2021届高考备考物理二轮专题特训:分子动理论 气体及热力学定律(解析版)

资源下载
  1. 二一教育资源

2021届高考备考物理二轮专题特训:分子动理论 气体及热力学定律(解析版)

资源简介

分子动理论
气体及热力学定律(原卷)
1.(2020·全国卷Ⅰ)(1)(5分)分子间作用力F与分子间距r的关系如图所示,r=r1时,F=0。分子间势能由r决定,规定两分子相距无穷远时分子间的势能为零。若一分子固定于原点O,另一分子从距O点很远处向O点运动,在两分子间距减小到r2的过程中,势能________(填“减小”“不变”或“增大”);在间距由r2减小到r1的过程中,势能________(填“减小”“不变”或“增大”);在间距等于r1处,势能________(填“大于”“等于”或“小于”)零。
(2)(10分)甲、乙两个储气罐储存有同种气体(可视为理想气体)。甲罐的容积为V,罐中气体的压强为p;乙罐的容积为2V,罐中气体的压强为p。现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等。求调配后
(ⅰ)两罐中气体的压强;
(ⅱ)甲罐中气体的质量与甲罐中原有气体的质量之比。
2.(2020·全国卷Ⅱ)(1)下列关于能量转换过程的叙述,违背热力学第一定律的有________,不违背热力学第一定律、但违背热力学第二定律的有________。(填正确答案标号)
A.汽车通过燃烧汽油获得动力并向空气中散热
B.冷水倒入保温杯后,冷水和杯子的温度都变得更低
C.某新型热机工作时将从高温热源吸收的热量全部转化为功,而不产生其他影响
D.冰箱的制冷机工作时从箱内低温环境中提取热量散发到温度较高的室内
(2)(10分)潜水钟是一种水下救生设备,它是一个底部开口、上部封闭的容器,外形与钟相似。潜水钟在水下时其内部上方空间里存有空气,以满足潜水员水下避险的需要。为计算方便,将潜水钟简化为截面积为S、高度为h、开口向下的圆筒;工作母船将潜水钟由水面上方开口向下吊放至深度为H的水下,如图所示。已知水的密度为ρ,重力加速度大小为g,大气压强为p0,H?h,忽略温度的变化和水密度随深度的变化。
(ⅰ)求进入圆筒内水的高度l;
(ⅱ)保持H不变,压入空气使筒内的水全部排出,求压入的空气在其压强为p0时的体积。
3.(2020·全国卷Ⅲ)(1)如图,一开口向上的导热汽缸内,用活塞封闭了一定质量的理想气体,活塞与汽缸壁间无摩擦。现用外力作用在活塞上,使其缓慢下降。环境温度保持不变,系统始终处于平衡状态。在活塞下降过程中________。(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分;每选错1个扣3分,最低得分为0分)(  )
A.气体体积逐渐减小,内能增加
B.气体压强逐渐增大,内能不变
C.气体压强逐渐增大,放出热量
D.外界对气体做功,气体内能不变
E.外界对气体做功,气体吸收热量
(2)(10分)如图,两侧粗细均匀、横截面积相等、高度均为H=18
cm的U型管,左管上端封闭,右管上端开口。右管中有高h0=4
cm的水银柱,水银柱上表面离管口的距离l=12
cm。管底水平段的体积可忽略。环境温度为T1=283
K,大气压强p0=76
cmHg。
(ⅰ)现从右侧端口缓慢注入水银(与原水银柱之间无气隙),恰好使水银柱下端到达右管底部。此时水银柱的高度为多少?
(ⅱ)再将左管中密封气体缓慢加热,使水银柱上表面恰与右管口平齐,此时密封气体的温度为多少?
4.(2019·全国卷Ⅰ)(1)某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视为理想气体。初始时容器中空气的温度与外界相同,压强大于外界。现使活塞缓慢移动,直至容器中的空气压强与外界相同。此时,容器中空气的温度________(填“高于”“低于”或“等于”)外界温度,容器中空气的密度________(填“大于”“小于”或“等于”)外界空气的密度。
(2)热等静压设备广泛应用于材料加工中。该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改善其性能。一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为0.13
m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中。已知每瓶氩气的容积为3.2×10-2
m3,使用前瓶中气体压强为1.5×107
Pa,使用后瓶中剩余气体压强为2.0×106
Pa;室温温度为27
℃。氩气可视为理想气体。
①求压入氩气后炉腔中气体在室温下的压强;
②将压入氩气后的炉腔加热到1227
℃,求此时炉腔中气体的压强。
5.(2019·全国卷Ⅱ)
(1)如p?V图所示,1、2、3三个点代表某容器中一定量理想气体的三个不同状态,对应的温度分别是T1、T2、T3。用N1、N2、N3分别表示这三个状态下气体分子在单位时间内撞击容器壁上单位面积的平均次数,则N1________N2,T1________T3,N2________N3。(填“大于”“小于”或“等于”)
(2)如图,一容器由横截面积分别为2S和S的两个汽缸连通而成,容器平放在水平地面上,汽缸内壁光滑。整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气。平衡时,氮气的压强和体积分别为p0和V0,氢气的体积为2V0,空气的压强为p。现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求
①抽气前氢气的压强;
②抽气后氢气的压强和体积。
6.(2019·全国卷Ⅲ)(1)用油膜法估算分子大小的实验中,首先需将纯油酸稀释成一定浓度的油酸酒精溶液,稀释的目的是______________________________。实验中为了测量出一滴已知浓度的油酸酒精溶液中纯油酸的体积,可以______________________________________________________。为得到油酸分子的直径,还需测量的物理量是________________________________。
(2)如图,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0
cm的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0
cm。若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同。已知大气压强为76
cmHg,环境温度为296
K。
①求细管的长度;
②若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度。
7.(1)(多选)如图,一定质量的理想气体从状态a开始,经历过程①、②、③、④到达状态e。对此气体,下列说法正确的是________。
A.过程①中气体的压强逐渐减小
B.过程②中气体对外界做正功
C.过程④中气体从外界吸收了热量
D.状态c、d的内能相等
E.状态d的压强比状态b的压强小
(2)如图,容积为V的汽缸由导热材料制成,面积为S的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K。开始时,K关闭,汽缸内上下两部分气体的压强均为p0。现将K打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为时,将K关闭,活塞平衡时其下方气体的体积减小了。不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g。求流入汽缸内液体的质量。
8.(1)(多选)氧气分子在0
℃和100
℃温度下单位速率间隔的分子数占总分子数的百分比随气体分子速率的变化分别如图中两条曲线所示。下列说法正确的是________。
A.图中两条曲线下面积相等
B.图中虚线对应于氧气分子平均动能较小的情形
C.图中实线对应于氧气分子在100
℃时的情形
D.图中曲线给出了任意速率区间的氧气分子数目
E.与0
℃时相比,100
℃时氧气分子速率出现在0~400
m/s区间内的分子数占总分子数的百分比较大
(2)如图,容积均为V的汽缸A、B下端有细管(容积可忽略)连通,阀门K2位于细管的中部,A、B的顶部各有一阀门K1、K3;B中有一可自由滑动的活塞(质量、体积均可忽略)。初始时,三个阀门均打开,活塞在B的底部;关闭K2、K3,通过K1给汽缸充气,使A中气体的压强达到大气压p0的3倍后关闭K1。已知室温为27
℃,汽缸导热。
①打开K2,求稳定时活塞上方气体的体积和压强;
②接着打开K3,求稳定时活塞的位置;
③再缓慢加热汽缸内气体使其温度升高20
℃,求此时活塞下方气体的压强。
9.(2020·宿州市一质检)一定量的理想气体的压强p与热力学温度T的变化图象如图所示。下列说法正确的是(  )
A.A→B的过程中,气体对外界做功,气体内能增加
B.A→B的过程中,气体从外界吸收的热量等于其内能的增加量
C.B→C的过程中,气体体积增大,对外做功
D.B→C的过程中,气体对外界放热,内能不变
E.B→C的过程中,气体分子与容器壁每秒碰撞的次数增加
10.(2020·山东名校联考信息卷)玻璃器皿的制造过程中玻璃液的形成是重要环节,当温度达到1
200
℃时,大量的气泡分布在玻璃液中,经过一系列工艺后获得澄清的玻璃液,之后可以通过降温到合适温度,然后选择合适大小的玻璃液进行吹泡(即往玻璃液中吹气)制造玻璃器皿,下列与玻璃有关的物理学问题的说法正确的是(  )
A.因为分子间存在着斥力,所以破碎的玻璃不能简单地拼接在一起
B.玻璃从开始熔化到形成玻璃液的过程中,温度不固定
C.玻璃内部的原子是无序分布的,具有各向异性的特点
D.使1
200
℃的玻璃液继续升温,可能使其中的气泡减少
E.在真空和高温条件下,可以利用分子扩散在半导体材料中掺入其他元素
11.(2020·衡水金卷模拟)下列说法正确的是(  )
A.在毛细现象中,毛细管中的液面有的升高,有的降低,这与液体的种类和毛细管的材质有关
B.脱脂棉脱脂的目的在于使它从不被水浸润变为可以被水浸润,以便吸取药液
C.烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体
D.在空间站完全失重的环境下,水滴能收缩成标准的球形是因为液体表面张力的作用
E.在一定温度下,当人们感到潮湿时,水蒸发慢,空气的绝对湿度一定较大
12.(2019·全国卷Ⅰ·T33(1))某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视为理想气体。初始时容器中空气的温度与外界相同,压强大于外界。现使活塞缓慢移动,直至容器中的空气压强与外界相同。此时,容器中空气的温度________(填“高于”“低于”或“等于”)外界温度,容器中空气的密度________(填“大于”“小于”或“等于”)外界空气的密度。
13.(2020·山东学业水平等级考试·T15)中医拔罐的物理原理是利用玻璃罐内外的气压差使罐吸附在人体穴位上,进而治疗某些疾病。常见拔罐有两种,如图所示,左侧为火罐,下端开口;右侧为抽气拔罐,下端开口,上端留有抽气阀门。使用火罐时,先加热罐中气体,然后迅速按到皮肤上,自然降温后火罐内部气压低于外部大气压,使火罐紧紧吸附在皮肤上。抽气拔罐是先把罐体按在皮肤上,再通过抽气降低罐内气体压强。某次使用火罐时,罐内气体初始压强与外部大气压相同,温度为450
K,最终降到300
K,因皮肤凸起,内部气体体积变为罐容积的。若换用抽气拔罐,抽气后罐内剩余气体体积变为抽气拔罐容积的,罐内气压与火罐降温后的内部气压相同。罐内气体均可视为理想气体,忽略抽气过程中气体温度的变化。求应抽出气体的质量与抽气前罐内气体质量的比值。
14.(2020·潍坊模拟)如图所示在绝热汽缸内,有一绝热轻活塞封闭一定质量的气体,开始时缸内气体温度为27
℃,封闭气柱长9
cm,活塞横截面积S=50
cm2。现通过汽缸底部电阻丝给气体加热一段时间。此过程中气体吸热22
J,稳定后气体温度变为127
℃。已知大气压强等于105
Pa,求:
(1)加热后活塞到汽缸底端的距离;
(2)此过程中气体内能改变了多少。
16.(2020·辽宁葫芦岛市第一次模拟)
回热式制冷机是一种深低温设备,制冷极限约50
K.某台回热式制冷机工作时,一定量的氦气(可视为理想气体)缓慢经历如图所示的四个过程:已知状态A和B的温度均为27
℃,状态C和D的温度均为-133
℃,下列判断正确的是________.
A.气体由状态A到B过程,温度先升高后降低
B.气体由状态B到C过程,内能保持不变
C.气体由状态C到D过程,分子间的平均间距减小
D.气体由状态C到D过程,气体对外做功
E.气体由状态D到A过程,其热力学温度与压强成正比
17.(1)在“用油膜法估测分子的大小”的实验中,用移液管量取0.25
mL油酸,倒入标注250
mL的容量瓶中,再加入酒精后得到250
mL的溶液;然后用滴管吸取这种溶液,向小量筒中滴入100滴溶液,溶液的液面达到量筒中1
mL的刻度;再用滴管取配好的油酸溶液,向撒有痱子粉的盛水浅盘中滴下2滴溶液,在液面上形成油酸薄膜;待油膜稳定后,放在带有正方形坐标格的玻璃板下观察油膜,如图所示。坐标格正方形的大小为2
cm×2
cm,由图可以估算出油膜的面积是________m2(保留两位有效数字),由此估算出油膜分子的直径是________m(保留一位有效数字)。
(2)某同学在“用油膜法估测分子的大小”的实验中,计算出的分子直径明显偏大,可能是由于________。
A.油酸分子未完全散开
B.油酸中含有大量酒精
C.计算油膜面积时,舍去了所有不足半格的方格
D.求每滴油酸酒精溶液的体积时,1
mL的溶液滴数多计了10滴
分子动理论
气体及热力学定律(解析)
1.(2020·全国卷Ⅰ)(1)(5分)分子间作用力F与分子间距r的关系如图所示,r=r1时,F=0。分子间势能由r决定,规定两分子相距无穷远时分子间的势能为零。若一分子固定于原点O,另一分子从距O点很远处向O点运动,在两分子间距减小到r2的过程中,势能________(填“减小”“不变”或“增大”);在间距由r2减小到r1的过程中,势能________(填“减小”“不变”或“增大”);在间距等于r1处,势能________(填“大于”“等于”或“小于”)零。
(2)(10分)甲、乙两个储气罐储存有同种气体(可视为理想气体)。甲罐的容积为V,罐中气体的压强为p;乙罐的容积为2V,罐中气体的压强为p。现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等。求调配后
(ⅰ)两罐中气体的压强;
(ⅱ)甲罐中气体的质量与甲罐中原有气体的质量之比。
【答案】 (1)减小 减小 小于 (2)(ⅰ)p (ⅱ)
【解析】 (1)分子势能与分子间距离变化的关系图像如图乙所示,两分子间距减小到r2的过程中和由r2减小到r1的过程中,分子力做正功,分子势能减小;在间距等于r1处,分子势能最小,小于零。
(2)(ⅰ)假设乙罐中的气体被压缩到压强为p,其体积变为V1,由玻意耳定律有
p(2V)=pV1①
现两罐气体压强均为p,总体积为(V+V1)。设调配后两罐中气体的压强为p′,由玻意耳定律有
p(V+V1)=p′(V+2V)②
联立①②式可得p′=p③
(ⅱ)若调配后甲罐中的气体再被压缩到原来的压强p时,体积为V2,由玻意耳定律有
p′V=pV2④
设调配后甲罐中气体的质量与甲罐中原有气体的质量之比为k,由密度的定义有k=⑤
联立③④⑤式可得k=⑥
2.(2020·全国卷Ⅱ)(1)下列关于能量转换过程的叙述,违背热力学第一定律的有________,不违背热力学第一定律、但违背热力学第二定律的有________。(填正确答案标号)
A.汽车通过燃烧汽油获得动力并向空气中散热
B.冷水倒入保温杯后,冷水和杯子的温度都变得更低
C.某新型热机工作时将从高温热源吸收的热量全部转化为功,而不产生其他影响
D.冰箱的制冷机工作时从箱内低温环境中提取热量散发到温度较高的室内
(2)(10分)潜水钟是一种水下救生设备,它是一个底部开口、上部封闭的容器,外形与钟相似。潜水钟在水下时其内部上方空间里存有空气,以满足潜水员水下避险的需要。为计算方便,将潜水钟简化为截面积为S、高度为h、开口向下的圆筒;工作母船将潜水钟由水面上方开口向下吊放至深度为H的水下,如图所示。已知水的密度为ρ,重力加速度大小为g,大气压强为p0,H?h,忽略温度的变化和水密度随深度的变化。
(ⅰ)求进入圆筒内水的高度l;
(ⅱ)保持H不变,压入空气使筒内的水全部排出,求压入的空气在其压强为p0时的体积。
【答案】 (1)B C (2)(ⅰ)
h (ⅱ)
【解析】 (1)A项符合热力学第一、第二定律。B项不可能,冷水和杯子温度不可能都变低,只能是一个升高一个降低,或温度都不变,B项描述违背了热力学第一定律。C项描述虽然不违背热力学第一定律,但违背了热力学第二定律。D项中冰箱消耗电能从而可以从低温环境中提取热量散发到温度较高的室内,不违背热力学第二定律。
(2)(ⅰ)设潜水钟在水面上方时和放入水下后筒内气体的体积分别为V0和V1,放入水下后筒内气体的压强为p1,由玻意耳定律和题给条件有
p1V1=p0V0①
V0=hS②
V1=(h-l)S③
p1=p0+ρg(H-l)④
联立以上各式并考虑H?h>l,解得l=
h⑤
(ⅱ)设水全部排出后筒内气体的压强为p2,此时筒内气体的体积为V0,这些气体在其压强为p0时的体积为V3,由玻意耳定律有
p2V0=p0V3⑥
其中p2=p0+ρgH⑦
设需压入筒内的气体体积为V,依题意V=V3-V0⑧
联立②⑥⑦⑧式得V=⑨
3.(2020·全国卷Ⅲ)(1)如图,一开口向上的导热汽缸内,用活塞封闭了一定质量的理想气体,活塞与汽缸壁间无摩擦。现用外力作用在活塞上,使其缓慢下降。环境温度保持不变,系统始终处于平衡状态。在活塞下降过程中________。(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分;每选错1个扣3分,最低得分为0分)(  )
A.气体体积逐渐减小,内能增加
B.气体压强逐渐增大,内能不变
C.气体压强逐渐增大,放出热量
D.外界对气体做功,气体内能不变
E.外界对气体做功,气体吸收热量
(2)(10分)如图,两侧粗细均匀、横截面积相等、高度均为H=18
cm的U型管,左管上端封闭,右管上端开口。右管中有高h0=4
cm的水银柱,水银柱上表面离管口的距离l=12
cm。管底水平段的体积可忽略。环境温度为T1=283
K,大气压强p0=76
cmHg。
(ⅰ)现从右侧端口缓慢注入水银(与原水银柱之间无气隙),恰好使水银柱下端到达右管底部。此时水银柱的高度为多少?
(ⅱ)再将左管中密封气体缓慢加热,使水银柱上表面恰与右管口平齐,此时密封气体的温度为多少?
【答案】(1)BCD (2)(ⅰ)12.9
cm (ⅱ)363
K
【解析】(1)A错:温度不变,理想气体的内能不变。B对:根据玻意耳定律,体积减小,压强增大。C、D对,E错:根据ΔU=W+Q,内能不变,外界对气体做功,气体放出热量。
(2)(ⅰ)设密封气体初始体积为V1,压强为p1,左、右管的横截面积均为S,密封气体先经等温压缩过程体积变为V2,压强变为p2。由玻意耳定律有
p1V1=p2V2①
设注入水银后水银柱高度为h,水银的密度为ρ,按题设条件有
p1=p0+ρgh0②
p2=p0+ρgh③
V1=(2H-l-h0)S,V2=HS④
联立①②③④式并代入题给数据得
h=12.9
cm⑤
(ⅱ)密封气体再经等压膨胀过程体积变为V3,温度变为T2,由盖?吕萨克定律有
=⑥
按题设条件有
V3=(2H-h)S⑦
联立④⑤⑥⑦式并代入题给数据得
T2=363
K⑧
4.(2019·全国卷Ⅰ)(1)某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视为理想气体。初始时容器中空气的温度与外界相同,压强大于外界。现使活塞缓慢移动,直至容器中的空气压强与外界相同。此时,容器中空气的温度________(填“高于”“低于”或“等于”)外界温度,容器中空气的密度________(填“大于”“小于”或“等于”)外界空气的密度。
(2)热等静压设备广泛应用于材料加工中。该设备工作时,先在室温下把惰性气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔中的材料加工处理,改善其性能。一台热等静压设备的炉腔中某次放入固体材料后剩余的容积为0.13
m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中。已知每瓶氩气的容积为3.2×10-2
m3,使用前瓶中气体压强为1.5×107
Pa,使用后瓶中剩余气体压强为2.0×106
Pa;室温温度为27
℃。氩气可视为理想气体。
①求压入氩气后炉腔中气体在室温下的压强;
②将压入氩气后的炉腔加热到1227
℃,求此时炉腔中气体的压强。
【答案】(1)低于 大于
(2)①3.2×107
Pa ②1.6×108
Pa
【解析】(1)活塞光滑,容器绝热,容器内空气体积增大,对外做功,由ΔU=W+Q知,气体内能减少,温度降低。气体的压强与温度和单位体积内的分子数有关,由于容器内空气的温度低于外界温度,但压强相同,则容器中空气的密度大于外界空气的密度。
(2)①设初始时每瓶气体的体积为V0,压强为p0;使用后瓶中剩余气体的压强为p1。假设体积为V0、压强为p0的气体压强变为p1时,其体积膨胀为V1。由玻意耳定律有
p0V0=p1V1①
每瓶被压入进炉腔的气体在室温和压强为p1条件下的体积为
V1′=V1-V0②
设10瓶气体压入炉腔后炉腔中气体的压强为p2,体积为V2。由玻意耳定律有
p2V2=10p1V1′③
联立①②③式并代入题给数据得
p2=3.2×107
Pa④
②设加热前炉腔的温度为T0,加热后炉腔温度为T1,气体压强为p3。由查理定律有
=⑤
联立④⑤式并代入题给数据得p3=1.6×108
Pa。
5.(2019·全国卷Ⅱ)
(1)如p?V图所示,1、2、3三个点代表某容器中一定量理想气体的三个不同状态,对应的温度分别是T1、T2、T3。用N1、N2、N3分别表示这三个状态下气体分子在单位时间内撞击容器壁上单位面积的平均次数,则N1________N2,T1________T3,N2________N3。(填“大于”“小于”或“等于”)
(2)如图,一容器由横截面积分别为2S和S的两个汽缸连通而成,容器平放在水平地面上,汽缸内壁光滑。整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气。平衡时,氮气的压强和体积分别为p0和V0,氢气的体积为2V0,空气的压强为p。现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求
①抽气前氢气的压强;
②抽气后氢气的压强和体积。
【答案】 (1)大于 等于 大于
(2)①(p0+p) ②p0+p 
【解析】 (1)根据理想气体状态方程有==,可知T1>T2,T2对于状态1、2,由于T1>T2,所以状态1时气体分子热运动的平均动能大,热运动的平均速率大,体积相等,分子数密度相等,故分子在单位时间内对单位面积容器壁的平均碰撞次数多,即N1>N2;对于状态2、3,由于T2N3。
(2)①设抽气前氢气的压强为p10,根据力的平衡条件得
p10·2S+p·S=p·2S+p0·S①
得p10=(p0+p)②
②设抽气后氢气的压强和体积分别为p1和V1,氮气的压强和体积分别为p2和V2。根据力的平衡条件有
p2·S=p1·2S③
由玻意耳定律得
p1V1=p10·2V0④
p2V2=p0V0⑤
由于两活塞用刚性杆连接,故
V1-2V0=2(V0-V2)⑥
联立②③④⑤⑥式解得
p1=p0+p
V1=。
6.(2019·全国卷Ⅲ)(1)用油膜法估算分子大小的实验中,首先需将纯油酸稀释成一定浓度的油酸酒精溶液,稀释的目的是______________________________。实验中为了测量出一滴已知浓度的油酸酒精溶液中纯油酸的体积,可以______________________________________________________。为得到油酸分子的直径,还需测量的物理量是________________________________。
(2)如图,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0
cm的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0
cm。若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同。已知大气压强为76
cmHg,环境温度为296
K。
①求细管的长度;
②若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度。
【答案】 (1)使油酸在浅盘的水面上容易形成一块单分子层油膜 把油酸酒精溶液一滴一滴地滴入小量筒中,测出1
mL油酸酒精溶液的滴数,得到一滴溶液中纯油酸的体积 单分子层油膜的面积
(2)①41
cm ②312
K
【解析】 (1)用油膜法估测分子直径时,需使油酸在水面上形成单分子层油膜,为使油酸尽可能地散开,将油酸用酒精稀释。要测出一滴已知浓度的油酸酒精溶液中纯油酸的体积,需要测量一滴油酸酒精溶液的体积,可用累积法,即测量出1
mL油酸酒精溶液的滴数。根据V=Sd,要求得油酸分子的直径d,则需要测出单分子层油膜的面积,以及一滴油酸酒精溶液中纯油酸的体积。
(2)①设细管的长度为L,横截面的面积为S,水银柱高度为h;初始时,设水银柱上表面到管口的距离为h1,被密封气体的体积为V,压强为p;细管倒置时,被密封气体的体积为V1,压强为p1。由玻意耳定律有
pV=p1V1①
由力的平衡条件有
pS=p0S+ρghS②
p1S+ρghS=p0S③
式中,ρ、g分别为水银的密度和重力加速度的大小,p0为大气压强。由题意有
V=S(L-h1-h)④
V1=S(L-h)⑤
由①②③④⑤式和题给数据得
L=41
cm⑥
②设气体被加热前后的温度分别为T0和T,由盖—吕萨克定律有
=⑦
由④⑤⑥⑦式和题给数据得T=312
K。
7.(1)(多选)如图,一定质量的理想气体从状态a开始,经历过程①、②、③、④到达状态e。对此气体,下列说法正确的是________。
A.过程①中气体的压强逐渐减小
B.过程②中气体对外界做正功
C.过程④中气体从外界吸收了热量
D.状态c、d的内能相等
E.状态d的压强比状态b的压强小
(2)如图,容积为V的汽缸由导热材料制成,面积为S的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K。开始时,K关闭,汽缸内上下两部分气体的压强均为p0。现将K打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为时,将K关闭,活塞平衡时其下方气体的体积减小了。不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g。求流入汽缸内液体的质量。
【答案】(1)BDE (2)
【解析】(1)由理想气体状态方程=可知,体积不变温度升高即Tb>Ta,则pb>pa,即过程①中气体的压强逐渐增大,A错误;由于过程②中气体体积增大,所以过程②中气体对外做功,B正确;过程④中气体体积不变,对外做功为零,温度降低,内能减小,根据热力学第一定律,过程④中气体放出热量,C错误;由于状态c、d的温度相等,根据理想气体的内能只与温度有关,可知状态c、d的内能相等,D正确;由理想气体状态方程=C可得p=C,即T?V图中的点与原点O的连线的斜率正比于该点的压强,故状态d的压强比状态b的压强小,E正确。
(2)设活塞再次平衡后,活塞上方气体的体积为V1,压强为p1;下方气体的体积为V2,压强为p2。在活塞下移的过程中,活塞上、下方气体的温度均保持不变,由玻意耳定律得
p0=p1V1①
p0=p2V2②
由已知条件得
V1=+-=V③
V2=-=④
设活塞上方液体的质量为m,由力的平衡条件得
p2S=p1S+mg⑤
联立以上各式得m=。
8.(1)(多选)氧气分子在0
℃和100
℃温度下单位速率间隔的分子数占总分子数的百分比随气体分子速率的变化分别如图中两条曲线所示。下列说法正确的是________。
A.图中两条曲线下面积相等
B.图中虚线对应于氧气分子平均动能较小的情形
C.图中实线对应于氧气分子在100
℃时的情形
D.图中曲线给出了任意速率区间的氧气分子数目
E.与0
℃时相比,100
℃时氧气分子速率出现在0~400
m/s区间内的分子数占总分子数的百分比较大
(2)如图,容积均为V的汽缸A、B下端有细管(容积可忽略)连通,阀门K2位于细管的中部,A、B的顶部各有一阀门K1、K3;B中有一可自由滑动的活塞(质量、体积均可忽略)。初始时,三个阀门均打开,活塞在B的底部;关闭K2、K3,通过K1给汽缸充气,使A中气体的压强达到大气压p0的3倍后关闭K1。已知室温为27
℃,汽缸导热。
①打开K2,求稳定时活塞上方气体的体积和压强;
②接着打开K3,求稳定时活塞的位置;
③再缓慢加热汽缸内气体使其温度升高20
℃,求此时活塞下方气体的压强。
【答案】 (1)ABC
(2)① 2p0 ②上升直到B的顶部 ③1.6p0
【解析】 (1)A对:面积表示总的氧气分子数,二者相等。B对:温度是分子平均动能的标志,温度越高,分子的平均动能越大,虚线为氧气分子在0
℃时的情形,分子平均动能较小。C对:实线为氧气分子在100
℃时的情形。D错:曲线给出的是分子数占总分子数的百分比。E错:速率出现在0~400
m/s区间内,100
℃时氧气分子数占总分子数的百分比较小。
(2)①设打开K2后,稳定时活塞上方气体的压强为p1,体积为V1。依题意,被活塞分开的两部分气体都经历等温过程。由玻意耳定律得
p0V=p1V1①
(3p0)V=p1(2V-V1)②
联立①②式得
V1=③
p1=2p0④
②打开K3后,由④式知,活塞必定上升。设在活塞下方气体与A中气体的体积之和为V2(V2≤2V)时,活塞下气体压强为p2。由玻意耳定律得
(3p0)V=p2V2⑤
由⑤式得
p2=p0⑥
由⑥式知,打开K3后活塞上升直到B的顶部为止;此时压强为p′2=p0。
③设加热后活塞下方气体的压强为p3,气体温度从T1=300
K升高到T2=320
K的等容过程中,由查理定律得=⑦
将有关数据代入⑦式得p3=1.6p0。
9.(2020·宿州市一质检)一定量的理想气体的压强p与热力学温度T的变化图象如图所示。下列说法正确的是(  )
A.A→B的过程中,气体对外界做功,气体内能增加
B.A→B的过程中,气体从外界吸收的热量等于其内能的增加量
C.B→C的过程中,气体体积增大,对外做功
D.B→C的过程中,气体对外界放热,内能不变
E.B→C的过程中,气体分子与容器壁每秒碰撞的次数增加
【答案】BDE 
【解析】从A到B的过程,是等容升温过程,气体不对外做功,气体从外界吸收热量,使得气体内能增加,故A错误,B正确;从B到C的过程是等温压缩过程,压强增大,体积减小,外界对气体做功,气体放出热量,内能不变,因体积减小,分子数密度增大,故气体分子与容器壁每秒碰撞的次数增加,故C错误,D、E正确。
10.(2020·山东名校联考信息卷)玻璃器皿的制造过程中玻璃液的形成是重要环节,当温度达到1
200
℃时,大量的气泡分布在玻璃液中,经过一系列工艺后获得澄清的玻璃液,之后可以通过降温到合适温度,然后选择合适大小的玻璃液进行吹泡(即往玻璃液中吹气)制造玻璃器皿,下列与玻璃有关的物理学问题的说法正确的是(  )
A.因为分子间存在着斥力,所以破碎的玻璃不能简单地拼接在一起
B.玻璃从开始熔化到形成玻璃液的过程中,温度不固定
C.玻璃内部的原子是无序分布的,具有各向异性的特点
D.使1
200
℃的玻璃液继续升温,可能使其中的气泡减少
E.在真空和高温条件下,可以利用分子扩散在半导体材料中掺入其他元素
【答案】BDE 
【解析】破碎的玻璃不能拼接在一起,是因为分子间距达不到分子作用力的范围,A错误;玻璃是非晶体,熔化时无固定温度,B正确;玻璃是非晶体,玻璃内部的原子是无序排列的,具有各向同性的特点,C错误;温度继续升高,气泡内气体升温,膨胀,气体的密度变小,上浮,从玻璃液中排出,D正确。在真空、高温条件下,可以利用分子扩散在半导体材料中掺入其他元素,故E正确
11.(2020·衡水金卷模拟)下列说法正确的是(  )
A.在毛细现象中,毛细管中的液面有的升高,有的降低,这与液体的种类和毛细管的材质有关
B.脱脂棉脱脂的目的在于使它从不被水浸润变为可以被水浸润,以便吸取药液
C.烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体
D.在空间站完全失重的环境下,水滴能收缩成标准的球形是因为液体表面张力的作用
E.在一定温度下,当人们感到潮湿时,水蒸发慢,空气的绝对湿度一定较大
【答案】ABD 
【解析】在毛细现象中,毛细管中的液面有的升高,有的降低,这与液体的种类和毛细管的材质有关,选项A正确;脱脂棉脱脂的目的在于使它从不被水浸润变为可以被水浸润,以便吸取药液,选项B正确;烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明云母片的物理性质具有各向异性,云母片是单晶体,选项C错误;在空间站完全失重的环境下,水滴能收缩成标准的球形是因为液体表面张力的作用,选项D正确;在一定温度下,空气的相对湿度越大,水蒸发越慢,人就感到越潮湿,故当人们感到潮湿时,空气的相对湿度一定较大,但绝对湿度不一定大,故E错误。
12.(2019·全国卷Ⅰ·T33(1))某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视为理想气体。初始时容器中空气的温度与外界相同,压强大于外界。现使活塞缓慢移动,直至容器中的空气压强与外界相同。此时,容器中空气的温度________(填“高于”“低于”或“等于”)外界温度,容器中空气的密度________(填“大于”“小于”或“等于”)外界空气的密度。
【答案】低于 大于
【解析】容器与活塞绝热性能良好,容器中空气与外界不发生热交换(Q=0),活塞移动的过程中,容器中空气压强减小,则容器中空气正在膨胀,体积增大,对外界做功,即W<0。根据热力学第一定律ΔU=Q+W可知:容器中空气内能减小,温度降低,容器中空气的温度低于外界温度。根据理想气体状态方程有=C,又ρ=,联立解得:ρ=。对容器外与容器内质量均为m的气体,因容器中空气压强和容器外空气压强相同,容器内温度低于外界温度,则容器中空气的密度大于外界空气的密度。
13.(2020·山东学业水平等级考试·T15)中医拔罐的物理原理是利用玻璃罐内外的气压差使罐吸附在人体穴位上,进而治疗某些疾病。常见拔罐有两种,如图所示,左侧为火罐,下端开口;右侧为抽气拔罐,下端开口,上端留有抽气阀门。使用火罐时,先加热罐中气体,然后迅速按到皮肤上,自然降温后火罐内部气压低于外部大气压,使火罐紧紧吸附在皮肤上。抽气拔罐是先把罐体按在皮肤上,再通过抽气降低罐内气体压强。某次使用火罐时,罐内气体初始压强与外部大气压相同,温度为450
K,最终降到300
K,因皮肤凸起,内部气体体积变为罐容积的。若换用抽气拔罐,抽气后罐内剩余气体体积变为抽气拔罐容积的,罐内气压与火罐降温后的内部气压相同。罐内气体均可视为理想气体,忽略抽气过程中气体温度的变化。求应抽出气体的质量与抽气前罐内气体质量的比值。
【答案】
【解析】设火罐内气体初始状态参量分别为p1、T1、V1,温度降低后状态参量分别为p2、T2、V2,罐的容积为V0,由题意知
p1=p0、T1=450
K、V1=V0、T2=300
K、V2=

由理想气体状态方程得


代入数据得
p2=0.7p0

对于抽气罐,设初态气体状态参量分别为p3、V3,末态气体状态参量分别为p4、V4,罐的容积为V′0,由题意知
p3=p0、V3=V′0、p4=p2

由玻意耳定律得
p0V′0=p2V4

联立③⑤式,代入数据得
V4=V′0

设抽出的气体的体积为ΔV,由题意知
ΔV=V4-V′0

故应抽出气体的质量与抽气前罐内气体质量的比值为


联立⑥⑦⑧式,代入数据得
=。

14.(2020·潍坊模拟)如图所示在绝热汽缸内,有一绝热轻活塞封闭一定质量的气体,开始时缸内气体温度为27
℃,封闭气柱长9
cm,活塞横截面积S=50
cm2。现通过汽缸底部电阻丝给气体加热一段时间。此过程中气体吸热22
J,稳定后气体温度变为127
℃。已知大气压强等于105
Pa,求:
(1)加热后活塞到汽缸底端的距离;
(2)此过程中气体内能改变了多少。
【答案】(1)12
cm (2)7
J
【解析】(1)取被封闭的气体为研究的对象。开始时气体的体积为L1S,温度为:T1=(273+27)K=300
K,
末状态的体积为L2S,温度为:T2=(273+127)K=400
K
气体做等压变化,则=
代入数据得:L2=12
cm。
(2)在该过程中,气体对外做功:
W=F·ΔL=p0S(L2-L1)=105×50×10-4×(12-9)×10-2
J=15
J,
由热力学第一定律:ΔU=Q-W=22
J-15
J=7
J。
15.(2020·湖北武汉市四月调研)如图所示,一定质量的理想气体从状态A变化到状态B,再由状态B变化到状态C,最后由状态C变化到状态A.气体完成这个循环,内能的变化ΔU=________,对外做功W=________,气体从外界吸收的热量Q=________.(用图中已知量表示)
【答案】 (1)0 p0V0 p0V0 
【解析】 (1)气体完成一个循环过程,温度的变化量为零,则内能的变化ΔU=0;对外做功等于图中三角形ABC的面积,即W=p0V0;根据热力学第一定律可知,气体吸热:Q=W=p0V0.
16.(2020·辽宁葫芦岛市第一次模拟)
回热式制冷机是一种深低温设备,制冷极限约50
K.某台回热式制冷机工作时,一定量的氦气(可视为理想气体)缓慢经历如图所示的四个过程:已知状态A和B的温度均为27
℃,状态C和D的温度均为-133
℃,下列判断正确的是________.
A.气体由状态A到B过程,温度先升高后降低
B.气体由状态B到C过程,内能保持不变
C.气体由状态C到D过程,分子间的平均间距减小
D.气体由状态C到D过程,气体对外做功
E.气体由状态D到A过程,其热力学温度与压强成正比
【答案】 (1)ADE 
【解析】 (1)状态A和B的温度相等,根据=C,经过A、B的等温线应是过A、B的双曲线的一部分,沿直线由A到B,pV先增大后减小,所以温度先升高后降低,故A正确;
气体由状态B到C过程,体积不变,根据=C,压强减小,温度降低,内能减小,故B错误;气体由状态C到D过程,体积增大,分子间的平均间距增大,故C错误;气体由状态C到D过程,体积增大,气体对外做功,故D正确;气体由状态D到A过程,体积不变,根据=C,其热力学温度与压强成正比,故E正确.
17.(1)在“用油膜法估测分子的大小”的实验中,用移液管量取0.25
mL油酸,倒入标注250
mL的容量瓶中,再加入酒精后得到250
mL的溶液;然后用滴管吸取这种溶液,向小量筒中滴入100滴溶液,溶液的液面达到量筒中1
mL的刻度;再用滴管取配好的油酸溶液,向撒有痱子粉的盛水浅盘中滴下2滴溶液,在液面上形成油酸薄膜;待油膜稳定后,放在带有正方形坐标格的玻璃板下观察油膜,如图所示。坐标格正方形的大小为2
cm×2
cm,由图可以估算出油膜的面积是________m2(保留两位有效数字),由此估算出油膜分子的直径是________m(保留一位有效数字)。
(2)某同学在“用油膜法估测分子的大小”的实验中,计算出的分子直径明显偏大,可能是由于________。
A.油酸分子未完全散开
B.油酸中含有大量酒精
C.计算油膜面积时,舍去了所有不足半格的方格
D.求每滴油酸酒精溶液的体积时,1
mL的溶液滴数多计了10滴
【答案】(1)2.4×10-2 8×10-10 (2)AC
【解析】(1)油膜面积的估算可以先数出油膜所覆盖的整个方格数,不足半个格的舍去,多于半个格的算1个格,再计算总面积,将油膜看成单分子层,先计算2滴溶液中所含油酸的体积,即为油膜的体积,再除以油膜面积即得分子直径。由图示油膜可知,油膜的面积S=60×2
cm×2
cm=240
cm2=2.4×10-2
m2;
两滴油酸溶液含纯油酸的体积
V=2××
mL=2×10-5
mL=2×10-11
m3,
油酸分子的直径
d==
m≈8×10-10
m。
(2)由公式d=可知,d偏大,则可能油酸体积V偏大或油膜面积S偏小,选项A、C正确。
2
/
2

展开更多......

收起↑

资源预览