2021年湖北省各地中考数学试题汇编--函数与最值应用题(Word版,学生版和解析版)

资源下载
  1. 二一教育资源

2021年湖北省各地中考数学试题汇编--函数与最值应用题(Word版,学生版和解析版)

资源简介

2021年湖北省各地中考数学试题汇编--函数与最值应用题
1、(10分)(2020?湖北武汉)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.
(1)求a,b的值;
(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?
(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).
2、.(10分)(2020?湖北孝感)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg乙产品的售价比1kg甲产品的售价多5元,1kg丙产品的售价是1kg甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.
(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?
(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg农产品最少要花费多少元?
3、(10分)(2020?湖北襄阳)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.
(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;
(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?
(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.
4、(10分)(2020?湖北咸宁)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.
(1)求每盒口罩和每盒水银体温计的价格各是多少元?
(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.
(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?
5、(10分)(2020?湖北鄂州)一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:
x(元/件)
4
5
6
y(件)
10000
9500
9000
(1)求y与x的函数关系式(不求自变量的取值范围);
(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?
(3)抗疫期间,该商场这种商品售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠m元(1≤m≤6),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m的取值范围.
6、(10分)(2020?湖北恩施州)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.
(1)求A、B两种品牌足球的单价;
(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?
7、(11分)(2020?湖北黄冈)网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).
(1)请求出日获利w与销售单价x之间的函数关系式;
(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?
(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.
8、(10分)(2020?湖北荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往A地240吨,B地260吨,运费如下表(单位:元/吨).
目的地
生产厂
A
B

20
25

15
24
(1)求甲、乙两厂各生产了这批防疫物资多少吨?
(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元.求y与x之间的函数关系式,并设计使总运费最少的调运方案;
(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200元.求m的最小值.
9、(10分)(2020?湖北随州)2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p(元/只)和销量q(只)与第x天的关系如下表:
第x天
1
2
3
4
5
销售价格p(元/只)
2
3
4
5
6
销量q(只)
70
75
80
85
90
物价部门发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q(只)与第x天的关系为q=﹣2x2+80x﹣200
(6≤x≤30,且x为整数),已知该型号口罩的进货价格为0.5元/只.
(1)直接写出该药店该月前5天的销售价格p与x和销量q与x之间的函数关系式;
(2)求该药店该月销售该型号口罩获得的利润W(元)与x的函数关系式,并判断第几天的利润最大;
(3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m倍的罚款,若罚款金额不低于2000元,则m的取值范围为  .
11、(10分)(2020?湖北荆门)2020年是决战决胜扶贫攻坚和全面建成小康社会的收官之年,荆门市政府加大各部门和单位对口扶贫力度.某单位的帮扶对象种植的农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系式为p,销售量y(千克)与x之间的关系如图所示.
(1)求y与x之间的函数关系式,并写出x的取值范围;
(2)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)
12、(12分)(2020?湖北仙桃市、潜江市、天门市、江汉油田)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:
(1)填空:妈妈骑车的速度是  米/分钟,妈妈在家装载货物所用时间是  分钟,点M的坐标是  .
(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;
(3)求t为何值时,两人相距360米.2021年湖北省各地中考数学试题汇编--函数与最值应用题
【摘要】利用函数解决实际问题.并求最值.这是近三年中考应用题的新特点.
考查题型。
函数作为研究实际问题变化规律的重要数学模型,在整个中学数学当中占有十分重要的地位。因此,函数应用题是也中考数学命题的重点,深受命题老师的青睐。此类问题背景丰富,又贴近生活,内容呈现形式多样,重点考查考生的数学建模和解决问题的能力。
目录
TOC
\o
"1-3"
\h
\z
\u
1、(10分)(2020?湖北武汉)函数与最值应用题
2
2、(10分)(2020?湖北孝感)函数与最值应用题
3
3、(10分)(2020?湖北襄阳)函数与最值应用题
4
4、(10分)(2020?湖北咸宁)函数与最值应用题
6
5、(10分)(2020?湖北鄂州)函数与最值应用题
7
6、(10分)(2020?湖北恩施州)函数与最值应用题
8
7、(11分)(2020?湖北黄冈)函数与最值应用题
9
8、(10分)(2020?湖北荆州)函数与最值应用题
11
9、(10分)(2020?湖北随州)函数与最值应用题
12
11、(10分)(2020?湖北荆门)函数与最值应用题
14
12、(12分)(2020?湖北仙桃市、潜江市、天门市、江汉油田)函数与最值应用题
15
1、(10分)(2020?湖北武汉)某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.
(1)求a,b的值;
(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?
(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).
【解答】解:(1)由题意得:,
解得:.
∴a=1,b=30;
(2)由(1)得:y=x2+30x,
设A,B两城生产这批产品的总成本为w,
则w=x2+30x+70(100﹣x)
=x2﹣40x+7000,
=(x﹣20)2+6600,
由二次函数的性质可知,当x=20时,w取得最小值,最小值为6600万元,此时100﹣20=80.
答:A城生产20件,B城生产80件;
(3)设从A城运往C地的产品数量为n件,A,B两城总运费的和为P,
则从A城运往D地的产品数量为(20﹣n)件,从B城运往C地的产品数量为(90﹣n)件,从B城运往D地的产品数量为(10﹣20+n)件,
由题意得:,
解得10≤n≤20,
∴P=mn+3(20﹣n)+(90﹣n)+2(10﹣20+n),
整理得:P=(m﹣2)n+130,
根据一次函数的性质分以下两种情况:
①当0<m≤2,10≤n≤20时,P随n的增大而减小,
则n=20时,P取最小值,最小值为20(m﹣2)+130=20m+90;
②当m>2,10≤n≤20时,P随n的增大而增大,
则n=10时,P取最小值,最小值为10(m﹣2)+130=10m+110.
答:0<m≤2时,A,B两城总运费的和为(20m+90)万元;当m>2时,A,B两城总运费的和为(10m+110)万元.
2、.(10分)(2020?湖北孝感)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg乙产品的售价比1kg甲产品的售价多5元,1kg丙产品的售价是1kg甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.
(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?
(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg农产品最少要花费多少元?
【解答】解:(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg丙产品的售价为3x元,根据题意,得:

解得:x=5,
经检验,x=5既符合方程,也符合题意,
∴x+5=10,3x=15.
答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;
(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40﹣3m)kg,
∴40﹣3m+m≤2m×3,
∴m≥15,
设按此方案购买40kg农产品所需费用为y元,根据题意,得:
y=5(40﹣3m)+20m+15m=20m+200,
∵20>0,
∴y随m的增大而增大,
∴m=5时,y取最小值,且y最小=300,
答:按此方案购买40kg农产品最少要花费300元.
3、(10分)(2020?湖北襄阳)受新冠肺炎疫情影响,一水果种植专业户有大量成熟水果无法出售.“一方有难,八方支援”某水果经销商主动从该种植专业户购进甲,乙两种水果进行销售.专业户为了感谢经销商的援助,对甲种水果的出售价格根据购买量给予优惠,对乙种水果按25元/千克的价格出售.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.
(1)直接写出当0≤x≤50和x>50时,y与x之间的函数关系式;
(2)若经销商计划一次性购进甲,乙两种水果共100千克,且甲种水果不少于40千克,但又不超过60千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?
(3)若甲,乙两种水果的销售价格分别为40元/千克和36元/千克.经销商按(2)中甲,乙两种水果购进量的分配比例购进两种水果共a千克,且销售完a千克水果获得的利润不少于1650元,求a的最小值.
【解答】解:(1)当0≤x≤50时,设y=kx,根据题意得50k=1500,
解得k=30;
∴y=30x;
当x>50时,设y=k1x+b,
根据题意得,
,解得,
∴y=24x+3000.
∴y,
(2)设购进甲种水果为a千克,则购进乙种水果(100﹣a)千克,
∴40≤a≤60,
当40≤a≤50时,w1=30a+25(100﹣a)=5a+2500.
当a=40
时.wmin=2700
元,
当50<a≤60时,w2=24a+300+25(100﹣a)=﹣a+2800.
当a=60时,wmin=2740
元,
∵2740>2700,
∴当a=40时,总费用最少,最少总费用为2700
元.
此时乙种水果100﹣40=60(千克).
答:购进甲种水果为40千克,购进乙种水果60千克,才能使经销商付款总金额w(元)最少.
(3)由题意可设甲种水果为千克,乙种水果为千克
当时,即0≤a≤125,
则甲种水果的进货价为30元/千克,
(40﹣30)a+(36﹣25)1650,
解得a,
与0≤a≤125矛盾,故舍去;
当时,即a>125,
则甲种水果的进货价为24元/千克,

∴a≥126125,
∴a的最小值为126.
4、(10分)(2020?湖北咸宁)5月18日,我市九年级学生安全有序开学复课.为切实做好疫情防控工作,开学前夕,我市某校准备在民联药店购买口罩和水银体温计发放给每个学生.已知每盒口罩有100只,每盒水银体温计有10支,每盒口罩价格比每盒水银体温计价格多150元.用1200元购买口罩盒数与用300元购买水银体温计所得盒数相同.
(1)求每盒口罩和每盒水银体温计的价格各是多少元?
(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.
(3)在民联药店累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有900名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?
【解答】解:(1)设每盒口罩和每盒水银体温计的价格各是x元,(x﹣150)元,根据题意,得

解得x=200,
经检验,x=200是原方程的解,
∴x﹣150=50,
答:每盒口罩和每盒水银体温计的价格各是200元、50元;
(2)设购买水银体温计y盒能和口罩刚好配套,根据题意,得
100m=2×10y,
则y=5m,
答:购买水银体温计5m盒能和口罩刚好配套;
(3)若200m+50×5m≤1800,
∴450m≤1800,
∴m≤4,
即m≤4时,w=450m;
若m>4,
则w=1800+(450m﹣1800)×0.8=360m+360,
综上所述:w.
若该校九年级有900名学生,
需要购买口罩:900×2=1800(支),
水银体温计:900×1=900(支),
此时m=1800÷100=18(盒),y=5×18=90(盒),
则w=360×18+360=6840(元).
答:购买口罩和水银体温计各18盒、90盒,所需总费用为6840元.
5、(10分)(2020?湖北鄂州)一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:
x(元/件)
4
5
6
y(件)
10000
9500
9000
(1)求y与x的函数关系式(不求自变量的取值范围);
(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?
(3)抗疫期间,该商场这种商品售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠m元(1≤m≤6),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m的取值范围.
【解答】解:(1)设y与x的函数关系式为:y=kx+b(k≠0),
把x=4,y=10000和x=5,y=9500代入得,

解得,,
∴y=﹣500x+12000;
(2)根据“在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,”得,

解得,3≤x≤12,
设利润为w元,根据题意得,
w=(x﹣3)y=(x﹣3)(﹣500x+12000)=﹣500x2+13500x﹣36000=﹣500(x﹣13.5)2+55125,
∵﹣500<0,
∴当x<13.5时,w随x的增大而增大,
∵3≤x≤12,
∴当x=12时,w取最大值为:﹣500×(12﹣13.5)2+55125=54000,
答:这一周该商场销售这种商品获得的最大利润为54000元,售价分别为12元;
(3)根据题意得,w=(x﹣3﹣m)(﹣500x+12000)=﹣500x2+(13500+500m)x﹣36000﹣12000m,
∴对称轴为x13.5+0.5m,
∵﹣500<0,
∴当x≤13.5+0.5m时,w随x的增大而增大,
∵捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.
∴15≤13.5+0.5m,
解得,m≥3,
∵1≤m≤6,
∴3≤m≤6.
6、(10分)(2020?湖北恩施州)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.
(1)求A、B两种品牌足球的单价;
(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?
【解答】解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x﹣20)元,
根据题意,得,
解得:x=100,
经检验x=100是原方程的解,
x﹣20=80,
答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;
(2)设购买m个A品牌足球,则购买(90﹣m)个B品牌足球,
则W=100m+80(90﹣m)=20m+7200,
∵A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,
∴,
解不等式组得:60≤m≤65,
所以,m的值为:60,61,62,63,64,65,
即该队共有6种购买方案,
当m=60时,W最小,
m=60时,W=20×60+7200=8400(元),
答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.
7、(11分)(2020?湖北黄冈)网络销售已经成为一种热门的销售方式,为了减少农产品的库存,我市市长亲自在某网络平台上进行直播销售大别山牌板栗,为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经销售发现,销售单价不低于成本价且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元,设板栗公司销售该板栗的日获利为w(元).
(1)请求出日获利w与销售单价x之间的函数关系式;
(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?
(3)当w≥40000元时,网络平台将向板栗公司收取a元/kg(a<4)的相关费用,若此时日获利的最大值为42100元,求a的值.
【解答】解:(1)当y≥4000,即﹣100x+5000≥4000,
∴x≤10,
∴当6≤x≤10时,w=(x﹣6+1)(﹣100x+5000)﹣2000=﹣100x2+5500x﹣27000,
当10<x≤30时,w=(x﹣6)(﹣100x+5000)﹣2000=﹣100x2+5600x﹣32000,
综上所述:w;
(2)当6≤x≤10时,w=﹣100x2+5500x﹣27000=﹣100(x)2+48625,
∵a=﹣100<0,对称轴为x,
∴当6≤x≤10时,y随x的增大而增大,即当x=10时,w最大值=18000元,
当10<x≤30时,w=﹣100x2+5600x﹣32000=﹣100(x﹣28)2+46400,
∵a=﹣100<0,对称轴为x=28,
∴当x=28时,w有最大值为46400元,
∵46400>18000,
∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为46400元;
(3)∵40000>18000,
∴10<x≤30,
∴w=﹣100x2+5600x﹣32000,
当w=40000元时,40000=﹣100x2+5600x﹣32000,
∴x1=20,x2=36,
∴当20≤x≤36时,w≥40000,
又∵10<x≤30,
∴20≤x≤30,
此时:日获利w1=(x﹣6﹣a)(﹣100x+5000)﹣2000=﹣100x2+(5600+100a)x﹣32000﹣5000a,
∴对称轴为直线x28a,
∵a<4,
∴28a<30,
∴当x=28a时,日获利的最大值为42100元
∴(28a﹣6﹣a)[﹣100×(28a)+500]﹣2000=42100,
∴a1=2,a2=86,
∵a<4,
∴a=2.
8、(10分)(2020?湖北荆州)为了抗击新冠疫情,我市甲、乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨.这批防疫物资将运往A地240吨,B地260吨,运费如下表(单位:元/吨).
目的地生产厂
A
B

20
25

15
24
(1)求甲、乙两厂各生产了这批防疫物资多少吨?
(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元.求y与x之间的函数关系式,并设计使总运费最少的调运方案;
(3)当每吨运费均降低m元(0<m≤15且m为整数)时,按(2)中设计的调运方案运输,总运费不超过5200元.求m的最小值.
【解答】解:(1)设这批防疫物资甲厂生产了a吨,乙厂生产了b吨,则:
,解得,
即这批防疫物资甲厂生产了200吨,乙厂生产了300吨;
(2)由题意得:y=20(240﹣x)+25[260﹣(300﹣x)]+15x+24(300﹣x)=﹣4x+11000,
∵,解得:40≤x≤240,
又∵﹣4<0,
∴y随x的增大而减小,
∴当x=240时,可以使总运费最少,
∴y与x之间的函数关系式为y=﹣4x+11000;使总运费最少的调运方案为:甲厂的200吨物资全部运往B地,乙厂运往A地240吨,运往B地60吨;
(3)由题意和(2)的解答得:y=﹣4x+11000﹣500m,
当x=240时,y最小=﹣4×240+11000﹣500m=10040﹣500m,
∴10040﹣500m≤5200,解得:m≥9.68,
而0<m≤15且m为整数,
∴m的最小值为10.
9、(10分)(2020?湖北随州)2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p(元/只)和销量q(只)与第x天的关系如下表:
第x天
1
2
3
4
5
销售价格p(元/只)
2
3
4
5
6
销量q(只)
70
75
80
85
90
物价部门发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q(只)与第x天的关系为q=﹣2x2+80x﹣200
(6≤x≤30,且x为整数),已知该型号口罩的进货价格为0.5元/只.
(1)直接写出该药店该月前5天的销售价格p与x和销量q与x之间的函数关系式;
(2)求该药店该月销售该型号口罩获得的利润W(元)与x的函数关系式,并判断第几天的利润最大;
(3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m倍的罚款,若罚款金额不低于2000元,则m的取值范围为 m .
【解答】解:(1)根据表格数据可知:
前5天的某型号口罩销售价格p(元/只)和销量q(只)与第x天的关系为:
p=x+1,1≤x≤5且x为整数;
q=5x+65,1≤x≤5且x为整数;
(2)当1≤x≤5且x为整数时,
W=(x+1﹣0.5)(5x+65)
=5x2x;
当6≤x≤30且x为整数时,
W=(1﹣0.5)(﹣2x2+80x﹣200)
=﹣x2+40x﹣100.
即有W,
当1≤x≤5且x为整数时,售价,销量均随x的增大而增大,
故当x=5时,W有最大值为:495元;
当6≤x≤30且x为整数时,
W═﹣x2+40x﹣100=﹣(x﹣20)2+300,
故当x=20时,W有最大值为:300元;
由495>300,可知:
第5天时利润最大为495元.
(3)根据题意可知:
获得的正常利润之外的非法所得部分为:
(2﹣0.5﹣0.5)×70+(3﹣1)×75+(4﹣1)×80+(5﹣1)×85+(6﹣1)×90=1250(元),
∴1250m≥2000,
解得m.
则m的取值范围为m.
故答案为:m.
11、(10分)(2020?湖北荆门)2020年是决战决胜扶贫攻坚和全面建成小康社会的收官之年,荆门市政府加大各部门和单位对口扶贫力度.某单位的帮扶对象种植的农产品在某月(按30天计)的第x天(x为正整数)的销售价格p(元/千克)关于x的函数关系式为p,销售量y(千克)与x之间的关系如图所示.
(1)求y与x之间的函数关系式,并写出x的取值范围;
(2)当月第几天,该农产品的销售额最大,最大销售额是多少?(销售额=销售量×销售价格)
【解答】解:(1)当0<x≤20时,设y与x的函数关系式为y=ax+b,

解得,,
即当0<x≤20时,y与x的函数关系式为y=﹣2x+80,
当20<x≤30时,设y与x的函数关系式为y=mx+n,

解得,,
即当20<x≤30时,y与x的函数关系式为y=4x﹣40,
由上可得,y与x的函数关系式为y;
(2)设当月第x天的销售额为w元,
当0<x≤20时,w=(x+4)×(﹣2x+80)(x﹣15)2+500,
∴当x=15时,w取得最大值,此时w=500,
当20<x≤30时,w=(x+12)×(4x﹣40)(x﹣35)2+500,
∴当x=30时,w取得最大值,此时w=480,
由上可得,当x=15时,w取得最大值,此时w=500,
答:当月第15天,该农产品的销售额最大,最大销售额是500元.
12、(12分)(2020?湖北仙桃市、潜江市、天门市、江汉油田)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:
(1)填空:妈妈骑车的速度是 120 米/分钟,妈妈在家装载货物所用时间是 5 分钟,点M的坐标是 (20,1200) .
(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;
(3)求t为何值时,两人相距360米.
【解答】解:(1)妈妈骑车的速度为120米/分钟,
妈妈在家装载货物时间为5分钟,
点M的坐标为(20,1200).
(2),
其图象如图所示,
(3)由题意可知:小华速度为60米/分钟,妈妈速度为120米/分钟,
①相遇前,依题意有60t+120t+360=1800,
解得t=8分钟,
②相遇后,依题意有,
60t+120t﹣360=1800,
解得t=12分钟.
③依题意,当t=20分钟时,妈妈从家里出发开始追赶小华,
此时小华距商店为1800﹣20×60=600米,只需10分钟,
即t=30分钟,小华
到达商店.
而此时妈妈距离商店为1800﹣10×120=600米>360米,
∴120(t﹣5)+360=1800×2,
解得t=32分钟,
∴t=8,12或32分钟时,两人相距360米

展开更多......

收起↑

资源列表