2021届高三物理寒假作业 电磁感应 Word版含解析

资源下载
  1. 二一教育资源

2021届高三物理寒假作业 电磁感应 Word版含解析

资源简介

电磁感应
考点 1.电磁感应现象(Ⅰ);2.磁通量(Ⅰ);3.法拉第电磁感应定律(Ⅱ);4.楞次定律(Ⅱ);5.自感、涡流(Ⅰ)
知识点 1.楞次定律的理解及应用;2.法拉第电磁感应定律的理解及应用;3.自感现象和涡流;4.电磁感应与动力学、能量、电路的综合;5.图象问题
第Ⅰ卷(选择题,共48分)
一、选择题(本题共12小题,每小题4分,共48分。在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~12题有多项符合题目要求。全部选对的得4分,选对但不全的得2分,有选错的得0分)
1.(2019·全国卷Ⅲ)楞次定律是下列哪个定律在电磁感应现象中的具体体现?(  )
A.电阻定律 B.库仑定律
C.欧姆定律 D.能量守恒定律
答案 D
解析 楞次定律表述了感应电流的磁场方向,同时也体现了不同能量间的关系。总能量是守恒的,感应电流做功产生电能,电能是“阻碍”的结果,D正确。
2. (2019·江苏扬州一模)航母上飞机弹射起飞是利用电磁驱动来实现的。电磁驱动原理如图所示,在固定线圈左右两侧对称位置放置两个闭合金属圆环,铝环和铜环的形状、大小相同,已知铜的电阻率较小,则合上开关S的瞬间(  )
A.两个金属环都向左运动
B.两个金属环都向右运动
C.铜环受到的安培力小于铝环受到的安培力
D.从左侧向右看,铝环中感应电流沿顺时针方向
答案 D
解析 合上开关S的瞬间,穿过两个金属环的磁通量变大,为阻碍磁通量的增大,铝环向左运动,铜环向右运动,A、B错误;由于铜环和铝环的形状、大小相同,铜的电阻率较小,故铜环的电阻较小,两环对称地放在固定线圈两侧,闭合S瞬间,穿过两环的磁通量的变化率相同,两环产生的感应电动势大小相同,铜环电阻较小,则铜环中的感应电流较大,故铜环受到的安培力较大,C错误;由右手螺旋定则可知,闭合S瞬间,穿过铝环的磁通量向左增大,由楞次定律知,从左侧向右看,铝环中感应电流沿顺时针方向,D正确。
3.(2019·安徽宣城高三上学期期末)边界MN的一侧区域内,存在着磁感应强度大小为B,方向垂直于光滑水平桌面的匀强磁场。边长为l的正三角形金属线框abc粗细均匀,三边阻值相等,a顶点刚好位于边界MN上,现使线框围绕过a点且垂直于桌面的转轴匀速转动,转动角速度为ω,如图所示,则在ab边开始转入磁场的瞬间ab两端的电势差Uab为(  )
A.Bl2ω B.-Bl2ω
C.-Bl2ω D.Bl2ω
答案 A
解析 当ab边刚转入磁场时,ab部分切割磁感线,切割长度为a、b两个端点间的距离l,感应电动势大小E=Blv=Bl·=Bl2ω,由右手定则知,ab边中电流方向为b→a,故a点电势比b点高;设线框abc每个边的电阻为R,a、b两点间的电势差为:Uab=I·2R=·2R,故Uab=Bl2ω,A正确。
4. (2019·江苏扬州高邮高三下学期调研)如图所示,两灯泡A1、A2相同,A1与一理想二极管D连接,线圈L的直流电阻不计。下列说法正确的是(  )
A.闭合开关S后,A1会逐渐变亮
B.闭合开关S稳定后,A1、A2亮度相同
C.断开S的瞬间,a点的电势比b点低
D.断开S的瞬间,A1会逐渐熄灭
答案 C
解析 闭合开关S后,虽然线圈产生自感电动势阻碍电流的增大,但两灯和线圈不是串联的关系,故两灯立刻变亮,A错误;闭合开关S稳定后,因线圈L的直流电阻不计,所以A1与二极管被短路,灯泡A1不亮,而A2亮,因此A1、A2亮度不同,B错误;断开S的瞬间,A2会立刻熄灭,因线圈产生感应电动势,故a点的电势低于b点,线圈L与灯泡A1及二极管构成回路,但二极管具有单向导电性,所以回路中没有感应电流,A1会立即熄灭,C正确,D错误。
5.(2019·济南高三模拟)在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20 cm2,螺线管导线电阻r=1.0 Ω,R1=4.0 Ω,R2=5.0 Ω,C=30 μF。在一段时间内,垂直穿过螺线管的磁场的磁感应强度B的方向如图甲所示,大小按如图乙所示的规律变化,则下列说法中正确的是(  )
A.螺线管中产生的感应电动势为1.2 V
B.闭合S,电路中的电流稳定后,电容器下极板带负电
C.闭合S,电路中的电流稳定后,电阻R1的电功率为2.56×10-2 W
D.S断开后,流经R2的电量为1.8×10-2 C
答案 C
解析 根据法拉第电磁感应定律:E=n=nS,解得:E=0.8 V,A错误;根据楞次定律可知,螺线管的感应电流盘旋而下,则螺线管下端是电源的正极,电容器下极板带正电,B错误;根据闭合电路欧姆定律,有:I==0.08 A,根据P=I2R1得:电阻R1的电功率P=2.56×10-2 W,C正确;S断开后,流经R2的电量即为S闭合时电容器极板上所带的电量Q,电容器两极板间的电压为:U=IR2=0.4 V,流经R2的电量为:Q=CU=1.2×10-5 C,D错误。
6.(2019·云南二模)如图甲所示,光滑水平桌面上静置一边长为L、电阻为R的单匝正方形线圈abcd,线圈的一边通过一轻杆与固定的传感器相连。现加一随时间均匀变化、方向垂直桌面向下的匀强磁场,从t=0时刻开始,磁场的磁感应强度均匀减小,线圈的一半处于磁场中,另一半在磁场外,传感器显示的力随时间变化规律如图乙所示。F0和t0已知,则磁感应强度变化率的大小为(  )
A. B.
C. D.
答案 A
解析 由题可知,磁场的磁感应强度随时间t变化的关系式为B=B0-kt,根据法拉第电磁感应定律,感应电动势E==k·L2,线圈中电流I==,线圈受到的安培力F=BIL=(B0-kt)L=-t,由图乙可知:=,解得k= ,A正确。
7.(2019·福建南平高三第一次质检)如图所示,水平面内有一足够长的平行金属导轨,导轨光滑且电阻不计,两导轨左端用导线与电容器C(电容器不带电)及开关连接。匀强磁场与导轨平面垂直,与导轨接触良好的导体棒垂直于导轨以某一初速度向右运动。某时刻将开关S闭合并开始计时,用v、q、i和a分别表示导体棒的速度、电容器所带电荷量、导体棒中的电流和导体棒的加速度。则图中正确的是(  )
答案 D
解析 导体棒切割磁感线产生感应电动势,闭合开关,导体棒给电容器充电,电容器两板间电压增加,同时导体棒中有向上的充电电流,并在向左的安培力作用下做减速运动,当感应电动势等于电容器两板间电压后,不再充电,导体棒也不再受安培力作用而做匀速直线运动,A错误;电容器所带电荷量Q=CU,电荷量增加到一定值不再变化,最终不为零,B错误;当感应电动势等于电容器两板间电压后,不再给电容器充电,最终电流为零,C错误;由E=BLv,I=,F安=BIL=ma联立,解得导体棒的加速度a=-·U,随着t增大,v减小,U增大,则a减小,故v随时间减小得越来越慢,又I减小,故U=随时间增加得越来越慢,可知a随时间减小得越来越慢,直至导体棒做匀速直线运动,a=0,D正确。
8. (2019·广西钦州三模)如图,两条间距为L的平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一金属棒垂直放置在两导轨上;在MN左侧面积为S的圆形区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B随时间t的变化关系为B=kt,式中k为常量,且k>0;在MN右侧区域存在一与导轨垂直、磁感应强度大小为B0、方向垂直纸面向里的匀强磁场。t=0时刻,金属棒从MN处开始,在水平拉力F作用下以速度v0向右匀速运动。金属棒与导轨的电阻及摩擦均可忽略。则(  )
A.在t时刻穿过回路的总磁通量为B0Lv0t
B.电阻R上的电流为恒定电流
C.在时间Δt内流过电阻的电荷量为Δt
D.金属棒所受的水平拉力F随时间均匀增大
答案 BC
解析 根据题意可知,MN左边的磁场方向与右边的磁场方向相同,那么总磁通量即为左、右两边磁通量之和,则在t时刻穿过回路的总磁通量为Φ=Φ1+Φ2=ktS+B0v0tL,A错误;根据法拉第电磁感应定律得E==kS+B0Lv0,结合闭合电路欧姆定律得I==,故电阻R上的电流为恒定电流,B正确;Δt时间内通过电阻的电荷量为q=IΔt=Δt,C正确;金属棒所受的安培力大小FA=B0IL=,根据平衡条件得,水平恒力大小等于安培力大小,即F=,故外力F是一个恒力,D错误。
9.(2019·黑龙江齐齐哈尔五校联谊高三上学期期末联考)如图所示,两根相距为L的足够长的光滑导轨的一部分处于同一水平面内,另一部分与水平面的夹角为θ,质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,整个装置处于磁感应强度大小为B、方向竖直向上的匀强磁场中,当杆ab在平行于水平导轨的拉力F作用下以大小为v的速度沿导轨匀速运动时,杆cd恰好处于静止状态。重力加速度大小为g,下列说法正确的是(  )
A.回路中的电流为
B.杆ab所受拉力的大小为mgsinθ
C.回路中电流的总功率为mgvsinθ
D.回路的总电阻为
答案 AD
解析 对于杆cd,由平衡条件得:F安=mgtanθ,由于通过两杆的感应电流的大小、两杆在回路中的长度相等,所以两杆所受的安培力大小相等,对于ab杆,由平衡条件得:F=F安=mgtanθ,又因为F安=BIL,得回路中的电流为:I=,A正确,B错误;回路中电流的总功率等于拉力的功率,为:P=Fv=mgvtanθ,C错误;根据E=BLv,I=,F安=BIL,结合F安=mgtanθ,解得:R总=,D正确。
10.(2019·全国卷Ⅰ)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图a中虚线MN所示。一硬质细导线的电阻率为ρ、横截面积为S,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上。t=0时磁感应强度的方向如图a所示;磁感应强度B随时间t的变化关系如图b所示。则在t=0到t=t1的时间间隔内(  )
A.圆环所受安培力的方向始终不变
B.圆环中的感应电流始终沿顺时针方向
C.圆环中的感应电流大小为
D.圆环中的感应电动势大小为
答案 BC
解析 由题可知,通过圆环的磁通量随时间t均匀变化,则圆环中产生的感应电动势、感应电流的大小和方向均不变,但t0时刻磁场方向发生变化,故安培力方向发生变化,A错误;根据楞次定律,圆环中感应电流的方向始终沿顺时针方向,B正确;根据法拉第电磁感应定律,感应电动势E==·=,根据闭合电路欧姆定律知,电流I===,C正确,D错误。
11.(2019·云南民族大学附属中学高三上学期期末)如图甲所示,在竖直方向上有四条间距相等的水平虚线L1、L2、L3、L4,在L1、L2之间,L3、L4之间存在匀强磁场,磁感应强度大小均为1 T,方向垂直于虚线所在平面。现有一矩形线圈abcd,宽度cd=L=0.5 m,质量为0.1 kg,电阻为2 Ω,将其从图示位置由静止释放(cd边与L1重合),线圈速度随时间的变化关系如图乙所示,t1时刻cd边与L2重合,t2时刻ab边与L3重合,t3时刻ab边与L4重合,已知t1~t2的时间间隔为0.6 s,整个运动过程中线圈平面始终处于竖直方向(重力加速度g取10 m/s2)。则(  )
A.在0~t1时间内,通过线圈的电荷量为0.25 C
B.线圈匀速运动的速度大小为8 m/s
C.线圈的长度为1 m
D.0~t3时间内,线圈产生的热量为1.8 J
答案 ABD
解析 由题图可知,在t2~t3时间内,线圈向下做匀速直线运动,受力平衡,则根据平衡条件有:mg=BIL,而I=,联立两式解得v2=,代入数据解得:v2=8 m/s,B正确;t1~t2时间内线圈一直做匀加速直线运动,则知线圈内磁通量变化为零,不产生感应电流,不受安培力作用,仅在重力作用下运动,以cd边与L2重合时为初状态,以ab边与L3重合时为末状态,设磁场的宽度为d,则线圈长度为2d,线圈下降的位移为3d,则有:3d=v2t-gt2,其中v2=8 m/s,t=0.6 s,代入解得d=1 m,所以线圈的长度为L′=2d=2 m,C错误;在0~t1时间内,cd边从L1运动到L2,通过线圈的电荷量为q===0.25 C,A正确;0~t3时间内,根据能量守恒得,Q=mg(3d+2d)-mv=1.8 J,D正确。
12.(2019·河南开封高三上第一次模拟)如图所示,在竖直平面内固定有光滑平行导轨,间距为L,下端接有阻值为R的电阻,空间存在与导轨平面垂直、磁感应强度为B的匀强磁场。质量为m、电阻为r的导体棒ab与上端固定的弹簧相连并垂直导轨放置。初始时,导体棒静止,现给导体棒竖直向下的初速度v0,导体棒开始沿导轨往复运动,运动过程中始终与导轨垂直并保持良好接触。若导体棒电阻r与电阻R的阻值相等,不计导轨电阻,则下列说法中正确的是(  )
A.导体棒往复运动过程中的每个时刻受到的安培力方向总与运动方向相反
B.初始时刻导体棒两端的电压Uab=BLv0
C.若导体棒从开始运动到速度第一次为零时,下降的高度为h,则通过电阻R的电量为
D.若导体棒从开始运动到速度第一次为零时,下降的高度为h,此过程导体棒克服弹力做功为W,则电阻R上产生的焦耳热Q=mv2+mgh-W
答案 AC
解析 导体棒竖直向下运动时,由右手定则判断可知,ab中产生的感应电流方向从b→a,由左手定则判断得知ab棒受到的安培力竖直向上,导体棒竖直向上运动时,由右手定则判断可知,ab中产生的感应电流方向从a→b,由左手定则判断得知ab棒受到的安培力竖直向下,所以导体棒往复运动过程中的每个时刻受到的安培力方向总与运动方向相反,A正确;导体棒开始运动的初始时刻,ab棒产生的感应电势为E=BLv0,由于r=R,a端电势比b端高,所以导体棒两端的电压Uab=E=BLv0,B错误;若导体棒从开始运动到速度第一次为零时,下降的高度为h,则通过电阻R的电量为q==,C正确;导体棒从开始运动到速度第一次为零时,根据能量守恒定律得知电路中产生的焦耳热Q热=mv+mgh-W,所以电阻R上产生的焦耳热Q=Q热=mv+mgh-,D错误。
第Ⅱ卷(非选择题,共62分)
二、填空题(本题共2小题,共14分)
13.(2019·上海市浦东新区一模)(6分)边长为L、电阻为R的N匝正方形线圈,以速度v匀速进入磁感应强度为B的有界匀强磁场。线圈运动方向与磁场边界成θ角,如图所示。当线圈中心经过磁场边界时,穿过线圈的磁通量Φ=________,线圈所受安培力F=__________。
答案 BL2 
解析 当线圈中心经过磁场边界时,穿过线圈的磁通量为:Φ=B·L2=BL2;
线圈产生的感应电动势为:E=NBLv,
感应电流为:I==,
线圈的右边和下边所受的安培力大小为:
F安=NBIL=,
这两边所受安培力相互垂直,所以线圈所受安培力为:
F=F安=。
14.(2019·天津市和平区上学期期末)(8分)半径为r、电阻为R的N匝圆形线圈在边长为L的正方形区域abcd外,匀强磁场充满并垂直穿过该正方形区域,如图甲所示,磁场随时间的变化规律如图乙所示,图线与横、纵轴的截距分别为t0和B0,则圆形线圈中产生的感应电动势E=________,0至t0时间内通过圆形线圈横截面的电荷量q=________。
答案 NL2 
解析 由题设知圆形线圈中磁通量的变化率为:=L2;根据法拉第电磁感应定律得,圆形线圈中产生的感应电动势为:E=N=NL2,再根据闭合电路欧姆定律得,圆形线圈中的感应电流为:I==,则0至t0时间内通过圆形线圈横截面的电荷量为:q=It0=。
三、计算论述题(本题共4小题,共48分。解答时写出必要的文字说明和重要的演算步骤,只写出答案的不得分。有数值计算的题,答案中必须明确写出数值的单位)
15.(2019·山西高三二模)(10分)电磁缓冲车是利用电磁感应原理进行制动缓冲,它的缓冲过程可以等效为:小车底部安装有电磁铁(可视为匀强磁场),磁感应强度大小为B,方向竖直向下。水平地面埋着水平放置的单匝闭合矩形线圈abcd,如图甲所示。小车沿水平方向通过线圈上方,线圈与磁场的作用连同其他阻力使小车做减速运动,从而实现缓冲,俯视图如图乙所示。已知线圈的总电阻为r,ab边长为L(小于磁场的宽度)。小车总质量为m,受到的其他阻力恒为F,小车上的磁场边界MN与ab边平行,当边界MN刚抵达ab边时,速度大小为v0。求:
(1)边界MN刚抵达ab边时线圈中感应电流I的大小;
(2)整个缓冲过程中小车的最大加速度am的大小。
答案 (1) (2)
解析 (1)磁场边界MN刚抵达ab边时,线圈中产生的电动势为E=BLv0,
根据闭合电路欧姆定律可得,感应电流I=,
解得:I=。
(2)小车上的磁场边界MN刚抵达ab边时小车的加速度最大。
根据右手定则可判断线圈ab边中感应电流方向从b流到a,
根据左手定则可判断线圈所受安培力方向水平向右,
安培力大小:FA=BIL,
由牛顿第三定律可知,小车受到线圈的力F′=FA,
由牛顿第二定律:F′+F=mam,
解得:am=。
16.(2019·广东佛山普通高中教学质量检测)(12分)如图所示,两根互相平行的金属导轨MN、PQ水平放置,相距d=1 m、且足够长、不计电阻。AC、BD区域光滑,其他区域粗糙且动摩擦因数μ=0.2,并在AB的左侧和CD的右侧存在着竖直向下的匀强磁场,磁感应强度均为B=2 T。在导轨中央放置着两根质量均为m=1 kg、电阻均为R=2 Ω的金属棒a、b,用一锁定装置将一弹簧压缩在金属棒a、b之间(弹簧与a、b不栓连),此时弹簧具有的弹性势能E=9 J。现解除锁定,当弹簧恢复原长时,a、b棒刚好进入磁场,且b棒向右运动x=0.8 m后停止,g取10 m/s2,求:
(1)a、b棒刚进入磁场时的速度大小;
(2)金属棒b刚进入磁场时的加速度大小;
(3)整个运动过程中电路中产生的焦耳热。
答案 (1)3 m/s 3 m/s (2)8 m/s2 (3)5.8 J
解析 (1)设a、b棒刚进入磁场时的速度大小分别为va、vb,对a、b组成的系统,
由动量守恒定律得:0=mva-mvb,
由能量守恒定律得:Ep=mv+mv,
解得va=vb=3 m/s。
(2)当a、b棒刚进入磁场时,两棒均切割磁感线,产生的感应电动势串联,则有:Ea=Eb=Bdva=6 V,
回路中感应电流I==3 A,
对b受力分析,由牛顿第二定律得:BId+μmg=mab,
解得ab=8 m/s2。
(3)将弹簧和金属棒a、b看做一个系统,分析可知,a、b棒所受力时刻大小相等、方向相反,故系统动量守恒,由动量守恒定律可知,a、b棒的速率时刻相同,即两者移动相同距离后停止,则在整个运动过程中,对系统,由能量守恒可得:Ep=2μmgx+Q,解得Q=5.8 J。
17.(2019·天津高考)(12分)如图所示,固定在水平面上间距为l的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN和PQ长度也为l、电阻均为R,两棒与导轨始终接触良好。MN两端通过开关S与电阻为R的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k。图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B。PQ的质量为m,金属导轨足够长、电阻忽略不计。
(1)闭合S,若使PQ保持静止,需在其上加多大的水平恒力F,并指出其方向;
(2)断开S,PQ在上述恒力作用下,由静止开始到速度大小为v的加速过程中流过PQ的电荷量为q,求该过程安培力做的功W。
答案 (1) 方向水平向右 (2)mv2-kq
解析 (1)设线圈中的感应电动势为E,由法拉第电磁感应定律得,感应电动势E=,则
E=k①
设PQ与MN并联的电阻为R并,有
R并=②
闭合S时,设线圈中的电流为I,根据闭合电路欧姆定律得I=③
设PQ中的电流为IPQ,有
IPQ=I④
设PQ受到的安培力为F安,有
F安=BIPQl⑤
PQ保持静止,由受力平衡,有
F=F安⑥
联立①②③④⑤⑥式得
F=⑦
由楞次定律和右手螺旋定则得PQ中的电流方向为由Q到P,再由左手定则得PQ所受安培力的方向水平向左,则力F的方向水平向右。
(2)设PQ由静止开始到速度大小为v的加速过程中,PQ运动的位移为x,所用时间为Δt,回路中的磁通量变化量为ΔΦ,回路中产生的平均感应电动势为,有
=⑧
其中ΔΦ=Blx⑨
设PQ中的平均感应电流为,有
=⑩
根据电流的定义得
=?
由动能定理,有
Fx+W=mv2-0?
联立⑦⑧⑨⑩??式得
W=mv2-kq。?
18.(2019·山东日照高三期末)(14分)如图甲所示,MN和PQ是足够长的平行光滑金属导轨,其间距为d,电阻忽略不计。导轨平面与水平面的夹角为θ,在导轨的矩形区域内有一垂直于导轨向下的匀强磁场,磁场的磁感应强度大小为B。一根电阻为r且具有一定质量的导体棒ef垂直放在导轨上,正方形金属框abcd的质量为m,边长为L,每边电阻均为r,用细线悬挂在竖直平面内,ab边水平,线框的a、b两点通过导线与导轨相连,金属框上半部分处在大小为B、方向垂直框面向里的匀强磁场中,金属框下半部分处在大小也为B、方向垂直框面向外的匀强磁场中,不计其余电阻和细导线对a、b点的作用力。从导体棒ef自由下滑开始计时,悬挂线框的细线拉力FT随时间的变化如图乙所示。重力加速度用g表示。求:
(1)导体棒ef刚进入磁场时ab边的电流;
(2)导体棒ef刚进入磁场时的速度以及所经历的时间;
(3)导体棒ef的质量。
答案 (1) (2)  (3)
解析 (1)导体棒ef刚进入磁场时,设ab边的电流为I1,cd边的电流为I2,对金属框进行受力分析,
由平衡条件有BI1L+FT=mg+BI2L,
由图可知FT=mg,
由并联电路规律有I1∶I2=3∶1,
联立解得导体棒刚进入磁场时ab边的电流为
I1=。
(2)导体棒ef刚进入磁场时,对整体电流回路,干路中的电流为
I=I1+I2==,
回路中的感应电动势为E=Bdv,
可得导体棒ef刚进入磁场时的速度为v=,
根据v=at=gtsinθ,
可得所经历的时间为t=。
(3)导体棒ef匀速运动时,设ab边的电流为I1′,cd边的电流为I2′,则对金属框进行受力分析,由平衡条件得BI1′L+FT′=mg+BI2′L,
由图可知FT′=mg,
由并联电路规律有I1′∶I2′=3∶1,
联立解得I1′=,I2′=,
可得导体棒ef匀速运动时ef中的电流为
Ief=I1′+I2′=,
对导体棒ef进行受力分析,设导体棒ef的质量为M,
由平衡条件有Mgsinθ=BIefd,
可得导体棒ef的质量为M=。

展开更多......

收起↑

资源预览