资源简介 14.3因式分解同步练习一.选择题(共10小题)1.下列从左到右的变形是因式分解的是( )A.ma+mb﹣c=m(a+b)﹣cB.﹣a2+3ab﹣a=﹣a(a+3b﹣1)C.(a﹣b)(a2+ab+b2)=a3﹣b3D.4x2﹣25y2=(2x+5y)(2x﹣5y)2.利用因式分解简便计算69×99+32×99﹣99正确的是( )A.99×(69+32)=99×101=9999B.99×(69+32﹣1)=99×100=9900C.99×(69+32+1)=99×102=10096D.99×(69+32﹣99)=99×2=1983.关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,则a的值是( )A.﹣6B.±6C.12D.±124.把多项式﹣2x3+12x2﹣18x分解因式,结果正确的是( )A.﹣2x(x2+6x﹣9)B.﹣2x(x﹣3)2C.﹣2x(x+3)(x﹣3)D.﹣2x(x+3)25.下列分解因式正确的是( )A.a2﹣9=(a﹣3)2B.6a2+3a=a(6a+3)C.a2+6a+9=(a+3)2D.a2﹣2a+1=a(a﹣2)+16.分解因式:4﹣12(a﹣b)+9(a﹣b)2=( )A.(2+3a﹣3b)2B.(2﹣3a﹣3b)2C.(2+3a+3b)2D.(2﹣3a+3b)27.下列因式分解中:①x3+2xy+x=x(x+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(y﹣x);④x3﹣9x=x(x﹣3)2,正确的个数为( )A.1个B.2个C.3个D.4个8.已知a,b,c为△ABC三边,且满足ab+bc=b2+ac,则△ABC是( )A.直角三角形B.等边三角形C.等腰三角形D.不能确定9.已知多项式6x3+13x2+9x+2可以写成两个因式的积,又已知其中一个因式为3x2+5x+2,那么另一个因式为( )A.2x﹣1B.2x+1C.﹣2x﹣1D.﹣2x+110.已知x﹣5是多项式2x2+8x+a的一个因式,则a可为( )A.65B.﹣65C.90D.﹣90二.填空题(共5小题)11.因式分解:(1)m2﹣4= .(2)2x2﹣4x+2= .12.因式分解:4a2﹣9a4= .13.如果x2+Ax+B因式分解的结果为(x﹣3)(x+5),则A+B= .14.分解因式:= .15.多项式4x3y2﹣2x2y+8x2y3的公因式是 .三.解答题(共3小题)16.分解因式:(1)3x2﹣6x+3;(2)2ax2﹣8a.17.因式分解:(1)2ax2﹣8a;(2)a3﹣6a2b+9ab2;(3)(a﹣b)2+4ab.18.(1)若代数式(m﹣2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2﹣2x﹣5=0,求2x3﹣8x2﹣2x+2020的值.参考答案1.解:A、没将一个多项式化成几个整式的乘积的形式,不是因式分解,故本选项不符合题意;B、提公因式变号错误,不是正确的因式分解,故本选项不符合题意;C、不是因式分解,是整式的乘法,故本选项不符合题意;D、符合因式分解定义,是因式分解,故本选项符合题意;故选:D.2.解:69×99+32×99﹣99=99(69+32﹣1)=99×100=9900.故选:B.3.解:∵关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,∴a=±12.故选:D.4.解:﹣2x3+12x2﹣18x=﹣2x(x2﹣6x+9)=﹣2x(x﹣3)2.故选:B.5.解:A、原式=(a+3)(a﹣3),不符合题意;B、原式=3a(2a+1),不符合题意;C、原式=(a+3)2,符合题意;D、原式=(a﹣1)2,不符合题意.故选:C.6.解:原式=[2﹣3(a﹣b)]2=(2﹣3a﹣3b)2.故选:D.7.解:①x3+2xy+x=x(x2+2y+1),故原题分解错误;②x2+4x+4=(x+2)2,故原题分解正确;③﹣x2+y2=y2﹣x2=(x+y)(y﹣x),故原题分解正确;④x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3),故原题分解错误;正确的个数为2个,故选:B.8.解:∵ab+bc=b2+ac,∴ab﹣ac=b2﹣bc,即a(b﹣c)=b(b﹣c),∴(a﹣b)(b﹣c)=0,∴a=b或b=c,∴△ABC是等腰三角形,故选:C.9.解:设另一个因式为(mx+n),根据题意得:6x3+13x2+9x+2=(3x2+5x+2)(mx+n)=3mx3+(5m+3n)x2+(2m+5n)x+2n,∴2n=2,2m+5n=9,解得:m=2,n=1,所以另一个因式为2x+1,故选:B.10.解:设多项式的另一个因式为2x+b.则(x﹣5)(2x+b)=2x2+(b﹣10)x﹣5b=2x2+8x+a.所以b﹣10=8,解得b=18.所以a=﹣5b=﹣5×18=﹣90.故选:D.11.解:(1)原式=(m+2)(m﹣2);(2)原式=2(x2﹣2x+1)=2(x﹣1)2.故答案为:(1)(m+2)(m﹣2);(2)2(x﹣1)2.12.解:原式=a2(4﹣9a2)=a2(2+3a)(2﹣3a).故答案为:a2(2+3a)(2﹣3a).13.解:x2+Ax+B=(x﹣3)(x+5)=x2+2x﹣15,得A=2,B=﹣15,∴A+B=2﹣15=﹣13.故答案为:﹣13.14.解:原式=(x2﹣x+)=(x﹣)2.故答案为:(x﹣)2.15.解:多项式4x3y2﹣2x2y+8x2y3的公因式是2x2y,故答案为:2x2y.16.解:(1)原式=3(x2﹣2x+1)=3(x﹣1)2;(2)原式=2a(x2﹣4)=2a(x+2)(x﹣2).17.解:(1)原式=2a(x2﹣4)=2a(x+2)(x﹣2);(2)原式=a(a2﹣6ab+9b2)=a(a﹣3b)2;(3)原式=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2.18.解:(1)(m﹣2y+1)(n+3y)+ny2=mn+3my﹣2ny﹣6y2+n+3y+ny2=mn+n+(3m﹣2n+3)y+(n﹣6)y2∵代数式的值与y无关,∴,∴,①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2﹣2x﹣5=0,∴x2=2x+5,∴2x3﹣8x2﹣2x+2020=2x(2x+5)﹣8x2﹣2x+2020=4x2+10x﹣8x2﹣2x+2020=﹣4x2+8x+2020=﹣4(2x+5)+8x+2020=﹣8x﹣20+8x+2020=2000. 展开更多...... 收起↑ 资源预览