2021届新高考物理二轮 复习 强化导学案 电磁感应规律及其应用 Word版含解析

资源下载
  1. 二一教育资源

2021届新高考物理二轮 复习 强化导学案 电磁感应规律及其应用 Word版含解析

资源简介

题型一 楞次定律、法拉第电磁感应问题
1.已知地磁场类似于条形磁铁产生的磁场,地磁N极位于地理南极附近.如图所示,在湖北某中学实验室的水平桌面上,放置边长为L的正方形闭合导体线框abcd,线框的ad边沿南北方向,ab边沿东西方向,下列说法正确的是(  )
A.若使线框向东平移,则a点电势比d点电势高
B.若使线框向北平移,则a点电势等于b点电势
C.若以ad边为轴,将线框向上翻转90°,则翻转过程线框中电流方向始终为adcba方向
D.若以ab边为轴,将线框向上翻转90°,则翻转过程线框中电流方向始终为adcba方向
解析:地球北半部的磁场方向由南向北斜向下,可分解为水平向北和竖直向下两个分量.若线圈向东平移,根据右手定则可知a点电势低于d点电势,A项错误;若线圈向北平移,根据右手定则可知a点电势高于b点电势,B项错误;若以ad边为轴,将线框向上翻转90°过程中,根据楞次定律及安培定则可知线框中的电流方向始终为adcba方向,C项正确;若以ab边为轴,将线框向上翻转90°过程中,穿过线框的磁通量先增大后减小,根据楞次定律及安培定则可知,线框中的电流方向为先沿abcda方向再沿adcba方向,故D错误.
答案:C
2.(多选)如图所示,通过水平绝缘传送带输送完全相同的铜线圈,线圈等距离排列,且与传送带以相同的速度匀速运动.为了检测出个别未闭合的不合格线圈,让传送带通过一固定匀强磁场区域,磁场方向垂直于传送带运动方向,根据穿过磁场后线圈间的距离,就能够检测出不合格线圈.通过观察图形,判断下列说法正确的是(  )
A.若线圈闭合,进入磁场时,线圈中感应电流方向从上向下看为逆时针
B.若线圈闭合,传送带以较大速度匀速运动时,磁场对线圈的作用力增大
C.从图中可以看出,第2个线圈是不合格线圈
D.从图中可以看出,第3个线圈是不合格线圈
解析:由楞次定律可知,若线圈闭合,进入磁场时,线圈中感应电流方向从上向下看为顺时针,A错误;若线圈闭合,传送带以较大速度匀速运动时,线圈通过磁场区域更快,由法拉第电磁感应定律可知,产生的感应电动势更大,感应电流更大,安培力也更大,B正确;由图知1、2、4、…线圈都发生了相对滑动,而第3个线圈没有,故第3个线圈为不合格线圈,C错误,D正确.
答案:BD
3.(2018·全国卷Ⅲ)(多选)如图(a),在同一平面内固定有一长直导线PQ和一导线框R,R在PQ的右侧.导线PQ中通有正弦交流电i,i的变化如图(b)所示,规定从Q到P为电流正方向.导线框R中的感应电动势(  )
A.在t=时为零
B.在t=时改变方向
C.在t=时最大,且沿顺时针方向
D.在t=T时最大,且沿顺时针方向
解析:在t=时,交流电图线斜率为0,即磁场变化率为0,由E==S知,E=0,故A正确.在t=和t=T时,图线斜率最大,在t=和t=T时感应电动势最大.在到之间,电流由Q向P减弱,导线在R处产生垂直纸面向里的磁场,且磁场减弱,由楞次定律知,R产生的感应电流的磁场方向也垂直纸面向里,则R中感应电动势沿顺时针方向,同理可判断在到T时,R中电动势也为顺时针方向,在T到T时,R中电动势为逆时针方向,C正确,B、D错误.
答案:AC
4.(2020·浙江卷)如图所示,固定在水平面上的半径为r的金属圆环内存在方向竖直向上、磁感应强度大小为B的匀强磁场.长为l的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴OO′上,随轴以角速度ω匀速转动.在圆环的A点和电刷间接有阻值为R的电阻和电容为C、板间距为d的平行板电容器,有一带电微粒在电容器极板间处于静止状态.已知重力加速度为g,不计其他电阻和摩擦,下列说法正确的是(  )
A.棒产生的电动势为Bl2ω
B.微粒的电荷量与质量之比为
C.电阻消耗的电功率为
D.电容器所带的电荷量为CBr2ω
解析:如题图所示,金属棒绕OO′轴切割磁感线转动,棒产生的电动势E=Br·=Br2ω,A错误;电容器两极板间电压等于电源电动势E,带电微粒在两极板间处于静止状态,则q=mg,即===,B正确;电阻消耗的功率P==,C错误;电容器所带的电荷量Q=CE=,D错误.
答案:B
题型二 电磁感应中的图象问题
5.(2019·全国卷Ⅲ)(多选)如图,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图象中可能正确的是(  )
解析:导体棒ab运动,切割磁感线,产生感应电流(逆时针),导体棒ab受阻力F作用,速度减小,导体棒cd受安培力F′作用,速度变大.由E=Blv知,感应电动势E随速度v的减小而减小,则感应电流非均匀变化.当两棒的速度相等时,回路上感应电流消失,两棒在导轨上以共同速度做匀速运动.系统的动量守恒,则mv0=2mv共,v共=,A对.导体棒cd受变力作用,加速度逐渐减小,其v-t图象应该是曲线,B错.由前面分析知,两导体棒做变速运动,感应电流变小,最后为零,但非均匀变化,C对,D错.
答案:AC
6.(2018·全国卷Ⅱ)如图,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下.一边长为l的正方形金属线框在导轨上向左匀速运动.线框中感应电流i随时间t变化的正确图线可能是(  )
解析:设线路中只有一边切割磁感线时产生的感应电流为i.
线框位移 等效电路的连接 电流
0~
I=2i(顺时针)
~l
I=0
l~
I=2i(逆时针)
~2l
I=0
综合分析知,只有选项D符合要求.
答案:D
7.(2017·全国卷Ⅱ)(多选)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m、总电阻为0.005 Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd边于t=0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是(  )
A.磁感应强度的大小为0.5 T
B.导线框运动速度的大小为0.5 m/s
C.磁感应强度的方向垂直于纸面向外
D.在t=0.4 s至t=0.6 s这段时间内,导线框所受的安培力大小为0.1 N
解析:由题图(b)可知,导线框运动的速度大小v== m/s=0.5 m/s,B项正确;导线框进入磁场的过程中,cd边切割磁感线,由E=BLv,得B== T=0.2 T,A项错误;由题图(b)可知,导线框进入磁场的过程中,感应电流的方向为顺时针方向,根据楞次定律可知,磁感应强度方向垂直纸面向外,C项正确;在0.4~0.6 s这段时间内,导线框正在出磁场,回路中的电流大小I== A=2 A,则导线框受到的安培力F=BIL=0.2×2×0.1 N=0.04 N,D项错误.
答案:BC
题型三 电磁感应中的电路、动力学和能量问题
8.(多选)如图所示,在匀强磁场的上方有一半径为R的导体圆环,圆环的圆心距离匀强磁场上边界的距离为h.将圆环静止释放,圆环刚进入磁场的瞬间和完全进入磁场的瞬间,速度均为v.已知圆环的电阻为r,匀强磁场的磁感应强度大小为B,重力加速度为g.下列说法正确的是(  )
A.圆环进入磁场的过程中,圆环的左端电势高
B.圆环进入磁场的过程做的是匀速直线运动
C.圆环进入磁场的过程中,通过导体某个横截面的电荷量为
D.圆环进入磁场的过程中,电阻产生的热量为2mgR
解析:根据楞次定律可判断电流方向为逆时针,内部电流流向电势高的一端,A错误;圆环进入磁场的过程中,切割磁感线的有效长度不同,受到的安培力大小不同,不可能做匀速直线运动,B错误;圆环进入磁场的过程中,通过导体某个横截面的电荷量Q==,C正确;根据功能关系,圆环进入磁场的过程中,电阻产生的热量为2mgR,D正确.
答案:CD
9.(多选)如图所示,光滑水平面上存在有界匀强磁场,磁感应强度为B.质量为m、边长为a的正方形线框ABCD斜向右上方穿进磁场,当AC刚进入磁场时,线框的速度为v,方向与磁场边界成45°角,若线框的总电阻为R,则(  )
A.线框穿进磁场过程中,线框中电流的方向为DCBAD
B.AC刚进入磁场时线框中感应电流为
C.AC刚进入磁场时线框所受安培力为
D.此时CD两端电压为Bav
解析:线框进入磁场的过程中穿过线框的磁通量增大,由楞次定律可以知道,感应电流的磁场的方向向外,由安培定则可知感应电流的方向为ABCDA方向,故A错误;AC刚进入磁场时,CD边切割磁感线,AD边不切割磁感线,所以产生的感应电动势E=Bav,则线框中感应电流I==,故B错误;AC刚进入磁场时线框的CD边受到的安培力与v的方向相反,AD边受到的安培力的方向垂直于AD向下,它们的大小都是F=BIa,由几何关系知,AD边与CD边受到的安培力的方向相互垂直,AC刚进入磁场时线框所受安培力为AD边与CD边受到的安培力的矢量和,F合=F=,故C选项正确;当AC刚进入磁场时,CD两端电压U=I×=Bav,故D选项正确.
答案:CD
10.(2020·浙江卷)如图1所示,在绝缘光滑水平桌面上,以O为原点、水平向右为正方向建立x轴,在0≤x≤1.0 m区域内存在方向竖直向上的匀强磁场.桌面上有一边长L=0.5 m、电阻R=0.25 Ω的正方形线框abcd,当平行于磁场边界的cd边进入磁场时,在沿x方向的外力F作用下以v=1.0 m/s的速度做匀速运动,直到ab边进入磁场时撤去外力.若以cd边进入磁场时作为计时起点,在0≤t≤1.0 s内磁感应强度B的大小与时间t的关系如图2所示,在0≤t≤1.3 s内线框始终做匀速运动.
 
(1)求外力F的大小;
(2)在1.0 s≤t≤1.3 s内存在连续变化的磁场,求磁感应强度B的大小与时间t的关系;
(3)求在0≤t≤1.3 s内流过导线横截面的电荷量q.
解析:(1)由图2可知t0=0,B0=0.25 T,
则回路电流I=,
安培力FA=L2,R)v,
所以外力F=FA=0.062 5 N.
(2)匀速出磁场,电流为0,磁通量不变Φ1=Φ,
t1=1.0 s时,B1=0.5 T,磁通量Φ1=B1L2,
则t时刻,磁通量Φ=BL[L-v(t-t1)],
解得B=.
(3)0≤t≤0.5 s电荷量q1==0.25 C,
0.5 s≤t≤1.0 s电荷量q2==0.25 C,
总电荷量q=q1+q2=0.5 C.
答案:(1)0.062 5 N (2)B= (3)0.5 C
11.如图,两光滑平行金属导轨置于水平面(纸面)内,轨间距为l,左端连有阻值为R的电阻.一金属杆置于导轨上,金属杆右侧存在一磁感应强度大小为B、方向竖直向下的匀强磁场区域.已知金属杆以速度v0向右进入磁场区域,做匀变速直线运动,到达磁场区域右边界(图中虚线位置)时速度恰好为零.金属杆与导轨始终保持垂直且接触良好.除左端所连电阻外,其他电阻忽略不计.求金属杆运动到磁场区域正中间时所受安培力的大小及此时电流的功率.
解析:开始时导体棒产生的电动势E=Blv0 ,
电路中的电流I=,安培力F=BIl=.
设导体棒的质量为m,则导体棒在整个过程的加速度
a==.
设导体棒由开始到停止的位移为x,得x=,2a)=,
故正中间离开始的位移为x中=.
设导体棒在中间位置的速度为v,由v2-v=2ax中得
v=v0,
则导体棒运动至中间位置时所受到的安培力F′=BIl=,
导体棒电流的功率P=I2R=,2R).
答案: ,2R)
12.(2019·天津卷)如图所示,固定在水平面上间距为l的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN和PQ长度也为l、电阻均为R,两棒与导轨始终接触良好.MN两端通过开关S与电阻为R的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k.图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B.PQ的质量为m,金属导轨足够长,电阻忽略不计.
(1)闭合S,若使PQ保持静止,需在其上加多大的水平恒力F,并指出其方向;
(2)断开S,PQ在上述恒力作用下,由静止开始到速度大小为v的加速过程中流过PQ的电荷量为q,求该过程安培力做的功W.
解析:(1)设线圈中的感应电动势为E,由法拉第电磁感应定律E=,则
E=k.①
设PQ与MN并联的电阻为R并,有
R并=,②
闭合S时,设线圈中的电流为I,根据闭合电路欧姆定律得
I=,③
设PQ中的电流为IPQ,有
IRQ=I,④
设PQ受到的安培力为F安,有
F安=BIPQl,⑤
保持PQ静止,由受力平衡,有
F=F安,⑥
联立①②③④⑤⑥式得
F=,⑦
方向水平向右.
(2)设PQ由静止开始到速度大小为v的加速过程中,PQ运动的位移为x,所用时间为Δt,回路中的磁通量变化为ΔΦ,平均感应电动势为E,有
=,⑧
其中ΔΦ=Blx.⑨
设PQ中的平均电流为I,有
=,⑩
根据电流的定义得
=,?
由动能定理,有
Fx+W=mv2-0,?
联立⑦⑧⑨⑩???式得
W=mv2-kq.?
答案:(1) 方向水平向右 (2)mv2-kq
题型四 综合练
13.如图所示,竖直面内的正方形导线框ABCD和abcd的边长均为l,电阻均为R,质量分别为2m和m,它们分别系在一跨过两个定滑轮的绝缘轻绳两端,在两导线框之间有一宽度为2l、磁感应强度为B、方向垂直纸面向里的匀强磁场,开始时ABCD的下边界与匀强磁场的上边界重合,abcd的上边界到匀强磁场的下边界的距离为l.现将两导线框由静止释放,当ABCD全部进入磁场时,两导线框开始做匀速运动,不计摩擦和空气阻力,重力加速度为g,求:
(1)两导线框匀速运动的速度大小;
(2)两导线框在从开始运动至等高的过程中所产生的总焦耳热;
(3)导线框abcd通过磁场的时间.
解析:(1)如图所示,设两导线框刚匀速运动的速度大小为v,此时轻绳上的张力为FT,则对ABCD有FT=2mg.①
对abcd有FT=mg+BIl,②
I=,③
E=Blv,④
则v=.⑤
(2)设两导线框在从开始运动至等高的过程中所产生的总焦耳热为Q,当左、右两导线框分别向上、向下运动2l的距离时,两导线框等高,对这一过程,由能量守恒定律有
4mgl=2mgl+×3mv2+Q,⑥
联立⑤⑥解得Q=2mgl-,⑦
(3)导线框abcd通过磁场的过程中以速度v匀速运动,设导线框abcd通过磁场的时间为t,则t=.⑧
联立⑤⑧解得t=.
答案:(1) (2)2mgl- (3)
14.如图所示,水平面上两根足够长平行粗糙金属导轨,间距为d,左端接有阻值为R的电阻,整个平面内有竖直向下磁感应强度为B的匀强磁场.质量为m、电阻为r的金属杆ab搁在导轨上,中点与一根轻质绝缘弹簧相连,弹簧右端固定.将金属杆连同弹簧一起向左拉至伸长量为s处由静止释放,当弹簧第一次恢复原长时金属杆的速度为v,此过程电阻R产生的焦耳热为Q.金属杆始终与导轨垂直且接触良好,与金属导轨间的动摩擦因数为μ.求:
(1)弹簧第一次恢复原长时金属杆的加速度大小和方向;
(2)弹簧初始时的弹性势能.
解析:(1)弹簧第一次恢复原长时金属杆所受合力为:
F=μmg+BId,
电路中电流为:I=,
代入得加速度大小为
a==μg+,方向向左.
(2)依据能量守恒,有
Ep=μmgs+mv2+Q总,
又有:Q=Q总,
联立两式得Ep=μmgs+mv2+Q.
答案:(1)μg+,方向向左 (2)μmgs+mv2+Q

展开更多......

收起↑

资源预览