苏科版七年级上册数学上册课时练:4.3 用一元一次方程解决问题(四)(word版含答案)

资源下载
  1. 二一教育资源

苏科版七年级上册数学上册课时练:4.3 用一元一次方程解决问题(四)(word版含答案)

资源简介

课时练:4.3
用一元一次方程解决问题(四)
1.一个修路队修一条路,九月份前13天共修2230米,后17天平均每天修160米,九月份平均每天修多少米?
2.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数 
 ,点P表示的数 
 (用含t的式子表示);
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(3)在(2)的条件下,当点P,点Q之间的距离是3时,运动时间是多少秒?
3.列方程解应用题:
油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?
4.某景区门票价格为50元/人,为吸引游客,特规定:非节假日时,门票打6折销售;节假日时,按团队人数分段定价售票,10人(含10人)以下按原价售票,10人以上超过的部分游客打8折购票,其他人按原价购票.
(1)设某旅游团游客人数为x人,非节假日购票款为y1元,节假日购票款为y2元,则y1= 
 ;当0<x≤10时,y2= 
 ,当x>10时,y2= 
 .
(2)阳光旅行社于今年5月1日(节假日)组织A团,5月10日(非节假日)组织B团到该景区旅游,两次共付门票款1900元,已知A、B两个团游客共计50人,问A、B两个团各有游客多少人?
5.用A型和B型机器生产同样的产品,已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱装多少个产品?
6.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.
(1)求购买A和B两种记录本的数量;
(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?
7.列一元一次方程解应用题:
元旦晚会是南开中学“辞旧岁,迎新年”的传统活动.晚会当天,小明组织班上的同学出去买气球来布置教室.已知买气球的男生有23人,女生有16人,且每个女生平均买的气球数比每个男生平均买的气球数多1个.回到学校后他们发现,男生买的气球总数比女生气球总数的还少1个,请问每个女生平均买几个气球?
8.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:
自来水销售价格
污水处理价格
每户每月用水量
单价:元/吨
单价:元/吨
17吨及以下
a
0.90
超过17吨但不超过30吨的部分
b
0.90
超过30吨的部分
6.00
0.90
(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)
已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.
(1)求a、b的值;
(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?
(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)
9.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?
10.如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条.如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和.
参考答案
1.解:设九月份平均每天修x米,依题意有
30x=2230+160×17,
解得x=165.
故九月份平均每天修165米.
2.解:(1)∵点A表示的数为8,B在A点左边,AB=14,
∴点B表示的数是8﹣14=﹣6,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
∴点P表示的数是8﹣5t.
故答案为:﹣6,8﹣5t;
(2)设点P运动x秒时,在点C处追上点Q,
则AC=5x,BC=3x,
∵AC﹣BC=AB,
∴5x﹣3x=14,
解得:x=7,
∴点P运动7秒时追上点Q;
(3)设经过t秒,点P,点Q之间的距离是3,
由题意可得:|8﹣5t﹣(﹣6﹣3t)|=3,
解得:t=或,
答:经过或秒,点P,点Q之间的距离是3.
3.解:设生产圆形铁片的工人为x人,则生产长方形铁片的工人为42﹣x人,
根据题意可列方程:120x=2×80(42﹣x),
解得:x=24,
则42﹣x=18.
答:生产圆形铁片的有24人,生产长方形铁片的有18人.
4.解:(1)设某旅游团游客人数为x人,非节假日购票款为y1元,节假日购票款为y2元,
可得:y1=30x;当0<x≤10时,y2=50x,当x>10时,y2=50×0.8×(x﹣10)+50×10=40x+100;
故答案为:30x;50x;40x+100.
(2)设A团游客m人,则B团游客有(50﹣m)人,根据题意可得:
当0<m≤10时,有50m+30(50﹣m)=1900,
解得:m=20,
∵20>10,与假设不符,故舍去;
当m>10时,有40m+100+30(50﹣m)=1900,
解得:m=30,
∴50﹣m=20,
所以A、B两个团各有游客分别为30人,20人.
5.解:设B型机器一天生产x个产品,则A型机器一天生产(x+1)个产品,
由题意得,=,
解得:x=19,
7x﹣1=132,
132÷11=12(个).
答:每箱装12个产品.
6.解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,
依题意,得:3(2x+20)+2x=460,
解得:x=50,
∴2x+20=120.
答:购买A种记录本120本,B种记录本50本.
(2)460﹣3×120×0.8﹣2×50×0.9=82(元).
答:学校此次可以节省82元钱.
7.解:设每个女生平均买x个气球,则每个男生平均买(x﹣1)个气球,
由题意可得:×16×x﹣1=23×(x﹣1)
解得:x=2,
答:每个女生平均买2个气球.
8.解:(1)由题意得:
解①,得a=1.8,
将a=1.8代入②,解得b=2.8
∴a=1.8,b=2.8.
(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9
设小王家这个月用水x吨,由题意得:
2.7×17+3.7×13+(x﹣30)×6.9=156.1
解得:x=39
∴小王家这个月用水39吨.
(3)设小王家11月份用水y吨,
当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30
解得y=11
当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30
解得y=9.125(舍去)
∴小王家11月份用水11吨.
9.解:设乙工程队再单独需x个月能完成,
由题意,得2×++x=1.
解得x=1.
答:乙工程队再单独需1个月能完成.
10.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是5cm,第二次剪下的长条的长是(x﹣5)cm,宽是6cm,
则5x=6(x﹣5),
解得:x=30
30×5×2=300(cm2),
答:两个所剪下的长条的面积之和为300cm2.

展开更多......

收起↑

资源预览