由金属晶体中金属离子跟自由电子间的作用强弱决定。金属除有共同的物理性质外,还具有各自的特性。
①颜色:绝大多数金属都是银白色,有少数金属具有颜色。如Au金黄色Cu紫红色Cs银白略带金色。
②密度:与原子半径、原子相对质量、晶体质点排列的紧密程度有关。最重的为锇(Os)铂(Pt)最轻的为锂(Li)
③熔点:最高的为钨(W),最低的为汞(Hg),Cs,为28.4℃ Ca为30℃
④硬度:最硬的金属为铬(Cr),最软的金属为钾 (K),钠(Na),铯(Cs)等,可用小刀切割。
⑤导电性:导电性能强的为银(Ag),金(Au),铜 (Cu)等。导电性能差的为汞(Hg)
⑥延展性:延展性最好的为金(Au),Al
三、金属晶体内原子的空间排列方式
分子晶体中,分子间的范德华力使分子有序排列;原子晶体中,原子之间的共价键使原子有序排列;金属晶体中,金属键使金属原子有序排列。
(一)简单立方堆积
1相邻非密置层原子在一条直线上
2这种堆积方式空间利用率最低,只有金属钋采取这种堆积方式
(二)钾型(体心立方)
这种堆积方式的空间利用率显然比简单立方堆积的高多了,许多金属是这种堆积方式,如碱金属,简称为钾型。
方法点拨
1.金属晶体性质及理论解释
导电性 导热性 延展性
金属离子和自由电子 自由电子在外加电场的作用下发生定向移动 自由电子与金属离子碰撞传递热量 晶体中各原子层相对滑动仍保持相互作用
2.金属晶体的熔点变化规律
①金属晶体熔点差别较大,汞在常温下是液体,熔点很低(-38.9℃),而钨的熔点高达3410℃.这是由于金属晶体紧密堆积方式、金属阳离子与自由电子的作用力不同而造成的差别.
②一般情况下(同类型的金属晶体),金属晶体的熔点由金属阳离子半径、所带的电荷数、自由电子的多少而定.金属离子半径越小,所带的电荷越多,自由电子越多,金属键越强,熔点就越高.例如,熔点:NaNa>K>Rb>Cs.
典例剖析:
例1.金属的下列性质中和金属晶体无关的是(  )
A.良好的导电性 B.反应中易失电子
C.良好的延展性 D.良好的导热性
解析:备选答案A、C、D都是金属共有的物理性质,这些性质都是由金属晶体所决定的,备选答案B,金属易失电子是由原子的结构决定的,所以和金属晶体无关.
答案:B
例2.关于晶体的下列说法正确的是(  )
A、在晶体中只要有阴离子就一定有阳离子
  B、在晶体中只要有阳离子就一定有阴离子
  C、原子晶体的熔点一定比金属晶体的高
  D、分子晶体的熔点一定比金属晶体的低
解析:只有认识四类晶体物理性质差异的本质原因才能对此题进行正确判断。在四类晶体中,金属晶体的结构及物理性质最特殊,应予重视。金属晶体中,构成晶体的微粒既有金属原子,又有金属阳离子,且二者不断转换,晶体中自由电子与金属离子间的电性作用形成了金属键。因此晶体中有阳离子,不一定有阴离子,如金属晶体。金属键强弱相差很大(主要由阳离子半径大小决定),因此金属晶体的熔、沸点、硬度等物理性质相差极大,它与其他类晶体相比很特殊,有的晶体熔沸点很低,甚至小于分子晶体如金属汞、碱金属等;有的金属熔沸点很高,甚至高于原子晶体如金属钨。
答案:A
例3.下列有关金属元素特征的叙述正确的是(  )
A、金属元素的原子只有还原性,离子只有氧化性
  B、金属元素在一般化合物中只显正价
  C、金属元素在不同的化合物中的化合价均不同
  D、金属元素的单质在常温下均为金属晶体
 解析:A、对于变价金属中,较低价态的金属离子既有氧化性,又有还原性,如Fe2+。B、金属元素的原子只具有还原性,故在化合物中只显正价。C、金属元素有的有变价,有的无变价,如Na+。D、金属汞常温下为液体。
答案:B。
例4.物质结构理论推出:金属晶体中金属离子与自由电子之间的强烈相互作用,叫金属键.金属键越强,其金属的硬度越大,熔沸点越高,且据研究表明,一般说来金属原子半径越小,价电子数越多,则金属键越强.由此判断下列说法错误的是( )
A.镁的硬度大于铝 B.镁的熔沸点低于钙
C.镁的硬度大于钾 D.钙的熔沸点高于钾
解析:价电子数Al>Mg,原子半径Al<Mg,所以Al的金属键更强,所以A的说法错误.Mg和Ca的价电子数相同,而原子半径Mg<Ca,所以金属键的强弱Mg>Ca,所以B的说法错误.价电子数Mg>K,原子半径Mg<Ca<K,所以C的说法正确.价电子数Ca>K,原子半径Ca<K,所以D的说法也正确.
答案:AB
巩固练习
1.下列有关金属元素的特征叙述正确的是( )
A.金属元素的原子具有还原性,离子只有氧化性 B.金属元素的化合价一定显正价
C.金属元素在不同化合物中的化合价均不相同
D.金属元素的单质在常温下均为金属晶体
2.下列有关金属元素特征的叙述中正确的是 ( )
A.金属元素的原子只有还原性,离子只有氧化性 B.金属元素在化合物中一定显正价
C.金属元素在不同化合物中的化合价均不同 D.金属单质在常温下都是金属晶体
3.金属的下列性质中,不能用金属的电子气理论加以解释的是 ( )
A.易导电 B.易导热 C.有延展性 D.易锈蚀
4.下列晶体中由原子直接构成的单质有 ( )
A.白磷 B.氦C.金刚石 D.金属镁
5.金属具有延展性的原因是( )
A.金属原子半径都较大,价电子较少
B.金属受外力作用变形时,金属阳离子与自由电子间仍保持较强烈作用
C.金属中大量自由电子受外力作用时,运动速度加快
D.自由电子受外力作用时能迅速传递能量
6.下列说法不正确的是( )
A.金属单质的熔点一定比非金属单质高 B.离子晶体中不一定含有金属元素
C.在含有阳离子的晶体中,一定含有阴离子 D.含有金属元素的离子不一定是阳离子
7.金属晶体的形成是因为晶体中存在( )
A.金属离子间的相互作用 B.金属原子间产生相互作用
C.金属离子与自由电子间的相互作用 D.金属原子与自由电子间的相互作用
8. 关于金属元素的特征,下列叙述正确的是( )
①金属元素的原子只有还原性,离子只有氧化性 ②金属元素在化合物中一般显正价 ③金属性越强的元素相应的离子氧化性越弱 ④金属元素只有金属性,没有非金属性 ⑤价电子越多的金属原子的金属性越强 
A.①②③ B.②③ C.①⑤ D.全部
9.金属的下列性质中,与自由电子无关的是 ( )
A.密度大小 B.容易导电 C.延展性好 D.易导热
10.下列有关金属的叙述正确的是( )
A.金属元素的原子具有还原性,其离子只有氧化性
B.金属元素的化合价—般表现为正价
C.熔化状态能导电的物质—定是金属的化合物
D.金属元素的单质在常温下均为金属晶体
11.下列叙述正确的是 ( )
A.原子晶体中可能存在离子键 B.分子晶体中不可能存在氢键
C.在晶体中可能只存在阳离子不存在阴离子 D.金属晶体导电是金属离子所致
12.金属能导电的原因是( )
A.金属晶体中金属阳离子与自由电子间的相互作用较弱
B.金属晶体中的自由电子在外加电场作用下可发生定向移动
C.金属晶体中的金属阳离子在外加电场作用下可发生定向移动
D.金属晶体在外加电场作用下可失去电子
13.下列叙述正确的是 ( )
A.任何晶体中,若含有阳离子也一定含有阴离子
B.原子晶体中只含有共价键
C.离子晶体中只含有离子键,不含有共价键
D.分子晶体中只存在分子间作用力,不含有其他化学键
14.在核电荷数1~18的元素中,其单质属于金属晶体的有    ,属于分子晶体的有  ,属于原子晶体的有    .
15. 简要填空:
(1)金属导电是____________________的结果.
(2)金属导热是____________________的结果.
(3)金属抽成丝或压成薄板是金属受到外力作用,紧密堆积的原子(离子)层发生了________________,而金属离子和自由电子之间的____________________没有改变.
一、离子晶体
1、离子晶体定义:由阳离子和阴离子通过离子键结合而成的晶体
注:(1)结构微粒:阴、阳离子
(2)相互作用:离子键
(3)种类繁多:含离子键的化合物晶体:强碱、活泼金属氧化物、绝大多数盐
(4)理论上,结构粒子可向空间无限扩展
二、晶格能
1、定义:气态离子形成1mol离子晶体时释放的能量。
2、规律:
(1)离子电荷越大,离子半径越小的离子晶体的晶格能越大。
(2)晶格能越大,形成的离子晶体越稳定,熔点越高,硬度越大。
总结归纳:
1.离子晶体、原子晶体、分子晶体和金属晶体的比较
晶体类型 原子晶体 分子晶体 金属晶体 离子晶体
晶体质点(粒子) 原子 分子 金属阳离子、自由电子 阴、阳离子
粒子间作用(力) 共价键 分子间作用力 复杂的静电作用 离子键
熔沸点 很高 很低 一般较高,少部分低 较高
硬度 很硬 一般较软 一般较硬,少部分软 较硬
溶解性 难溶解 相似相溶 难溶(Na等与水反应) 易溶于极性溶剂
导电情况 不导电(除硅) 一般不导电 良导体 固体不导电,熔化或溶于水后导电
实例 金刚石、水晶、碳化硅等 干冰、冰、纯硫酸、H2(S) Na、Mg、Al等 NaCl、CaCO3NaOH等
2.物质熔沸点的比较
⑴不同类晶体:一般情况下,原子晶体>离子晶体>分子晶体
⑵同种类型晶体:构成晶体质点间的作用大,则熔沸点高,反之则小。
四种晶体熔、沸点对比规律
①离子晶体:结构相似且化学式中各离子个数比相同的离子晶体中,离子半径小(或阴、阳离子半径之和越小的),键能越强的熔、沸点就越高。如NaCl、 NaBr、Nal;NaCl、KCl、RbCl等的熔、沸点依次降低。 离子所带电荷大的熔点较高。如:MgO熔点高于 NaCl
②分子晶体:在组成结构均相似的分子晶体中,式量大的分子间作用力就大熔点也高。如:F2、Cl2、 Br2、I2和HCl、HBr、HI等均随式量增大。熔、沸点升高。但结构相似的分子晶体,有氢键存在熔、沸点较高。
③原子晶体:在原子晶体中,只要成键原子半径小,键能大的,熔点就高。如金刚石、金刚砂(碳化硅)、晶体硅的熔、沸点逐渐降低。
④金属晶体:在元素周期表中,主族数越大,金属原子半径越小,其熔、沸点也就越高。如ⅢA的Al, ⅡA的Mg,IA的Na,熔、沸点就依次降低。而在同一主族中,金属原子半径越小的,其熔沸点越高。
⑶常温常压下状态
①熔点:固态物质>液态物质
②沸点:液态物质>气态物质
3.均摊法确定晶体的化学式
在学习晶体时和在一些考试中,我们会遇到这样一类试题:题目中给出晶体的—部分(称为晶胞)的图形,要求我们确定晶体的化学式.求解这类题,通常采用均摊法.
均摊法是先求出给出的图形(晶胞)中平均拥有的各种粒子(离子或原子)的数目,再计算各种粒子数目的比值,从而确定化学式.
均摊法有如下规则,以NaCl的晶胞为例:
①处于顶点的粒子,同时为8个晶胞所共有,所以,每个粒子只分摊1/8给该晶胞.
②处于棱上的粒子,同时为4个晶胞所共有,所以,每个粒子只分摊1/4给该晶胞.
③处于面上的粒子,同时为2个晶胞所共有,所以,每个粒子只分摊1/2给该晶胞.
④处于晶胞内部的粒子,则完全属于该晶胞.
由此算出在NaCl的晶胞中:
含数:
含数:
故NaCl晶体中,和数目之比为1∶1.
例题解析
例1.下列性质中,可以证明某化合物内一定存在离子键的是( )
A、可溶于水 B、具有较高的熔点
C、水溶液能导电 D、熔融状态能导电
解析:本题考查对化学键------离子键的判断。只要化合物中存在离子键必为离子晶体,而离子晶体区别其它晶体的突出特点是:熔融状态下能导电,故D正确;至于A可溶于水,共价化合物如:HCl也可以;B具有较高熔点,也可能为原子晶体,如SiO2;C水溶液能导电,可以是共价化合物如硫酸等。
答案: D
例2.参考下表中物质的熔点,回答下列问题。
物 质 NaF NaCl NaBr NaI NaCl KCl RbCl CsCl
熔点(℃) 995 801 755 651 801 776 715 646
物 质 SiF4 SiCl4 SiBr4 SiI4 SiCl4 GeCl4 SbCl4 PbCl4
熔点(℃) -90.4 -70.2 5.2 120 -70.2 -49.5 -36.2 -15
(1)钠的卤化物及碱金属的氯化物的熔点与卤离子及碱金属离子的__ 有关,随着 增大,熔点依次降低.
(2)硅的卤化物及硅、锗、锡、铅的氯化物熔点与 有关,随着 增大, 增强,熔点依次升高.
(3)钠的卤化物的熔点比相应的硅的卤化物的熔点高得多,这与 有关,因为一般 比 熔点高.
解析:本题主要考查物质溶沸点的高低与晶体类型和晶体内部微粒之间作用力的关系以及分析数据进行推理的能力。
(1)表中第一栏的熔点明显高于第二栏的熔点,第一栏为IA元素与ⅦA元素组成的离子晶体,则第二栏为分子晶体。
(2)分析比较离子晶体熔点高低的影响因素:
物质熔化实质是减弱晶体内微粒间的作用力,而离子晶体内是阴、阳离子,因此离子晶体的熔化实际上是减弱阴、阳离子间的作用力--------离子键,故离子晶体的熔点与离子键的强弱有关。从钠的卤化物进行比较:卤素离子半径是r(F-)(3)分析比较分子晶体熔点高低的影响因素:
分子晶体内的微粒是分子,因此分子晶体的熔点与分子间的作用力有关。
从硅的卤化物进行比较:硅的卤化物分子具有相似的结构,从SiF4到SiI4相对分子量逐步增大,说明熔点随化学式的式量的增加而增大。
由从硅、锗、锡、铅的氯化物进行比较:这些氯化物具有相似的结构,从SiCl4到PbCl4相对分子质量逐步增大,说明熔点随化学式的式量的增加而增大。
答案:第一问 半径,半径
第二问:相对分子质量,相对分子质量,分子间作用力。
第三问:晶体类型,离子晶体,分子晶体。
巩固练习:
1. 由钾和氧组成的某种离子晶体中含钾的质量分数为78/126,其阴离子只有过氧离子(O22-)和超氧离子(O2-)两种。在此晶体中,过氧离子和超氧离子的物质的量之比为
A. 2︰1 B. 1︰1 C. 1︰2 D. 1︰3
2.下列物质中,含有共价键的离子晶体是 ( )
A.NaCl B.NaOH
C.NH4Cl D.I2
3.实现下列变化,需克服相同类型作用力的是 ( )
A.石墨和干冰的熔化 B.食盐和冰醋酸的熔化
C.液溴和水的汽化 D.纯碱和烧碱的熔化
4.下列性质中,能较充分说明某晶体是离子晶体的是( )
A.具有高的熔点 B.固态不导电,水溶液能导电
C.可溶于水 D.固态不导电,熔化状态能导电
5.下列叙述中正确的是( )
A.离子晶体中肯定不含非极性共价键
B.原子晶体的熔点肯定高于其他晶体
C.由分子组成的物质其熔点一定较低
D.原子晶体中除去极性共价键外不可能存在其他类型的化学键
6.实现下列变化,需克服相同类型作用力的是( )
A.碘和干冰升华 B.二氧化硅和生石灰熔化
C.氯化钠和铁熔化 D.苯和乙烷蒸发
7.下列各组物质的晶体中,化学键类型相同,晶体类型也相同的是( )
A.SO2和SiO2 B.CO2和H2O
C.NaCl和HCl D.CCl4和KCl
金属晶体 参考答案
1.B  2.B 3.D 4.BC 5.B 6.AC 7.C 8.B 9.A 10.B 11. C
12. B 13. B
14.答案: Li、Be、Na、Mg、Al; H2、He、N2、O2、F2、Ne、P4、S、Cl2、Ar ;
C、Si、B
15.答案
(1)自由电子在电场作用下定向移动
(2)自由电子碰撞金属离子而将能量传给金属离子
(3)相对滑动 较强烈的相互作用(金属键)
1. C 2. B C 3. C D 4. D 5. D 6. A D 7. B
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
分子的立体结构
主要知识点:
写出CO2、H2O、NH3、CH2O、CH4的结构式和电子式;
一、形形色色的分子
大多数分子是由两个以上原子构成的,于是就有了分子中的原子的空间关系问题,这就是所谓“分子的立体结构”。例如,三原子分子的立体结构有直线形和V形两种。如C02分子呈直线形,而H20分子呈V形,两个H—O键的键角为105°。
三原子分子立体结构:有直线形C02 、CS2等,V形如H2O、S02等。
大多数四原子分子采取平面三角形和三角锥形两种立体结构。例如,甲醛(CH20)分子呈平面三角形,键角约120°;氨分子呈三角锥形,键角107°。
四原子分子立体结构:平面三角形:如甲醛(CH20)分子等,三角锥形:如氨分子等。
五原子分子的可能立体结构更多,最常见的是正四面体形,如甲烷分子的立体结构是正四面体形,键角为109°28/。
五原子分子立体结构:正四面体形如甲烷、P4等
分子世界是如此形形色色,异彩纷呈,美不胜收,常使人流连忘返. 分子的立体结构与其稳定性有关。例如,S8分子像顶皇冠,如果把其中一个向上的硫原子倒转向下,尽管也可以存在,却不如皇冠式稳定;又如,椅式C6H12比船式稳定。
测分子体结构:红外光谱仪→吸收峰→分析
肉眼不能看到分子,那么,科学家是怎样知道分子的形状的呢 早年的科学家主要靠对物质的宏观性质进行系统总结得出规律后进行推测,如今,科学家已经创造了许许多多测定分子结构的现代仪器,红外光谱就是其中的一种。
分子中的原子不是固定不动的,而是不断地振动着的。所谓分子立体结构其实只是分子中的原子处于平衡位置时的模型。当一束红外线透过分子时,分子会吸收跟它的某些化学键的振动频率相同的红外线,再记录到图谱上呈现吸收峰。通过计算机模拟,可以得知各吸收峰是由哪一个化学键、哪种振动方式引起的,综合这些信息,可分析出分子的立体结构。
2、价层电子对互斥模型
在1940年,希吉维克(Sidgwick)和坡维尔(Powell)在总结实验事实的基础上提出了一种简单的理论模型,用以预测简单分子或离子的立体结构。这种理论模型后经吉列斯比(R.J,Gillespie)和尼霍尔姆(Nyholm)在20世纪50年代加以发展,定名为价层电子对互斥模型,简称VSEPR(Valence Shell Electron Pair Repulsion)。
1.价层电子互斥模型
分子的空间构型与成键原子的价电子有关。价层电子对互斥模型可以用来预测分子的立体结构。应用这种理论模型,分子中的价电子对(包括成键电子对和孤电子对),由于相互排斥作用,而趋向尽可能彼此远离以减小斥力,分子尽可能采取对称的空间构型。
价电子对之间的斥力
1).电子对之间的夹角越小,排斥力越大。
2).由于成键电子对受两个原子核的吸引,所以电子云比较紧缩,而孤对电子只受到中心原子的吸引,电子云比较“肥大”,对邻近电子对的斥力较大,所以电子对之间的斥力大小顺序如下:孤电子对—孤电子对>孤电子对—成键电子>成键电子—成键电子
3).由于三键、双键比单键包含的电子数多,所以其斥力大小次序为三键>双键>单键
2.价层电子对互斥理论:对ABn型的分子或离子,中心原子A价层电子对(包括用于形成共价键的共用电子对和没有成键的孤对电子)之间存在排斥力,将使分子中的原子处于尽可能远的相对位置上,以使彼此之间斥力最小,分子体系能量最低。
3.价层电子对互斥模型:
这种模型把分子分成以下两大类:一类是中心原子上的价电子都用于形成共价键,如C02、CH20、CH4等分子中的碳原子,在这类分子中,由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离,成键原子的几何构型总是采取电子对排斥最小的那种结构。它们的立体结构可用中心原子周围的原子数n来预测,概括如下:
ABn 立体结构 范例
n=2 直线型 CO2
n=3 平面三角形 CH2O
n=4 正四面体型 CH4
另一类是中心原子上有孤对电子(未用于形成共价键的电子对)的分子,如H2O和NH3,对于这类分子,首先建立四面体模型,每个键占据一个方向(多重键只占据一个方向),孤对电子也要占据中心原子周围的空间,并参与互相排斥。例如,H20和NH3的中心原子上分别有2对和l对孤对电子,跟中心原子周围的σ键加起来都是4,它们相互排斥,形成四面体,因而H:O分子呈V形,NH3分子呈三角锥形。
(1)、中心原子上的价电子都用于形成共价键:分子中的价电子对相互排斥的结果
(2).中心原子上有孤对电子:孤对电子也要占据中心原子周围的空间,并参与互相排斥,使分子的空间结构发生变化。
4. 价层电子对互斥理论的应用
利用价层电子对互斥理论时,首先要根据原子的最外层电子数,判断中心原子上有没有孤对电子,然后再根据中心原子结合的原子的数目,就可以判断分子的空间构型
(1)确定中心原子A价层电子对数目
中心原子A的价电子数与配体X提供共用的电子数之和的一半,即中心原子A价层电子对数目。计算时应注意:
(1)氧族元素原子作为配位原子时,可认为不提供电子,但作为中心原子时可认为它所提供所有的6个价电子.
(2) 如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。如PO43-中P原子价层电子数就加上3,而NH4+ 中N原子的价层电子数应减去1.
(3) 如果价层电子数出现奇数电子,可把这个单电子当作电子对来看待.
(2) 价电子对数计算方法
对于ABm型分子(A为中心原子,B为配位原子),分子的价电子对数可以通过下式确定
n =
(3)确定价层电子对的空间构型
由于价层电子对之间的相互排斥作用,它们趋向于尽可的相互远离。价层电子对的空间构型与价层电子对数目的关系:
价层电子对数目n 2 3 4 5 6
价层电子对构型 直线 三角形 四面体 三角双锥 八面体
(4)分子空间构型确定
根据分子中成键电子对数和孤对电子数,可以确定相应的稳定的分子几何构型。
例1:应用VESPR理论,判断下列粒子构型:CH4 、ClO3― 、PCl5
解析: 在CH4 中,C 有4个电子,4个H 提供4个电子,C 的价层电子总数为8个,价层电子对为4对 。C 的价层电子对的排布为正四面体,由于价层电子对全部是成键电子对,因此 CH4 的空间构型为正四面体。
在ClO3― 中,Cl 有7个价电子,O不提供电子,再加上得到的1个电子,价层电子总数为8个,价层电子对为4对。Cl的价层电子对的排布为四面体,四面体的 3 个顶角被3个O占据,余下的一个顶角被孤对电子占据,因此 为三角锥形。
在 PCl5 中,P 有5个价电子,5 个Cl分别提供1个电子,中心原子共有5对价层电子对,价层电子对的空间排布方式为三角双锥,由于中心原子的价层电子对全部是成键电子对,因此PCl5 的空间构型为三角双锥形。
总结归纳:
价层电子对互斥模型对少数化合物判断不准,不能适用于过渡金属化合物,除非金属具有全满、半满或全空的d轨道。根据价层电子对互斥理论:分子的立体结构是由于分子中的价电子对相互排斥的结果,其规律如下:
分子类型 中心原子 空间构型
AB2 有孤对电子 V型
无孤对电子 直线形
AB3 有孤对电子 三角锥形
无孤对电子 平面三角形
AB4 无孤对电子 四面体形
例2:(1)用VSEPR模型预测,下列分子形状与H2O相似,都为V型的是
A.OF2 B.BeCl2 C.SO2 D.CO2
(2)用VSEPR模型预测,下列分子中键角不是1200的是
A.C2H2 B.C6H6 C.BF3 D.NH3
巩固练习:
1、下列物质中,分子的立体结构与水分子相似的是 ( )
A、CO2 B、H2S C、PCl3 D、SiCl4
2、下列分子的立体结构,其中属于直线型分子的是 ( )
A、 H2O B、CO2 C、C2H2 D、P4
3、写出你所知道的分子具有以下形状的物质的化学式,并指出它们分子中的键角分别是多少?
(1) 直线形
(2) 平面三角形
(3) 三角锥形
(4) 正四面体
4、下列分子中,各原子均处于同一平面上的是 ( )
A、NH3 B、CCl4 C、H2O D、CH2O
5、下列分子的结构中,原子的最外层电子不都满足8电子稳定结构的是( )
A、CO2 B、PCl3 C、CCl4 D、NO2
6、下列分子或离子的中心原子,带有一对孤对电子的是 ( )
A、XeO4 B、BeCl2 C、CH4 D、PCl3
三、杂化轨道理论简介
1、杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。杂化轨道理论是一种价键理论,是鲍林为了解释分子的立体结构提出的。为了解决甲烷分子四面体构型,鲍林提出了杂化轨道理论,它的要点是:当碳原子与4个氢原子形成甲烷分子时,碳原子的2s轨道和3个2p轨道会发生混杂,混杂时保持轨道总数不变,却得到4个相同的轨道,夹角109°28′,称为sp3杂化轨道,表示这4个轨道是由1个s轨道和3个p轨道杂化形成的。当碳原子跟4个氢原子结合时,碳原子以4个sp3杂化轨道分别与4个氢原子的ls轨道重叠,形成4个C--Hσ键,因此呈正四面体的分子构型。
杂化轨道理论认为:在形成分子时,通常存在激发、杂化、轨道重叠等过程。但应注意,原子轨道的杂化,只有在形成分子的过程中才会发生,而孤立的原子是不可能发生杂化的。同时只有能量相近的原子轨道才能发生杂化,而1s轨道与2p轨道由于能量相差较大,它是不能发生杂化的。
2、杂化轨道的类型:
(1) sp3杂化1个s轨道和3个p轨道会发生混杂,得到4个相同的轨道,夹角109°28′,称为sp3杂化轨道。
空间结构:空间正四面体或V型、三角锥型。
凡属于VESPR模型的AY4的分子中心原子A都采取sp3 杂化类型。例如CH4、NH3、H2O等。其中像CH4这类与中心原子键合的是同一种原子,因此分子呈高度对称的正四面体构型,其中的4个sp3杂化轨道自然没有差别,这种杂化类型叫做等性杂化。而像NH3、H2O这类物质的中心原子的4个sp3杂化轨道用于构建不同的σ键或孤对电子,这个的4个杂化轨道显然有差别,叫做不等性杂化,
(2) sp2杂化:同一个原子的一个 ns 轨道与两个 np 轨道进行杂化组合为 sp2 杂化轨道。
sp2 杂化轨道间的夹角是120°,分子的几何构型为平面正三角形。
应当注意的是,杂化过程中还有未参与杂化的p轨道,可用于形成π键,而杂化轨道只用于形成σ键或者用来容纳未参与成键的孤对电子。而没有填充电子的空轨道一般都不参与杂化。如:乙烯分子中的碳原子的原子轨道采用sp2杂化。其中两个碳原子间各用一个sp2杂化轨道形成σ键,用两个sp2杂化轨道与氢原子形成σ键,两个碳原子各用一个未参加杂化的2p原子轨道形成Π键。
苯环分子中的碳原子的原子轨道采用了sp2杂化。每个碳原子上的三个sp2杂化轨道分别与两个相邻的碳原子和一个氢原子形成三个σ键并形成六碳环,每个碳原子上的未杂化2p轨道采用“肩并肩”的方式重叠形成大Π键。大Π键的形成使苯环上的所用原子处于同一平面,且结构稳定。
(3) sp 杂化:同一原子中 ns-np 杂化成新轨道:一个 s 轨道和一个 p 轨道杂化组合成两个新的 sp 杂化轨道。
sp杂化:夹角为180°的直线形杂化轨道,
杂化轨道成键时,要满足化学键间最小排斥原理,键与键间的排斥力大小决定于键的方向,即决定于杂化轨道间的夹角。由于键角越大化学键之间的排斥能越小,对sp杂化来说,当键角为180时,其排拆力最小,所以sp杂化轨道成键时分子呈直线形;对sp2杂化来说,当键角为120时,其排斥力最小,所以sp2杂化轨道成键时,分子呈平面三角形。由于杂化轨道类型不同,杂化轨道夹角也不相同,其成键时键角也不相同,故杂化轨道的类型与分子的空间构型有关。
3、AB m杂化类型的判断
公式:电子对数n=
在上述公式使用时,电荷为正值时,取负号,电荷为负值时,取正号。当配位原子为氧原子或硫原子时,成键电子数为零。
电子对数n 2 3 4
杂化类型 sp Sp2 Sp3
例如:SO2 电子对数为(6+0)/2=3,为sp2杂化。
杂化类型 杂化轨道数目 杂化轨道间的夹角 空间构型 实例
Sp 2 180° 直线 BeCl2
Sp2 3 120° 平面三角形 BF3
Sp3 4 109°28′ 四面体形 CH4
巩固练习:
1、下列分子中心原子是sp2杂化的是( )
A PBr3 B CH4 C BF3 D H2O
2、关于原子轨道的说法正确的是( )
A 凡是中心原子采取sp3杂化轨道成键的分子其几何构型都是正四面体
B CH4分子中的sp3杂化轨道是由4个H原子的1s 轨道和C原子的2p轨道混合起来而形成的
C sp3杂化轨道是由同一个原子中能量相近的s 轨道和p轨道混合起来形成的一组能量相近的新轨道
D 凡AB3型的共价化合物,其中中心原子A均采用sp3杂化轨道成键
3、用Pauling的杂化轨道理论解释甲烷分子的四面体结构,下列说法不正确的是( )
A、C原子的四个杂化轨道的能量一样
B、C原子的sp3杂化轨道之间夹角一样
C、C原子的4个价电子分别占据4个sp3杂化轨道
D、C原子有1个sp3杂化轨道由孤对电子占据
4、下列对sp3 、sp2 、sp杂化轨道的夹角的比较,得出结论正确的是( )
A sp杂化轨道的夹角最大 B sp2杂化轨道的夹角最大
C sp3杂化轨道的夹角最大 D sp3 、sp2 、sp杂化轨道的夹角相等
5、乙烯分子中含有4个C—H和1个C=C双键,6个原子在同一平面上。下列关于乙烯分子的成键情况分析正确的是( )
A 每个C原子的2s轨道与2p轨道杂化,形成两个sp杂化轨道
B 每个C原子的1个2s轨道与2个2p轨道杂化,形成3个sp2杂化轨道
C 每个C原子的2s轨道与3个2p轨道杂化,形成4个sp3杂化轨道
D 每个C原子的3个价电子占据3个杂化轨道,1个价电子占据1个2p轨道
6、ClO-、ClO2-、ClO3-、ClO 4-中Cl都是以sp3杂化轨道与O原子成键的,试推测下列微粒的立体结构
微粒 ClO- ClO2- ClO3- ClO4-
立体结构
7、根据杂化轨道理论,请预测下列分子或离子的几何构型:
CO2 , CO32-
H2S , PH3
答案:
1、D 2、BC 3、(1)CO2、CS2、HCN 键角180°(2)BF3、BCl3、SO3、CH2O键角60°(3)NH3、PCl3键角107.3°(4)CH4、CCl4键角109°28′
4、CD 5、D 6、D
1~5 C C D A BD
6、直线;V型;三角锥形;正四面体
7、sp杂化,直线;
sp2杂化, 三角形;
sp3杂化,V型;
sp3杂化,三角锥形
21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
乙醇和乙酸
主要知识点回顾
乙醇
1.乙醇的分子结构
分子式: 结构简式:
电子式: 结构式:
2. 化学性质
(1)与Na反应
2CH3CH2OH+2Na2CH3CH2ONa+H2↑
(2)氧化反应
①燃烧:C2H5OH+3O22CO2+3H2O
②催化氧化
(3)消去反应
二、乙酸(醋酸)
1. 分子结构
分子式: 结构式:
结构简式: 官能团:
2. 物理性质及用途
乙酸的熔点是16.6℃,温度低于16.6℃时,乙酸就凝结成像冰一样的固体,所以无水乙酸又称冰醋酸。
3. 化学性质
(1)酸的通性 CH3COOHCH3COO-+H+
(2)酯化反应
重难点剖析
重难点一 钠与乙醇、水反应的比较
水与钠反应 乙醇与钠反应
钠的变化 钠粒浮于水面,熔成闪亮的小球,并快速地四处游动,很快消失 钠粒开始沉于试管底部,未熔化,最终慢慢消失
声的现象 有“嘶嘶”的声响 无声响
气体检验 点燃,发出淡蓝色的火焰 点燃,发出淡蓝色的火焰
实验结论 钠的密度小于水,熔点低;钠与水剧烈反应,生成氢气;水分子中羟基上的氢原子比较活泼 钠的密度比乙醇的大;钠与乙醇缓慢反应生成氢气;乙醇中羟基上的氢原子相对不活泼
反应方程式 2Na+2H2O===2NaOH+H2↑ 2Na+2CH3CH2OH―→2CH3CH2ONa+H2↑
规律总结 (1)乙醇除了能与钠反应制取氢气外,还可与活泼金属K、Ca、Mg等发生反应生成氢气,如2CH3CH2OH+Mg―→(CH3CH2O)2Mg+H2↑。
(2)利用醇与Na的反应可以确定醇中羟基的数目。
重难点二 乙醇的催化氧化
1.实验操作
把一端绕成螺旋状的铜丝,放在酒精灯外焰上烧至红热,此时铜丝表面变黑;趁热将铜丝插入乙醇中,铜丝立即变成红色;重复上述操作几次,原有的乙醇气味消失而有带强烈刺激性气味的物质生成。
2.实验原理
2Cu+O22CuO(铜丝变黑)
(铜丝由黑变红)
将上面两式合并,得出以下化学
方程式:2CH3CH2OH+O2 +2H2O
特别提醒 (1)醇催化氧化过程中断裂的是羟基中的O—H键和与羟基相连的碳原子上的一个C—H键,所以醇催化氧化的条件是与羟基相连的碳原子上有氢原子。
(2)在乙醇的催化氧化反应中,实际起氧化作用的是O2,铜在反应中只起催化剂的作用,CuO是反应的中间产物。
(3)有机反应中,“得氧”或“去氢”的反应,称为氧化反应;“加氢”或“去氧”的反应称为还原反应。“氧化反应”、“还原反应”是有机反应类型中的两类重要反应。
重难点三 根与基
根 基
含义 带电荷的原子或原子团(即离子) 电中性的原子或原子团
举例 氢氧根离子OH-,铵根离子NH 羟基—OH,甲基—CH3
存在 离子化合物中 共价型有机物中
稳定性 一般稳定 活泼
联系 OH-—OH
特别提醒 (1)并不是所有离子都称根。如H+、K+不叫氢根和钾根。
(2)基一般不能单独存在,在特殊条件下(如光照、高温等),一些物质可解离出活性很强的自由基,作为反应中间体。如甲烷的氯代反应:ClClCl+Cl,Cl+HCH3HCl+CH3;CH3+ClClCH3Cl+Cl。
重难点四 乙醇、水、碳酸、乙酸分子中羟基氢的活泼性
1.设计实验验证
(1)给四种物质编号
①H—OH,②,③CH3CH2—OH,

(2)设计实验
操作 现象 结论(—OH中H原子活泼性顺序)
a.四种物质各取少量于试管中,各加入紫色石蕊试液两滴 ②、④变红,其他不变 ②、④>①、③
b.在②、④试管中,各加入少量碳酸钠溶液 ②中产生气体 ②>④
c.在①、③中各加入少量金属钠 ①产生气体,反应迅速③产生气体,反应缓慢 ①>③
2.实验结论总结
乙醇 水 碳酸 乙酸
氢原子活泼性
电离程度 微弱电离 部分电离 部分电离 部分电离
酸碱性 中性 弱酸性 弱酸性
与Na 反应 反应 反应 反应
与NaOH 不反应 不反应 反应 反应
与NaHCO3 不反应 不反应 不反应 反应
应用指南 应用羟基的活泼性,可以解决有关物质类别的推断的题目。解决时可以先从羟基与Na、NaOH、NaHCO3的反应情况以及量的关系进行比较,最后推断出是醇羟基还是羧基。
重难点五 乙酸和乙醇的酯化反应
1.原理
CH3COOH+CH3CH2OHCH3COOCH2CH3+H2O
2.装置
(1)导管末端不能插入饱和碳酸钠溶液中,其目的是为了防止液体发生倒吸。
(2)加热前,大试管中常要放入几粒碎瓷片,目的是为了防止加热过程中液体暴沸。
(3)实验中用酒精灯缓慢加热,其目的是防止乙醇挥发,提高反应速率;使生成的乙酸乙酯挥发,便于收集,提高乙醇、乙酸的转化率。
3.现象
饱和Na2CO3溶液的液面上有无色透明的油状液体生成,且能闻到香味。
4.注意事项
(1)试剂加入
浓硫酸→浓硫酸→乙酸(使浓硫酸得到稀释),且体积比为3∶2∶2。
(2)浓硫酸的作用
浓硫酸的作用主要是催化剂、吸水剂。加入浓硫酸可以缩短达到平衡所需时间并促使反应向生成乙酸乙酯的方向进行。
(3)饱和碳酸钠溶液的作用
①与挥发出来的乙酸生成可溶于水的乙酸钠,便于闻乙酸乙酯的香味;②溶解挥发出来的乙醇;③减小乙酸乙酯在水中的溶解度,使溶液分层,便于得到酯。
(4)酯的分离
通常用分液漏斗进行分液,将酯与饱和碳酸钠溶液分离。
(5)加热
加热的主要目的是提高反应速率,其次是使生成的乙酸乙酯及时挥发而收集,使平衡向正反应方向移动,提高乙醇、乙酸的转化率。
5.实质
羧酸去羟基,醇去氢。
可用原子示踪法证明:用含18O的乙醇参与反应,生成的乙酸乙酯(CH3CO18OC2H5)分子中含18O原子,表明反应物羧酸分子中的羟基与乙醇分子中羟基上的氢原子结合成水,其余部分结合生成酯(即水中的氧原子来自于羧酸)。
特别提醒 (1)酯化反应属于可逆反应,在判断示踪原子的去向时,应特别注意在哪个地方形成新键,则断裂时还在哪个地方断裂。
(2)酯化反应也属于取代反应。因乙酸乙酯可以看做是由乙醇中“—OC2H5”基团取代了乙酸中的羟基而形成的化合物。
(3)酯化反应中的酸可以是有机酸,也可以是无机含氧酸。
典例剖析
题型1 乙醇的分子结构
【例1】乙醇分子中不同的化学键如图:
关于乙醇在各种反应中断裂键的说法不正确的是( )
A.乙醇和钠反应键①断裂
B.在Ag催化下和O2反应键①③断裂
C.乙醇和浓H2SO4共热,在140℃时,键①或键②断裂;在170℃,时键②⑤断裂
D.乙醇完全燃烧时键①②断裂
解析:乙醇的钠反应:2CH3-CH2-OH+2Na2CH3-CH2-ONa+H2↑,断裂①键,A正确。乙醇的催化氧化:2CH3CH2OH+O2 ,断裂①③键。乙醇和浓H2SO4 140℃共热:2CH3CH2OHCH3-CH2-O-CH2CH3+H2O,断裂①②键。乙醇和浓H2SO4 170℃共热:CH3-CH2OHCH2==CH2↑+H2O,断裂②⑤键。
乙醇的燃烧:分子中的化学键完全断裂。所以A、B、C正确,D错误。
答案:D
题型2 乙醇的催化氧化
例2 乙醇分子中不同的化学键如图所示,则乙醇在催化氧化时,化学键断裂的位置是(  )                 
A.②③ B.②④ C.①③ D.③④
解析 乙醇的催化氧化,“去氢”的位置是羟基氢④及与羟基直接相连的碳原子上的氢原子②。
答案 B
规律总结:乙醇在反应中的断键规律:。当乙醇和金属钠反应时,断裂①;当乙醇发生催化氧化反应时,断裂①、②,同时在C和O之间形成一个新键。
题型3 羟基的活泼性
例3 在同温同压下,某有机物和过量Na反应得到V1 L氢气,取另一份等量的有机物和足量的NaHCO3反应得V2 L二氧化碳,若V1=V2≠0,则此有机物可能是(  )
A. B.HOOC—COOH C.HOCH2CH2OH D.CH3COOH
解析 Na既能与羟基反应,又能与羧基反应。NaHCO3只与羧基反应,不与羟基反应。因此,能使生成的CO2与H2的量相等的只有A项。
答案 A
规律总结:
(1)Na可以和所有的羟基反应,且物质的量的关系为2Na~2—OH~H2。
(2)Na2CO3、NaHCO3只能和—COOH反应产生CO2,物质的量的关系为Na2CO3~2—COOH~CO2,NaHCO3~—COOH~CO2。
题型4 酯化反应
例4 可用右图所示装置制取少量乙酸乙酯(酒精灯等
在图中均已略去)。请填空:
试管a中需加入浓硫酸、乙酸各2 mL,乙醇3 mL,正确的加入顺序是
_____________________________________________________________________________________________________________。
(2)为了防止试管a中的液体在实验时发生暴沸,在加热前应采取的措施是
________________________________________________________________________。
(3)实验中加热试管a的目的是:
①________________________________________________________________________;
②________________________________________________________________________。
试管b中加有饱和Na2CO3溶液,其作用是
________________________________________________________________________
________________________________________________________________________。
反应结束后,振荡试管b,静置。观察到的现象是
________________________________________________________________________
________________________________________________________________________。
解析 制取乙酸乙酯的药品的加入顺序是先加入乙醇,然后边振荡试管边慢慢加入浓硫酸,最后加入乙酸。由于浓硫酸稀释放热,最后加入乙酸可以减少乙酸的挥发。在反应前的混合液中还要加入沸石,避免加热时发生暴沸;反应采用加热条件,可以加快反应速率并促进乙酸乙酯的汽化;收集乙酸乙酯的试管中放入饱和Na2CO3溶液,有利于酯的分层析出,同时吸收挥发出来的乙酸和乙醇;酯的密度比水的小,故静置后存在水层之上。
答案 (1)先加入乙醇,然后边振荡试管边慢慢加入浓硫酸,再加入乙酸
(2)在试管a中加入几粒沸石(或碎瓷片)
(3)①加快反应速度
②及时将产物乙酸乙酯蒸出,有利于平衡向生成乙酸乙酯的方向移动
中和挥发出来的乙酸;溶解挥发出来的乙醇;减小乙酸乙酯的溶解度,使溶液分层,
便于得到酯
(5)b中的液体分层,上层是透明的油状液体
基础训练:
乙醇:1.下列关于乙醇的物理性质的应用中不正确的是(  )
A.由于乙醇的密度比水小,所以乙醇中的水可以通过分液的方法除去
B.由于乙醇能够溶解很多有机物和无机物,所以可用乙醇提取中药的有效成分
C.由于乙醇能够以任意比溶解于水,所以酒厂可以勾兑各种浓度的酒
D.从化学学科角度看,俗语“酒香不怕巷子深”中包含乙醇容易挥发的性质
答案 A
解析 由于乙醇与H2O互溶不分层,故不能用分液法除去乙醇中的水。
2.将等质量的铜片在酒精灯上加热后,分别插入下列溶液中,放置片刻,最终铜片质量增加的是(  )
A.硝酸 B.无水乙醇 C.石灰水 D.盐酸
答案 C
解析 铜片灼烧后生成CuO,质量增加。当插入到硝酸或盐酸中时,碱性氧化物CuO将溶解,所以铜片的质量减小;当插入到石灰水中时,CuO不与Ca(OH)2反应,即CuO不溶解,所以铜片的质量增加;而当插入到无水乙醇中时,CuO被无水乙醇还原成Cu单质,所以铜片的质量不变。常见的能把黑色CuO还原为红色的Cu的物质有:气体CO、H2、NH3、固体C、液体醇类。
3.下列物质分子的电子式正确的是(  )
A.CH3Cl HCl B.羟基 H C.CO2  D.C2H4 H::H
答案 D
解析
 
4. 分子式为C4H10O并能与金属钠反应放出氢气的有机化合物有(  )
A.3种 B.4种 C.5种 D.6种
答案 B
解析 C4H10O可以分为醇和醚两种不同类别的同分异构体,只有醇可以与Na反应放出H2,故本题是判断C4H10O的醇类的同分异构体种类,据醇的同分异构体的写法易判断有4种。
5.催化氧化产物是的醇是(  )
答案 A
解析 根据乙醇催化氧化的反应机理,逆向可推知A项符合。
6.A、B、C三种醇同足量的金属钠完全反应,在相同条件下产生相同体积的氢气,消耗这三种醇的物质的量之比为3∶6∶2,则A、B、C三种醇分子里羟基数之比是(  )
A.3∶2∶1 B.2∶6∶2 C.3∶1∶2 D.2∶1∶3
答案 D
解析 三种醇与足量Na反应,产生相同体积的H2,说明这三种醇各自所提供的-OH数目相同,为方便计算,设所提供-OH的数目为a,由于三种醇物质的量之比为3∶6∶2,所以各醇分子中-OH数之比为∶∶=2∶1∶3。
7.下列有机物中,不属于烃的衍生物的是(  )
A. B.CH3CH2NO2 C.CH2CHBr D.
答案 D
解析 可看作甲苯分子中的一个氢原子被Cl取代;CH3CH2NO2可看作CH3CH3分子中的一个氢原子被硝基取代;CH2===CHBr可看作CH2===CH2分子中的一个氢原子被Br原子所取代的产物;只有不属于烃的衍生物。
8.按下图装置,持续通入X气体,可看到a处有红色物质生成,b处变蓝,c处得到液体,X气体可能是(  )
A.H2 B.CO和H2 C.NH3 D.CH3CH2OH(气体)
答案 D
解析 四个选项中的气体或蒸气都可还原CuO,且均有H2O产生,故都可满足a、b处的现象。但要在c处得到液体,只有D符合,CH3CH2OH+CuOCH3CHO+H2O+Cu。
9.现有乙酸和两种链状单烯烃的混合物,若其中氧的质量分数为a,则碳的质量分数是(  )
A. B.a C.(1-a) D.(1-a)
答案 C
解析 乙酸的分子式为C2H4O2,单烯烃的通式为CnH2n(n≥2),混合物中C和H的质量分数之和为(1-a),两类物质中m(C)∶m(H)=6∶1,故混合物中碳的质量分数是(1-a)。
10.质量为m g的铜丝灼烧后,立即插入下列物质中,能使铜丝变红,而且质量仍为m g的是(  )
A.HNO3 B.CO C.C2H5OH D.H2SO4
答案 BC
解析 铜丝在酒精灯上加热后,表面被氧化生成氧化铜,C2H5OH能使灼烧后的CuO还原为Cu:C2H5OH+CuOCH3CHO+Cu+H2O,铜丝质量不变;CO也能使CuO还原为Cu:CuO+COCu+CO2,铜丝质量不变;硝酸、硫酸使CuO溶解,铜丝的质量减小。
11.一定量的乙醇在氧气不足的情况下燃烧,得到CO、CO2和水的总质量为27.6 g,若其中水的质量为10.8 g,则CO的质量是(  )
A.1.4 g B.2.2 g C.4.4 g D.在2.2 g和4.4 g之间
答案 A
解析 由燃烧得水10.8 g可知:
(1)CO和CO2的总质量为27.6 g-10.8 g=16.8 g。
(2)生成的水是10.8 g相当于=0.6 mol,因此燃烧的醇应是0.6 mol×=0.2 mol,应得CO和CO2的总物质的量是0.2 mol×2=0.4 mol,其平均相对分子质量是=42 g/mol,继而求得CO的物质的量为0.05 mol,质量为1.4 g。
乙酸
1.可以证明乙酸是弱酸的事实是(  )
A.乙酸和水能以任意比例混溶
B.1 mol/L的乙酸水溶液能使紫色石蕊试液变红色
C.乙酸能与Na2CO3溶液反应放出CO2气体
D.在稀乙酸水溶液中含有未电离的乙酸分子
答案 D
解析 弱酸的实质是不能完全电离,醋酸溶液中含有未电离的乙酸分子,即可证明乙酸是弱酸。
2.实验室用乙酸、乙醇、浓H2SO4制取乙酸乙酯,加热蒸馏后,在饱和Na2CO3溶液的上面得到无色油状液体,当振荡混合时,有气泡产生,原因是(  )
A.产品中有被蒸馏出的H2SO4
B.有部分未反应的乙醇被蒸馏出来
C.有部分未反应的乙酸被蒸馏出来
D.有部分乙醇跟浓H2SO4作用生成乙烯
答案 C
解析 乙酸、乙醇均易挥发,制乙酸乙酯时,常一块蒸发出来,当和Na2CO3溶液反应时发生如下反应:Na2CO3+2CH3COOH―→2CH3COONa+CO2↑+H2O,C正确;而H2SO4难挥发,乙醇和Na2CO3溶液不反应,故答案为C。
3.下列关于乙酸的说法中不正确的是(  )
A.乙酸是具有强烈刺激性气味的液体
B.乙酸分子里含有4个氢原子,所以乙酸不是一元酸
C.无水乙酸又称冰醋酸,它是纯净物
D.乙酸易溶于水和乙醇
答案 B
解析 酸是几元酸取决于酸分子可电离出的H+个数或含氧酸中的羟基数目。乙酸(CH3COOH)分子里尽管含有4个氢原子,但—CH3中的3个H原子不能电离,
4.丙烯酸(CH2===CH—COOH)的性质可能有(  )
①加成反应 ②取代反应 ③酯化反应 ④中和反应 ⑤氧化反应
A.①③ B.①③④ C.①③④⑤ D.①②③④⑤
答案 D
解析 由于分子中含有 故可以发生加成反应、氧化反应。又因分子中含有羧基,故可以发生酯化反应(属于取代反应)、中和反应等。
5.下列除去杂质的方法正确的是(  )
①除去乙烷中少量的乙烯:光照条件下通入Cl2,气液分离;
②除去乙酸乙酯中少量的乙酸:用饱和碳酸钠溶液洗涤、分液;
③除去CO2中少量的SO2:气体通过盛饱和碳酸钠溶液的洗气瓶;
④除去乙醇中少量的乙酸:加足量生石灰、蒸馏。
A.①② B.②④ C.③④ D.②③
答案 B
解析 分析可知①通入Cl2,与C2H6可以发生取代反应,③饱和碳酸钠溶液可以吸收CO2气体。
6.下列说法错误的是(  )
A.乙醇和乙酸都是常用调味品的主要成分
B.乙醇和乙酸的沸点和熔点都比C2H6、C2H4的沸点和熔点高
C.乙醇能发生氧化反应而乙酸不能发生氧化反应
D.乙醇和乙酸之间能发生酯化反应,酯化反应和酯的水解反应互为逆反应
答案 C
解析 酒的主要成分是乙醇,食醋的主要成分是乙酸,因此A正确;乙醇、乙酸在常温下都是液体,而C2H6和C2H4在常温下为气体,因此B也正确;乙醇催化氧化制乙酸,乙醇和乙酸都会发生燃烧氧化生成CO2和H2O,因此C错误;酯化反应与酯的水解反应互为逆反应,D正确。
7.下列物质中最难电离出H+的是(  )
A.CH3COOH B.CH3CH2OH C.H2O D.H2CO3
答案 B
解析 电离出H+的难易或酸的强弱,主要取决于羟基的活泼性。上述四种物质羟基的活泼性由强到弱的顺序为CH3COOH>H2CO3>H2O>CH3CH2OH。
8.能一次区分CH3COOH、CH3CH2OH、、四种物质的试纸或试剂是(  )
A.H2O          B.Na2CO3稀溶液
C.石蕊试液 D.NaHSO4溶液
答案 B解析 CH3COOH与Na2CO3反应有气泡,CH3CH2OH溶解在Na2CO3溶液中,在Na2CO3溶液的上面,在Na2CO3溶液的下面。
9.有X、Y、Z 3种元素,X是有机化合物中必含的元素,Y是地壳里含量最多的元素,Z是质量最轻的元素。X与Y能结合成两种化合物A和B,A可以燃烧,B不可以燃烧,也不支持燃烧;X与Z结合的最简单的化合物C有可燃性;X、Y与Z三种元素结合的化合物D常用作实验室加热的燃料,D被酸性高锰酸钾氧化生成E。
(1)试判断X、Y、Z分别是(填元素符号):
X________,Y________,Z________。
(2)试判断A、B、C、D、E各是什么物质(用化学式表示):
A______________,B___________,C__________,D__________,E______________。
(3)完成化学方程式
①C燃烧的化学方程式:________________________________________________________________________。
②D在铜作催化剂且加热条件下与氧气反应的化学方程式:
________________________________________________________________________。
③D与E在浓H2SO4作催化剂、加热条件下反应的化学方程式:
________________________________________________________________________。
答案 (1)C O H
(2)CO CO2 CH4 CH3CH2OH CH3COOH
(3)①CH4+2O2CO2+2H2O
②2CH3CH2OH+O22CH3CHO+2H2O
③CH3COOH+HOCH2CH3CH3COOCH2CH3+H2O
解析 据题意易推知X为碳元素,Y为氧元素,Z为氢元素,A为CO,B为CO2,C为CH4,D为CH3CH2OH,E为CH3COOH,整个题目迎刃而解。

(△

(浓硫酸
a

(浓硫酸

21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网本资料来自于资源最齐全的21世纪教育网www.21cnjy.com
化学与可持续发展
主要知识点回顾
一、 基本营养物质—糖类
食物中的营养物质包括:糖类、油脂、蛋白质、维生素、无机盐和水。人们习惯称糖类、油脂、蛋白质为动物性和植物性食物中的基本营养物质。
种类 元素组成 代表物 代表物分子
糖类 单糖 C H O 葡萄糖 C6H12O6 葡萄糖和果糖互为同分异构体单糖不能发生水解反应
果糖
双糖 C H O 蔗糖 C12H22O11 蔗糖和麦芽糖互为同分异构体能发生水解反应
麦芽糖
多糖 C H O 淀粉 (C6H10O5)n 淀粉、纤维素由于n值不同,所以分子式不同,不能互称同分异构体能发生水解反应
纤维素
油脂 油 C H O 植物油 不饱和高级脂肪酸甘油酯 含有C=C键,能发生加成反应,能发生水解反应
脂 C H O 动物脂肪 饱和高级脂肪酸甘油酯 C-C键,能发生水解反应
蛋白质 C H ON S P等 酶、肌肉、毛发等 氨基酸连接成的高分子 能发生水解反应
主 要 化 学 性 质
葡萄糖 结构简式:CH2OH-CHOH-CHOH-CHOH-CHOH-CHO或CH2OH(CHOH)4CHO (含有羟基和醛基)醛基:①使新制的Cu(OH)2 产生砖红色沉淀-测定糖尿病患者病情 ②与银氨溶液反应产生银镜-工业制镜和玻璃瓶瓶胆羟基:与羧酸发生酯化反应生成酯
蔗糖 水解反应:生成葡萄糖和果糖
淀粉纤维素 淀粉、纤维素水解反应:生成葡萄糖淀粉特性:淀粉遇碘单质变蓝
油脂 水解反应:生成高级脂肪酸(或高级脂肪酸盐)和甘油
蛋白质 水解反应:最终产物为氨基酸盐析 :蛋白质遇见(饱和的硫酸钠、硫酸铵)盐析,物理变化变性 :蛋白质遇见强酸、强碱、重金属盐等变性,化学变化颜色反应:蛋白质遇浓HNO3变黄(鉴别部分蛋白质)鉴别 :灼烧蛋白质有烧焦羽毛的味道(鉴别蛋白质)
酶 特殊的蛋白质,在合适温度下:催化活性具有:高效性、专一性
二、金属矿物的开发利用
1、金属的存在:除了金、铂等少数金属外,绝大多数金属以化合态的形式存在于自然界。
2、金属冶炼的涵义:简单地说,金属的冶炼就是把金属从矿石中提炼出来。金属冶炼的实质是把金属元素从化合态还原为游离态,即(化合态) (游离态)。
3、金属冶炼的一般步骤: (1)矿石的富集:除去杂质,提高矿石中有用成分的含量。(2)冶炼:利用氧化还原反应原理,在一定条件下,用还原剂把金属从其矿石中还原出来,得到金属单质(粗)。(3)精炼:采用一定的方法,提炼纯金属。
4、金属冶炼的方法
(1)电解法:适用于一些非常活泼的金属。
2NaCl(熔融)2Na+Cl2↑MgCl2(熔融)Mg+Cl2↑2Al2O3(熔融)4Al+3O2↑
(2)热还原法:适用于较活泼金属。
Fe2O3+3CO2Fe+3CO2↑ WO3+3H2W+3H2O ZnO+CZn+CO↑
常用的还原剂:焦炭、CO、H2等。一些活泼的金属也可作还原剂,如Al,
Fe2O3+2Al2Fe+Al2O3(铝热反应) Cr2O3+2Al2Cr+Al2O3(铝热反应)
(3)热分解法:适用于一些不活泼的金属。
2HgO2Hg+O2↑ 2Ag2O4Ag+O2↑
金属的活动性顺序 K、Ca、Na、Mg、Al Zn、Fe、Sn、Pb、(H)、Cu Hg、Ag Pt、Au
金属原子失电子能力 强 弱
金属离子得电子能力 弱 强
主要冶炼方法 电解法 热还原法 热分解法 富集法
还原剂或特殊措施 强大电流提供电子 H2、CO、C、Al等加热 加热 物理方法或化学方法
重难点剖析
开发利用金属矿物和海水资源
重难点一 金属的冶炼
1.金属冶炼原理
金属冶炼的实质是使金属化合物中的金属离子得到电子被还原为金属单质的过程:Mn++ne-===M。
2.金属活泼性与对应离子得电子能力的关系
金属越活泼,其对应离了越难得电子,越难被还原成单质。
3.金属活动性顺序与金属冶炼方法的关系
金属的活动性顺序 K Ca Na Mg Al Zn Fe Sn Pb (H) Cu Hg Ag Pt Au
金属原子失电子能力 强→弱
金属离子得电子能力 弱→强
主要冶方法 电解法 热还原法 热分解法 物理方法
特别提醒 (1)熟记金属活动性顺序与金属冶炼方法的关系,对解决该部分题目非常关键。同时,利用好规律“单强离弱”,即金属单质的还原性越强,其离子的氧化性越弱。
(2)金属活动性顺序表中,金属的位置越靠后,金属阳离子的氧化性越强,越容易被还原,用一般的还原方法就能使金属离子还原,人们开发利用的时间就较早。同理,金属的位置越靠前,人们开发利用的时间就较晚。
重难点二 铝热反应
实验装置
实验现象 当外露部分镁条刚刚燃完时,纸漏斗内的混合物立即剧烈反应,发出耀眼的光芒,产生大量的热。纸漏斗被烧破,有红热状态的液珠落入蒸发皿内的细沙上,液珠冷却后变为黑色固体
原因分析 镁条燃烧,放出大量的热;KClO3作为引燃剂在受热状态下发生分解,使氧化铁粉末和铝粉在较高温度下发生反应:2Al+Fe2O32Fe+Al2O3,生成的铁在高温下呈熔化状态
原理应用 冶金工业上常用该原理制取高熔点的金属,如钒、铬、锰等。也可用在生产上,如焊接钢轨等
注意事项 镁条要打磨净表面的氧化膜,否则难以点燃;氧化铁粉末要干燥;铝粉要用没有被氧化的,否则反应难以进行2.Fe2O3与Al的质量的比要控制在3∶1,且两者要混合均匀,以保证Fe2O3与Al都完全反应3.要保证纸漏斗重叠时四周均为四层,且内层纸漏斗一定要用水润湿,以防高温物质从四周溅出,同时损坏纸漏斗4.蒸发皿中的细纱要适量,既要防止蒸发皿炸裂,又要防止熔融的液体溅出伤人5.实验装置不要距人群太近,应远离易燃物,或在玻璃通风橱内操作
特别提醒 在应用铝热反应解决问题时,要理解铝热反应的实质是置换反应,利用铝的活泼性置换出不活泼的金属,在判断铝热反应是否能发生时,应首先看金属的活动性。
重难点三 海带提碘
实验步骤 实验现象 结论或解释
①取3 g左右的干海带,把干海带表面的附着物用刷子刷净(不要用水冲洗),用剪刀剪碎后,用酒精润湿,放入坩埚中。点燃酒精灯,灼烧海带至完全变成灰烬,停止加热,冷却
②将海带灰转移到小烧杯中,向其中加入10 mL蒸馏水,搅拌、煮沸2~3 min,过滤 得无色透明溶液 碘不是以碘单质形式存在
③在滤液中滴入几滴稀硫酸,再加入约1 mL H2O2溶液,观察现象 溶液由无色变为深黄色 化学方程式:2KI+H2O2+H2SO4===I2+K2SO4+2H2O,I2的水溶液为黄色
④取少量上述滤液,加入几滴淀粉溶液,观察现象 溶液变为深蓝色 I2遇淀粉变蓝
特别提醒 ①海带不要用水洗,以免洗去海带中的碘;海带要用干的,因为湿的海带不易燃烧。
②H2O2氧化I-的离子方程式为H2O2+2I-+2H+===I2+2H2O。
③流程图:海带→浸泡→氧化→过滤→提纯→碘单质。
重难点四 海水提溴
1.工艺流程
海水 Br2(g)。
2.实验步骤
实验操作 化学方程式
①用蒸馏法将海水浓缩。用硫酸将浓缩的海水酸化
②向酸化的海水中通入适量的氯气,使溴离子转变为溴单质 2NaBr+Cl2===Br2+2NaCl
③向含溴单质的水溶液中通入空气和水蒸气,将溴单质吹入盛有二氧化硫溶液的吸收塔内 Br2+SO2+2H2O===2HBr+H2SO4
④向吸收塔中的溶液内通入适量的氯气 2HBr+Cl2===Br2+2HCl
⑤用四氯化碳(或苯)萃取吸收塔中溶液里的溴单质
特别提醒 萃取剂的选择应注意:
①被萃取的物质与所加入的有机溶剂不发生化学反应;
②萃取剂与水不能互溶。
③被萃取的物质在有机溶剂中的溶解度要远远大于在原溶剂中的溶解度。
典例剖析
题型1 金属的冶炼
例1 下列金属冶炼的反应原理,错误的是(  )
A.2NaCl(熔融)2Na+Cl2↑ B.MgO+H2Mg+H2O
C.Fe3O4+4CO3Fe+4CO2 D.2HgO2Hg+O2↑
解析 钠、镁等活泼金属不能用普通还原剂还原出来,只能用电解熔融物的方法制取,故A正确,B错误;而铁为中等活泼的金属可以用常用还原剂还原,故C正确;不活泼的金属可以用加热分解化合物的方法来制备,故D正确。
答案 B
题型2 铝热反应
例2 为确定某铝热剂(含氧化铁和铝)的组成,分别进行下列实验。
(1)若取a g样品,向其中加入足量的NaOH溶液,测得生成气体(标准状况,下同)的体积为b L。反应的化学方程式是________;样品中铝的质量是________g。
(2)若取a g样品将其点燃,恰好完全反应,该反应的化学方程式是________;氧化铁与铝的质量比是________。
(3)待(2)中反应产物冷却后,加入足量盐酸,测得生成的气体体积为c L,该气体与(1)中所得气体的体积比c∶b=__________。
解析 (1)铝热剂中只有铝能与NaOH溶液反应,Fe2O3不能反应,铝与NaOH溶液反应的化学方程式为:
2Al+2NaOH+2H2O===2NaAlO2+3H2↑
 2×27 3×22.4
 x b L
x== g,样品中铝的质量为 g。
(2)铝热剂点燃恰好完全反应,化学方程式为2Al+Fe2O3Al2O3+2Fe,由该方程式可推知:氧化铁与铝的质量比是==,物质的量之比是=。
H2,Fe→H2,Fe→H2,所以得c∶b=1∶,即c∶b=2∶3。
答案 (1)2Al+2NaOH+2H2O===2NaAlO2+3H2↑
 (2)2Al+Fe2O3Al2O3+2Fe 80∶27
(3)2∶3
题型3 海水中提取溴
例3 全球海水中溴的储藏量丰富,约占地球溴总储藏量的99%,故溴有“海洋元素”之称,海水中溴含量为65 mg/L。其工业提取方法有:
(1)空气吹出纯碱吸收法。方法是将氯气通入到富含溴离子的海水中,把溴置换出来,再用空气将溴吹出,用纯碱溶液吸收,最后用硫酸酸化,即可得到溴单质。该方法涉及到的反应有①________________________________________________________________________
(写出离子方程式);②3Br2+3CO===BrO+5Br-+3CO2↑;③BrO+5Br-+6H+===3Br2+3H2O。其中反应②中氧化剂是________;还原剂是________。
(2)空气吹出SO2吸收法。该方法基本同(1),只是将溴吹出后是用SO2来吸收的,使溴转化为氢溴酸,然后再用氯气氧化氢溴酸即得单质溴。写出溴与二氧化硫反应的化学方程式:________________________________________________________________________。
(3)溶剂萃取法。该法是利用单质溴在水中和有机溶剂中溶解度的不同的原理来进行的。实验室中萃取用到的实验仪器名称是____________。下列可以用于海水中溴的萃取的溶剂是________(填序号)。
①乙醇 ②四氯化碳 ③硝酸
解析 工业上提取溴的原理:将氯气通入到富含溴离子的海水中,把溴置换出来,然后被某些溶液吸收,再提纯即可得到。Cl2+2Br-===2Cl-+Br2,溴与二氧化硫反应的化学方程式:Br2+SO2+2H2O===2HBr+H2SO4,方法(3)是利用物理方法,用有机溶剂溶解,因为溴易溶于有机溶剂,作为海水中萃取溴的溶剂只能是②四氯化碳。
答案 (1)Cl2+2Br-===2Cl-+Br2 Br2 Br2
(2)Br2+SO2+2H2O===2HBr+H2SO4
(3)分液漏斗 ②
海水中的溴元素是以Br-形式存在的,海水提溴的关键反应是用Cl2将Br-氧化为Br2,然后将Br2利用空气吹出法分离出来。
题型4 海带中提取碘
例4 海带中含有丰富的碘。为了从海带中提取碘,某研究性学习小组设计并进行了以下实验:
请填写下列空白:
(1)步骤①灼烧海带时,除需要三脚架外,还需要用到的实验仪器是______________(从下列仪器中选出所需的仪器,用标号字母填写空白处)。
A.烧杯 B.坩埚 C.表面皿 D.泥三角 E.酒精灯 F.干燥器
(2)步骤③的实验操作名称是______;步骤⑥的目的是从含碘苯溶液中分离出单质碘和回收苯,该步骤的实验操作名称是________。
(3)步骤④反应的离子方程式是____________________________________________。
(4)步骤⑤中,某学生选择用苯来提取碘的理由是
________________________________________________________________________。
(5)请设计一种检验提取碘后的水溶液中是否还含有单质碘的简单方法:________________________________________________________________________
________________________________________________________________________。
解析 (1)步骤①是对干燥海带加热灼烧,与三脚架一起使用的常常是泥三角、坩埚和酒精灯。
(2)步骤③是由海带灰悬浊液得含碘离子的溶液,因此一定要进行过滤。步骤⑥是从混溶碘的苯溶液中分离碘和回收苯,因二者在水中溶解度都不大,因此只能用蒸馏分离的方法。
(3)结合“碘离子含碘水溶液”,再联想实验室中Cl2的制备不难写出④的离子方程式为2I-+MnO2+4H+===Mn2++I2+2H2O。
(4)因碘不易溶于水而易溶于有机溶剂苯,且苯不溶于水易与水溶液分层,这是选取萃取剂的原则。
(5)根据碘单质遇淀粉变蓝这一现象,可以取少量提取碘之后的溶液,加入淀粉看是否变蓝来检验。
答案 (1)BDE (2)过滤 蒸馏
(3)2I-+MnO2+4H+===Mn2++I2+2H2O
(4)苯与水互不相溶;碘在苯中的溶解度比在水中大
(5)取少量提取碘后的水溶液于试管中,加入几滴淀粉试液;观察是否出现蓝色(如果变蓝,说明还有单质碘,反之则没有单质碘)
题型5 海水资源的综合利用
例5 海水是一个巨大的化学资源宝库,下列有关海水综合利用的说法正确的是(  )
A.海水中含有钾元素,只需经过物理变化就可以得到钾单质
B.海水蒸发制海盐的过程中只发生了化学变化
C.从海水中可以得到NaCl,电解熔融NaCl可制备Cl2
D.利用潮汐发电是将化学能转化为电能
解析 海水中的钾元素是以化合态形式存在的,要由化合态转变为游离态,一定发生氧化还原反应,故A不正确;海水蒸发制海盐,发生了物理变化,B也不正确;电解熔融NaCl可以制得Na和Cl2,C正确;潮汐发电是将机械能转化为电能,因此D也不正确。
答案 C
练习:
金属矿物的开发利用
,1.金属冶炼的目的是(  )
A.把金属化合物还原为金属单质 B.除去金属中的杂质
C.把金属单质变为氧化物 D.把电能转化为化学能 答案 A
解析 由金属冶炼原理Mn+―→M可知,金属冶炼的目的是将化合态的金属元素还原为游离态。
2.不同金属的冶炼,其冶炼方法也可能不同,主要原因是(  )
A.金属在自然界中的分布不同 B.金属在自然界中的含量不同
C.金属在自然界中的存在形式不同 D.金属的活动性不同 答案 D
解析 金属冶炼的实质是用还原的方法使金属化合物中的金属离子得电子变成金属单质,金属的活动性不同,其对应金属离子得电子的能力不同,冶炼方法就有可能不同。
3.热还原法冶炼金属的反应一定是(  )
A.氧化还原反应 B.置换反应
C.复分解反应 D.分解反应 答案 A
解析 热还原法冶炼金属的反应一定不是复分解反应,也一定不是分解反应,不一定是置换反应,如3CO+Fe2O32Fe+3CO2,但一定是氧化还原反应。
4.下列说法中正确的是(  )
A有些活泼金属如铝可作高温还原法的还原剂
B.用电解NaCl溶液的方法来冶炼金属钠
C.可用焦炭或一氧化碳还原氧化铝的方法来冶炼铝
D.回收旧金属可以重新制成金属或它们的化合物 答案 AD
解析 本题主要考查金属的冶炼方法。铝可以作还原剂冶炼一些高熔点的金属,如2Al+Fe2O32Fe+Al2O3,A项对;电解NaCl溶液不能得到金属钠,金属钠应该用电解熔融NaCl的方法制取,B项错;铝是活泼金属,很难用还原剂把它还原出来,C项错;
5.在含有Cu(NO3)2、Mg(NO3)2和AgNO3的溶液中加入适量锌粉,首先置换出的是(  )
A.Mg B.Cu C.Ag D.H2 答案 C
解析 本题主要考查氧化还原反应顺序。根据金属活动性顺序表,可以判断,还原性强弱:Mg>H2>Cu>Ag,则离子氧化性强弱为Ag+>Cu2+>H+>Mg2+,所以首先析出Ag。
6.实验室将9 g铝粉跟一定量的金属氧化物粉末混合形成铝热剂。发生铝热反应之后,所得固体中含金属单质为18 g,则该氧化物粉末可能是(  )
A.Fe2O3和MnO2 B.MnO2和V2O5
C.Cr2O3和V2O5 D.Fe3O4和FeO 答案 AD
解析 n(Al)==mol,Al完全反应时转移电子的物质的量为mol×3=1 mol,则生成金属的摩尔电子质量(转移1 mol e-生成金属的质量)为18 g/mol。
A项生成Fe的摩尔电子质量为=18.67 g/mol,生成Mn的摩尔电子质量为=13.75 g/mol,根据平均值规律,A项正确;B项生成锰的摩尔电子质量为13.75 g/mol,生成V的摩尔电子质量为=10.2 g/mol,根据平均值规律,B项不可能生成金属单质18 g;同理,C项也不可能生成单质18 g;D项,Al完成反应时生成Fe的质量大于18 g,当氧化物粉末不足量时,生成的金属可能为18 g,D项正确。
海水资源的开发利用
1.下列各组元素中既包括海水中的常量元素,又包括海水中的微量元素的是(  )
A.Cl、Na、C、F B.S、Ca、U、I
C.B、F、H、Sr D.Cl、Na、Li 答案 BD
解析 海水中的常量元素包括H、O、Cl、Na、K、Mg、Ca、S、C、F、B、Br、Sr等13种元素,其他元素为微量元素。
2.水资源非常重要,联合国确定2003年为国际淡水年。下列关于水的说法中错误的是(  )
A.蒸馏法是海水淡化的方法之一
B.淡水的密度小于海水的密度
C.融化的雪水中矿物质含量比深井水中的少
D.0℃以上,温度越高,水的密度越小 答案 D
解析 A对;B对,淡水的密度小于海水的密度,因为海水中含NaCl等;C对,雪水是软水,而深井水中的水是硬水,一般含Ca2+、Mg2+等;D错,因为水在4℃时密度最大。故答案为D。
3.NaCl是海水中提取出来的一种重要物质,除食用外,它还是一种工业原料,下列以NaCl为原料的产品(或物质)是(  )
①烧碱 ②纯碱 ③金属钠 ④氯气 ⑤盐酸
A.①②③④⑤ B.①②③④ C.①②③⑤ D.①②④⑤
答案 A
解析 在氯碱工业中,2NaCl+2H2O2NaOH+H2↑+Cl2↑,H2与Cl2化合被水吸收可得盐酸。2NaCl(熔融)2Na+Cl2↑。在制纯碱工业中主要利用如下原理:NaCl+CO2+NH3+H2O===NaHCO3↓+NH4Cl;2NaHCO3Na2CO3+H2O↑+CO2↑。
4.下列说法不正确的是(  )
A.海洋是一个远未完全开发的巨大化学资源宝库
B.海水中金的储存量约为陆地的170倍,但它的富集程度却很低
C.从海水中可以提取铀和重水等核原料
D.海水中的溴、氟等元素均为微量元素,但仍有提取的价值 答案 D
解析 海水中,Br和F元素均为常量元素。
5.广东正在建设海洋强省。下列说法不正确的是(  )
A.从海带中提取碘单质的过程涉及氧化还原反应
B.往淡水中加入NaCl等配成人造海水,可用于海产品的长途运输
C.赤潮主要是由工农业生产和生活废水引起沿海水域的富营养化而造成的
D.海洋经济专属区的资源开发可获得Fe、Co、K、Au、Mg等金属 答案 D
解析 海带中提取碘需将I-氧化为I2,A正确;B是可用的方法,B正确;赤潮是富营养化造成的,C正确;D中Fe的提取不属于海洋经济专属区的资源开发。
6.海水提溴过程中将Br-氧化成Br2,可向其中加入氧化剂,合适的是(  )
A.酸性KMnO4溶液 B.氯水 C.FeCl3溶液 D.碘水 答案 B
解析 Fe3+和I2的氧化性都不如Br2的强,C、D不正确;酸性KMnO4溶液能氧化Br-,但不适合工业生产用,KMnO4价格比较贵。
7.从海水中提取镁的工艺流程可表示如下:
 
下列说法不正确的是(  )
A.用此法提取镁的优点之一是原料来源丰富 B.步骤⑥电解MgCl2时阴极产生氯气
C.步骤⑤可将晶体置于HCl气体氛围中脱水
D.上述工艺流程中涉及化合、分解和复分解反应 答案 B
解析 海水中含有大量的镁元素,从海水中提取镁的优点之一是原料来源丰富,选项A正确;电解熔融的MgCl2时,阳极产生Cl2,阴极产生金属镁,选项B错误;因MgCl2能水解:MgCl2+2H2OMg(OH)2+2HCl,所以将MgCl2·6H2O晶体在HCl气体氛围中加热脱水,其目的是防止MgCl2水解生成Mg(OH)2,选项C正确;步骤①涉及CaCO3的分解反应得到CaO,CaO与H2O发生化合反应得到Ca(OH)2,步骤⑥是电解涉及分解反应,步骤③涉及MgCl2与Ca(OH)2发生复分解反应得到Mg(OH)2和CaCl2。
资源综合利用与环境保护
重难点一 化学“三馏”
名称 定义 适用范围 变化类型
蒸馏 把液体加热到沸腾变为蒸气,再使蒸气冷却凝结成液体的操作 被蒸馏混合物中至少有一种组分为液体,各组分沸点差别越大,挥发出的物质(馏分)越纯 物理变化
分馏 对多组分混合物在控温下先后、连续进行的两次或多次蒸馏 多组分沸点不同的混合物在一个完整操作中分离出多种馏分 物理变化
干馏 把固态混合物(如煤、木材)隔绝空气加强热使它分解的过程 化学变化
特别提醒 (1)由于石油中有些物质的沸点很接近,所以每种石油的馏分仍然是多种烃的混合物。
(2)煤的干馏有两个条件:一是隔绝空气,防止煤在空气中燃烧;二是加强热。
(3)煤是由有机物和无机物组成的复杂混合物,煤中并不含有小分子有机物苯、萘、蒽等;苯、萘、蒽等物质是煤分解的产物煤焦油中含有的。
重难点二 化学“七气”
名称 来源 主要成分 用途
高炉煤气 炼铁高炉 CO2、CO等 燃料
水煤气 水煤气炉 CO、H2等 燃料、化工原料
炼厂气 石油炼制厂 低级烷烃 燃料、化工原料
油田气 油田 低级烷烃 燃料、化工原料
天然气 天然气田、油田 CH4 燃料、化工原料
裂解气 裂解炉 “三烯二烷” 石油化工原料
焦炉气 炼焦炉 H2、CH4、C2H4等 燃料、化工原料
重难点三 石油炼制方法的比较
石油的炼制方法 石油的分馏 石油的裂化 石油的裂解
原理 用蒸发和冷凝的方法把石油分成不同沸点范围的蒸馏产物 在催化剂存在的条件下,把相对分子质量大、沸点高的烃断裂为相对分子质量小、沸点低的烃 在高温下,把石油产品中具有长链分子的烃断裂为各种短链的气态烃或液态烃
主要原料 原油 重油 石油分馏产品(包括石油气)
主要产品 汽油、煤油、柴油、重油 汽油、甲烷、乙烷、丁烷、乙烯、丙烯等 乙烯、丙烯等
主要变化类型 物理变化 化学变化 化学变化
重难点四 加聚反应
1.加聚反应化学方程式的书写
一般根据单体的结构特点、种数确定反应类型,分析反应的过程,写出高分子化合物的链节,进而写出结构简式,然后配平。正确书写链节是书写高分子结构简式的关键。
(1)烯烃自聚型

(2)二烯烃自聚型
(3)烯烃共聚型
(4)烯烃与二烯烃共聚型
2.加聚反应单体的推断
“弯箭头”法是高聚物与单体的互求方法,它的范围限于“加聚反应”。例如求下面高聚物的单体:
方法如下:
由聚合物求单体,可用从链节(结构表示式)一端第一个价键开始,顺次间隔向另一侧单键转移。用弯箭头表示为:
即“弯箭头”尾部一键断开,“弯箭头”头部一新键形成。
这样即可得到单体:CH2===CHCN、CH2===CHCH===CH2、。
重难点五 典型的环境污染
1.温室效应
工农业生产及生活燃烧含碳化合物导致二氧化碳含量升高,造成全球气温上升,水位上升,陆地面积减少。
2.赤潮
工农业生产(如石油化工、炼焦、化肥等)的废水中所含的氮、磷元素导致水体富营养化,从而使藻类大量繁殖,消耗水中大量的溶解氧,水质腐败变质、变臭,水生生物因缺氧死亡或被污染。淡水中叫水华,海水中叫赤潮。
3.酸雨
煤炭燃烧排放的二氧化硫和机动车排放的氮氧化物是形成酸雨的主要因素。降水的pH<5.6时,将会对森林、农作物、材料和建筑物产生明显损害。
4.臭氧空洞
氟氯代烃等物质的排放,使臭氧层被破坏。臭氧层被大量破坏后,吸收紫外线辐射的能力大大减弱,导致到达地球表面的紫外线明显增多,给人类健康和生态环境带来多方面的危害。
5.白色污染
主要是由生活、生产中抛弃使用后的难降解的塑料制品造成的,它们的主要危害:(1)废旧塑料混在土壤中影响农作物吸收养分和水分,导致农作物减产;(2)废旧塑料易被动物当作食物吞入,导致动物死亡;(3)混入生活垃圾中的废塑料很难处理、回收,不易分解。
6.光化学烟雾
主要是由氮氧化合物、碳氢化合物造成的,能刺激人体器官,使人患病甚至死亡。
重难点六 绿色化学
1.含义
“绿色化学”可以诠释为环境友好化学,它的核心内涵是在反应过程和化工生产中,尽量减少或彻底消除使用和产生有害物质。它研究对环境没有任何副作用的化学试剂、化学制品和化学工艺。
2.“绿色化学”的特点
(1)开发绿色反应,将原子利用率提高到100%。
(2)使用无毒、无害的原料、催化剂、溶剂。
(3)开发绿色工艺。
(4)开发和生产绿色产品。
3.原子经济
原子经济要求反应物的原子全部转变成最终产物,原子利用率达到100%,也就是说在化学反应过程中不产生任何废物。化学反应的原子经济好坏用原子利用率来衡量。
原子利用率=×100%
由于反应中生成的副产物通常并不清楚或者不易确定,故有人提出“原子经济百分数”概念:
原子经济百分数=×100%
特别提醒 绿色化学提出的目标和任务不是被动地治理环境污染,而是主动地防止环境
污染。只有从根本上切断污染源,才能真正做到保护环境。
典例剖析
题型1 煤、石油、天然气的组成和综合利用
例1 下列说法中错误的是(  )
A.石油中含有C5~C11的烷烃,可以通过石油的分馏得到汽油
B.含C18以上的烷烃的重油经过催化裂化可以得到汽油
C.煤是由有机物和无机物组成的复杂的混合物
D.煤中含有苯和甲苯,可以用先干馏后分馏的方法把它们分离出来
解析 煤经过干馏发生复杂物理、化学变化后得到煤焦油等物质。煤焦油是含有多种芳香族化合物的复杂混合物,煤焦油在170℃以下蒸馏出来的馏出物里主要含有甲苯、二甲苯和其他苯的同系物等,所以并不是煤中含有苯和甲苯。
答案 D
题型2 有机合成高分子化合物
例2 下列对于有机高分子化合物的认识不正确的是(  )
A.有机高分子化合物称为聚合物或高聚物,是因为它们大部分是由小分子通过聚合反应而制得的
B.有机高分子化合物的相对分子质量很大,但其结构是若干链节的重复
C.对于一种高分子材料,n是一个整数值,因而它的相对分子质量是确定的
D.高分子材料可分为天然高分子材料和合成高分子材料两大类
解析 有机高分子化合物分天然高分子化合物和合成高分子化合物两部分,合成高分子化合物主要由加聚、缩聚两类反应制备,加聚和缩聚是聚合反应的两个类型。对于高分子化合物来说,尽管相对分子质量很大,没有一个准确的相对分子质量,只有一个范围,但它们的结构均是由若干个链节组成的。
答案 C
题型3 环境污染
例3 环境污染已成为人类社会面临的重大威胁,下列名词与环境污染有关的是(  )
①酸雨 ②臭氧空洞 ③白色污染 ④温室效应 ⑤赤潮 ⑥光化学烟雾               
A.①③④⑤ B.①②③④⑥ C.③④⑤⑥ D.①②③④⑤⑥
解析 题中提到的环境问题与引起该问题的原因是:
①酸雨——SO2和氮的氧化物的大量排放;②臭氧空洞——氮的氧化物、氟氯代烃等的排放;③白色污染——难降解的塑料袋、地膜和一次性餐盒的随意丢弃;④温室效应——大气中CO2含量的不断增加;⑤赤潮——含有大量氮、磷元素的污水的任意排放;⑥光化学烟雾——氮氧化合物、碳氢化合物的排放。
答案 D
题型4 绿色化学
例4 在“绿色化学工艺”中,理想状态是反应物中的原子全部转化为欲制得的产物,即原子利用率为100%。下列反应类型能体现“原子经济性”原则的是(  )
①置换反应 ②化合反应 ③分解反应 ④取代反应
⑤加成反应 ⑥消去反应 ⑦加聚反应 ⑧缩聚反应
A.①②⑤ B.②⑤⑦ C.⑦⑧ D.⑦
解析 化合反应、加成反应和加聚反应均只有一种产物,即反应物原子全部转化为欲得产物,符合“绿色化学工艺”的要求。
答案 B
练习:
煤、石油和天然气的综合利用
1.下列关于煤的叙述中不正确的是(  )
A.煤是工业上获得芳香烃的一种重要来源
B.煤的干馏过程属于化学变化
C.煤是由多种有机物组成的混合物
D.煤除了主要含有碳元素外,还含有少量的氢、氮、硫、氧等元素 答案 C
解析 煤是由多种有机物和少量的无机物组成的复杂的混合物。煤的干馏过程发生了复杂的物理、化学反应,通过干馏可获得焦炭、煤焦油、煤气,煤焦油和煤气又是工业上获得芳香烃的一种重要来源。
2.近期我国冀东渤海湾发现储量达10亿吨的大型油田。下列关于石油的说法正确的是(  )
A.石油属于可再生矿物能源 B.石油主要含有碳、氢两种元素
C.石油的裂化是物理变化 D.石油分馏的各馏分均是纯净物 答案 B
解析 石油、煤均属于化石燃料,是不可再生矿物资源,故A错误;石油的裂化是把长链烃变为短链烃,是化学变化,故C错误;石油分馏是利用各类烃的沸点不同,将石油分为不同的馏分,但是每种馏分是由沸点接近的烃组成,属于混合物,故D错误。
3.煤是重要的能源和化工原料,直接燃烧既浪费资源又污染环境。最近,某企业利用“煤粉加压气化制备合成气新技术”,让煤变成合成气(一氧化碳及氢气总含量≥90%),把煤“吃干榨尽”。下列有关说法正确的是(  )
①煤粉加压气化制备合成气过程涉及化学变化和物理变化 ②煤粉加压气化制备合成气过程涉及化学变化但没有物理变化 ③该技术实现了煤的清洁利用 ④该技术实现了煤的高效利用
A.①②③ B.①②④ C.①③④ D.②③④ 答案 C
解析 煤粉加压气化制备合成气过程中,既有物理变化,又有化学变化;气化后燃烧充分,且无污染。故选C项。
4.石油加工的主要目的是(  )
A.将石油按沸点范围不同加以分离 B.将石油按饱和烃与不饱和烃加以分离
C.得到碳原子数较多的烃类 D.将石油中的烷烃、环烷烃和芳香烃分开
答案 A
解析 石油加工的主要目的是将石油按沸点范围不同加以分离得到不同的石油产品。
5.下列说法中不正确的是(  )
A.天然气是气体,它不属于化石燃料
B.煤是由焦炭、煤焦油等成分组成的有机物和无机物的混合物
C.化石燃料在燃烧过程中能产生污染环境的CO、SO2等有害气体
D.煤转化为煤气后燃烧,可以提高燃烧效率 答案 AB
解析 天然气、石油、煤均是化石燃料,与它们的状态无关,煤是成分复杂的混合物,煤干馏以后得到的焦炭、煤焦油是化学变化后产生的,故A、B错;化石燃料中往往含有S、N等元素,故燃烧后能产生SO2、NO、NO2等有害气体,若不能充分燃烧,则会产生CO气体,煤转化为煤气后,燃烧充分,提高了燃烧效率,故C、D对。
6.聚丙烯酸酯类涂料是目前市场上流行的墙面涂料之一,它具有弹性好、不易老化、耐擦洗、色泽亮丽等优点。其结构简式为,它属于(  )
①无机化合物 ②有机化合物 ③高分子化合物 ④离子化合物 ⑤共价化合物
A.①③④ B.①③⑤ C.②③⑤ D.②③④ 答案 C
解析 从组成来看,聚丙烯酸酯属于有机物中的高分子化合物;从价键结构来看,它属于共价化合物。
7.已知某种燃料含有碳、氢、氧3种元素。为了测定这种燃料中碳和氢两种元素的质量比,可将气态燃料放入足量的氧气中燃烧,并使产生的气体全部通入如图所示的装置,得到如下表所列的实验结果(假设产生的气体完全被吸收)
实验前 实验后
(干燥剂+U形管)的质量 101.1 g 102.9 g
(石灰水+广口瓶)的质量 312.0 g 314.2 g
根据实验数据求:
(1)实验完毕后,生成物中水质量为________g,假设广口瓶里生成一种正盐,其质量为________g;
(2)生成的水中氢元素的质量为________g;
(3)生成的二氧化碳中碳元素的质量为________g;
(4)该燃料中碳元素与氢元素的质量比为________;
(5)已知这种燃料的每个分子中含有一个氧原子,则该燃料的分子式为________,结构简式为________。
答案 (1)1.8 5 (2)0.2  (3)0.6 (4)3∶1 (5)CH4O CH3OH
解析 (1)m(H2O)=102.9 g-101.1 g=1.8 g m(CO2)=314.2 g-312.0 g=2.2 g
则n(CaCO3)=n(CO2)=0.05 mol m(CaCO3)=5 g
(2)m(H)=m(H2O)×=1.8 g×=0.2 g (3)m(C)=m(CO2)×=2.2 g×=0.6 g
(4)m(C)∶m(H)=0.6 g∶0.2 g=3∶1
(5)该燃料分子中C、H的原子个数比为:n(C)∶n(H)=∶=1∶4
据碳四价的原则知,当有机物分子中的碳氢原子个数比为1∶4时,分子中只能含CH4,而不能为CH4的整数倍,又因为每个分子中含有一个氧原子,则该燃料的分子式为CH4O,结构简式为CH3OH。
环境保护与绿色化学
1.广州于2010年承办了第16界亚运会。下列措施有利于节能减排、改善环境质量的有(  )
①在大亚湾核电站已安全运行多年的基础上,广东将继续发展核电,以减少火力发电带来的二氧化硫和二氧化碳排放问题 ②积极推行“限塑令”,加快研发利用二氧化碳合成的聚碳酸酯类可降解塑料 ③加速建设地铁、轻轨等轨道交通,促进珠三角城市一体化发展,减少汽车尾气排放 ④发展低碳经济、循环经济,推广可利用太阳能、风能的城市照明系统
⑤使用生物酶降解生活废水中的有机物,使用填埋法处理未经分类的生活垃圾
A.①②③④ B. ①②⑤ C.①②④⑤ D. ③④⑤ 答案 A
解析 使用填埋法处理未经分类的生活垃圾不是一种节能减排、改善环境质量的做法。
2.下列有关环境问题的说法正确的是(  )
A.燃煤时加入适量石灰石,可减少废气中SO2的量
B.臭氧的体积分数超过10-4%的空气有利于人体健康
C.pH在5.6~7.0之间的降水通常称为酸雨
D.含磷合成洗涤剂易于被细菌分解,故不会导致水体污染
答案 A 解析:A项中,CaCO3CaO+CO2↑,2CaO+2SO2+O22CaSO4;B项中,低空臭氧浓度过大对人体有害;C项中,酸雨的pH<5.6;D项中,水体含磷量高,会导致水体富营养化。
3.下列广告宣传:
①某品牌八宝粥(含桂圆、红豆、糯米等)不含糖,适合糖尿病人食用 ②某品牌纯净水不含任何化学物质,可放心饮用 ③韭菜是天然的绿色食品 ④不要随意丢弃废纸,以免造成白色污染。其中错误的是(  )
A.仅② B.仅① C.仅②③④ D.①②③④ 答案 D
解析 ①中桂圆、红豆、糯米中本身就含有大量的淀粉,属糖类;②中H2O就是一种化学物质;③中天然的绿色食品是自然生长的,无污染,无人为因素的干预;④中白色污染指的是塑料,废纸不属于白色污染,全部错误。
4.我国古代有“女娲补天”的传说,今天人类也面临“补天”的问题,下列采取的措施与今天所说的“补天”无关的是(  )
A.研究新型催化剂,消除汽车尾气的污染 B.禁止使用含氟电冰箱
C.倡导使用无磷洗衣粉 D.严格控制硝酸厂的尾气处理
答案 C
解析 今天所说的“补天”是指弥补臭氧层遭到破坏所造成的臭氧层变薄和臭氧空洞。氮氧化物、氟氯烃等都能破坏臭氧层,能杜绝或减少这些物质排放的措施都可以称为补天。
5.下列符合化学实验“绿色化学”的有(  )
①在萃取操作的演示实验中,将CCl4萃取溴水改为CCl4萃取碘水 ②在铜与浓硝酸反应的实验中,将铜片改为可调节高度的铜丝 ③将实验室的废酸液与废碱液中和后再排放
A.①② B.①③ C.②③ D.①②③ 答案 D
解析 化学实验“绿色化”的含义是指节约试剂、操作简便、安全实用、减少或避免有害物质排放等,因此①②③都符合。
6.人们把食品分为绿色食品、蓝色食品、白色食品等。绿色植物通过光合作用转化的食品叫绿色食品,海洋提供的食品叫蓝色食品,通过微生物发酵制得的食品叫白色食品。下面属于白色食品的是(  )
A.酱油 B.面粉 C.海带 D.菜油 答案 A
解析 根据题中分类的标准,A是通过微生物发酵制得的食品。
7.“绿色化学”是当今社会提出的一个新概念。在“绿色化学工艺”中,理想状态是反应物中原子全部转化为欲制得的产物,即原子利用率为100%。在用CH3C≡CH合成CH2===C(CH3)COOCH3的过程中,欲使原子利用率达到最高,还需要的其他反应物有(  )
A.CO和CH3OH B.CO2和H2O C.H2和CO2 D.CH3OH和H2 答案 A
解析 CH3C≡CH的化学式为C3H4,产物的化学式为C5H8O2,其与C3H4相差C2H4O2,答案A中两者1∶1时,能满足题设要求。
8.下列化工生产中体现“绿色化学”内涵的是(  )
①减少“三废”排放量 ②考虑催化剂和载体的重复使用 ③回收未反应的原料、副产物、助熔剂、稳定剂等非反应试剂 ④考虑有关原材料的再生利用 ⑤拒绝使用无法替代,无法回收,不能再生,具有毒副作用、污染严重的原料
A.①②③ B.①③④⑤ C.①②③⑤ D.①②③④⑤ 答案 D
9.某河道两旁有甲、乙两厂。它们排放的工业废水中,共含K+、Ag+、Fe3+、Cl-、OH-、
NO六种离子。甲厂排放的废水明显呈碱性,故甲厂废水中所含的三种离子是
______、______、______;乙厂排放的废水中含有另外三种离子。如果加一定量的______(填“活性炭”、“硫酸亚铁”或“铁粉”),可以回收其中的金属______(填金属元素的符号)。另一种设想是将甲厂和乙厂的废水按适当的比例混合,可以使废水中的________(填写离子符号)转化为沉淀。经过滤后的废水主要含______(填化学式),可用来浇灌农田。
答案 OH- Cl- K+ 铁粉 Ag Ag+、Cl-、Fe3+、OH- KNO3
解析 甲厂排放的工业废水明显显碱性,一定含有OH-,与OH-可共存的离子有K+、Cl-、NO,考虑到Ag+与Cl-不能共存,所以甲厂废水中含OH-、K+、Cl-,乙厂废水中含Ag+、Fe3+和NO。在乙厂废水中加入一定量的铁粉可以回收银。若将两厂废水按适当比例混合,可将Ag+与Cl-、Fe3+与OH-分别转化为AgCl、Fe(OH)3沉淀。
得电子、被还原



21世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@21世纪教育网

展开更多......

收起↑

资源列表