资源简介 专题九四边形中的函数关系【例1】如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.【例2】如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.【例3】如图,已知在梯形ABCD中,AD//BC,AB=AD=5,tan∠DBC=。点E为线段BD上任意一点(点E与点B、D不重合),过点E作EF//CD,与BC相交于点F,联结CE.设BE=x,y=。(1)求BD的长;(2)如果BC=BD,当△DCE是等腰三角形时,求x的值;(3)求y关于x的函数解析式,并写出自变量x的取值范围.【例4】已知:如图,在菱形ABCD中,AB=5,联结BD,sin∠ABD=。点P是射线BC上的一个动点(点P不与点B重合),联结AP,与对角线BD相交于点E,联结EC.(1)求证:AE=CE;(2)当点P在线段BC上时,设BP=x,△PEC的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,求线段BP的长.如图,在梯形ABCD中,AD//BC,AC与BD相交于点O,AC=BC,点E在DC的延长线上,∠BEC=∠ACB,已知cos∠ABC=。(1)求证:BC2=CDBE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBC∽△DEB,求CE的长.如图,在边长为6的正方形ABCD中,点E为AD边上的一个动点(与点A、D不重合),∠EBM=45;BE交对角线AC于点F,BM交对角线AC于点G,交CD于点M;如图1,联结BD,求证:△DEB∽△CGB,并写出的值;联结EG,如图2,设AE=x,EG=y,求y关于x的函数解析式,并写出定义域;当M为边DC的三等分点时,求S△EGF的面积;如图,平行四边形ABCD中,AB=5,BC=10,sin∠B=,E点为BC边上的一个动点(不与B、C重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,连结DE,DF.(1)当△ABE恰为直角三角形时,求BF:CG的值:(2)当点E在线段BC上运动时,△BEF与△CEG的周长之和是否是常数,请说明理由:(3)设BE=x,△DEF的面积为y,试求出y关于x的函数关系式,并写出定义域.如图,在?ABCD中,E为边BC的中点,F为线段AE上一点,联结BF并延长交边AD于点G,过点G作AE的平行线,交射线DC于点H.设==x。(1)当x=1时,求AG:AB的值;(2)设=y,求关于x的函数关系式,并写出x的取值范围;(3)当DH=3HC时,求x的值.5.如图,已知矩形ABCD中,AB=6,BC=8,E是BC边上一点(不与B、C重合),过点E作EFAE交AC、CD于点M、F,过点B作BGAC,垂足为G,BG交AE于点H;(1)求证:△ABH∽△ECM;(2)设BE=x,=y,求y关于x的函数解析式,并写出定义域;(3)当△BHE为等腰三角形时,求BE的长;6.已知,等腰梯形ABCD中,AD∥BC,∠B=∠BCD=45°,AD=3,BC=9,点P是对角线AC上的一个动点,且∠APE=∠B,PE分别交射线AD和射线CD于点E和点G.(1)如图1,当点E、D重合时,求AP的长;(2)如图2,当点E在AD的延长线上时,设AP=x,DE=y,求y关于x的函数解析式,并写出它的定义域;(3)当线段DG=时,求AE的值.7.已知:在梯形ABCD中,AD//BC,AC=BC=10,cos∠ACB=,点E在对角线AC上,且CE=AD,BE的延长线与射线AD、射线CD分别相交于点F、G.设AD=x,△AEF的面积为y.(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.8.如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,对角线AC、BD交于点G,已知AB=BC=3,tan∠BDC=,点E是射线BC上任意一点,过点B作BF⊥DE,垂足为点F,交射线AC于点M,射线DC于点H.(1)当点F是线段BH中点时,求线段CH的长;(2)当点E在线段BC上时(点E不与B、C重合),设BE=x,CM=y,求y关于x的函数解析式,并指出x的取值范围;(3)连接GF,如果线段GF与直角梯形ABCD中的一条边(AD除外)垂直时,求x的值.9.如图,梯形ABCD中,AD∥BC,∠A=90°,AD=4,AB=8,BC=10,M在边CD上,且=.(1)如图①,联结BM,求证:BM⊥DC;(2)如图②,作∠EMF=90°,ME交射线AB于点E,MF交射线BC于点F,若AE=x,BF=y.当点F在线段BC上时,求y关于x的函数解析式,并写出定义域;(3)若△MCF是等腰三角形,求AE的值.10.已知:如图1,在梯形ABCD中,AD//BC,∠BCD=90?,BC=11,CD=6,tan∠ABC=2,点E在AD边上,且AE=3ED,EF//AB交BC于点F,点M、N分别在射线FE和线段CD上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM⊥MN,设FM·cos∠EFC=x,CN=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△AMN为等腰直角三角形,求线段FM的长.11.如图,在梯形ABCD中,AD=BC=10,tanD=,E是腰AD上一点,且AE:ED=1:3.(1)当AB:CD=1:3时,求梯形ABCD的面积;(2)当∠ABE=∠BCE时,求线段BE的长;(3)当△BCE是直角三角形时,求边AB的长.12.如图1,已知在梯形ABCD中,AD//BC,AB=DC=5,AD=4,M、N分别是边AD、BC上的任意一点,联结AN、DN,点E、F分别在线段AN、DN上,且ME//DN,MF//AN,联结EF.(1)如图2,如果EF//BC,求EF的长;(2)如果四边形MENF的面积是△ADN的面积的,求AM的长;(3)如果BC=10,试探索△ABN、△AND、△DNC能否两两相似?如果能,求AN的长;如果不能,请说明理由. 展开更多...... 收起↑ 资源预览