化学校本教材之一 化学发展史

资源下载
  1. 二一教育资源

化学校本教材之一 化学发展史

资源简介

化学发展史
2000年诺贝尔化学奖得主
瑞典皇家科学院10日宣布,美国科学家艾伦·黑格、艾伦·马克迪尔米德以及日本科学家白川英树由于在导电聚合物领域的开创性贡献,荣获今年的诺贝尔化学奖。
在人们的印象中,塑料是不导电的。在普通的电缆中,塑料就常被用作导电铜丝外面的绝缘层。但三位诺贝尔化学奖得主的成果,却向人们习以为常的“观念”提出了挑战。他们通过研究发现,经过特殊改造之后,塑料能够表现得像金属一样,产生导电性。
塑料是一种聚合物,而所谓聚合物,是由简单分子联合形成的大分子物质。聚合物要能够导电,其内部的碳原子之间必须交替地由单键和双键连接,同时还必须经过掺杂处理——也就是说,通过氧化或还原反应移去或导入电子。
黑格、马克迪尔米德和白川英树于70年代末在塑料导电研究领域取得突破性的发现。由于他们开创性的工作,导电聚合物成为对物理学家和化学家都具有重要意义的研究领域。目前,导电塑料已广泛地用于许多工业领域,如抗电磁辐射的计算机视保屏、能过滤太阳光的“智能”玻璃窗等。除此之外,导电聚合物还在发光二极管、太阳能电池、移动电话和微型电视显示装置等领域不断找到新的用武之地。导电聚合物的研究成果,还对分子电子学的迅速发展起到推动作用。将来,人类将能制造由单分子组成的晶体管和其他电子元件,这将不仅大大提高计算机的运算速度,而且还能缩小计算机的体积。
黑格1936年出生于美国衣阿华州苏城,目前担任加利福尼亚大学圣巴巴拉分校聚合物和有机固体研究所所长;艾伦·马克迪尔米德目前担任美国宾夕法尼亚大学化学教授,他1927年出生于新西兰的马斯特顿;白川英树1936年生于东京,目前任日本筑波大学材料科学研究所化学教授。
X射线/放射性/化学史
一、X射线的发现
X射线是1895年德国物理学家伦琴(RontgenW.K.1845-1923)发现的。1895年11月8日晚,伦琴为了进一步研究阴极射线的性质,他用黑色薄纸板把一个克鲁克斯管严密地套封起来,在完全暗的室内做实验。在接上高压电流进行实验中,他意外地发现在放电管一米以外的一个荧光屏(涂有荧光物质铂氰化钡的纸屏)上发生亮的光辉。一切断电源,荧光就立即消失。这个现象使他非常惊奇,于是全神贯注地重复做实验。他发现即使在跷仪器二米处,屏上仍有荧光出现。伦琴确信,这个新奇现象不是阴极射线造成的,因为实验已证明阴极射线只能在空气中进行几厘米,而且不能透过玻璃管。他决定继续对这个新发现进行全面检验。一连六个星期都在实验里废寝忘食地工作着。经过反复实验,他确信发现了一种过去未被人们所知的具有许多特性的新射线。这种射线的本质一时还不清楚,所以他取名为“X射线”(后来科学界称之为伦琴射线)。他在12月下旬写的论文中说明了初步发现的X射线的如下性质:(1)阴极射线打在固体表面上便会产生X射线;固体元素越重,产生的X射线越强。(2)X射线是直线传播的,在通过棱镜时不发生反射和折射,不被透镜聚焦。(3)与阴极射线不同,不能借助磁体(即使磁场很强)使X射线发生任何偏转。(4)X射线能使荧光物质发出荧光。(5)它能使照相底片感光,而且很敏感。(6)X射线具有很强的贯穿能力,比阴极射线强得多。它可以穿透射线具有很强的贯穿能力,比阴极射线强得多。它可以穿透千页的书,二、三厘米厚的木板,几厘米的硬橡皮等。15毫米厚的铝板,不太厚的铜板、银板、金板、铂板和铅板的背后,都可以辨别荧光。只有铅等少数物质对它有较强的吸收作用,对1.5毫米厚的铅板它实际上不能透过。伦琴一次检验铅对X射线的吸收能力时,意外地看到了他自己拿铅片的手的骨髂轮廓。于是他请他的夫人把手放在用黑纸包严的照相底片上,用X射线照射,底片显影后,看到伦琴夫人的手骨像,手指上的结婚戒指也非常清晰,这成了一张有历史意义的照片。
1896年元旦,伦琴将他的论文和第一批X射线照片复制件分送给一些著名物理学家。几天之后,这个发现就传遍了全世界,在公众中引起轰动。其传播之迅速,反应之强烈,在科学史上是罕见的。X射线很快就被应用于医学和金属探伤等领域,从而创立了X射线学。X射线究竟是一种电磁波,还是一种粒子流,曾经争论许多年。直到1912年德国物理学家劳厄和他的助手发现X射线通过晶体后产生衍射现象,才证明它是一种波长很短的电磁波。
X射线的发现具有十分重大的意义,它是19世纪末20世纪初发生的物理学革命的开端。它的发现对于化学的发展也有重要意义:1913年,根据对各种元素的特征X射线光谱的研究发现的莫斯莱定律,确定了元素的原子序数等于核电荷数,这对元素周期律的发展和原子结构理论的建立起了重要作用。以X射线晶体衍射现象为基础建立起来的X射线晶体学,是现代结构化学的基石之一。
伦琴由于发现X射线,于1901年成为第一个诺贝尔物理学奖获得者。伦琴作出这个重大发现并非由于偶然的幸运。他的广博深厚的科学素养,周密敏锐的观察能力,顽强探索的科学精神和严谨细致的实验工作,使他具有高瞻远瞩的科学远见,能迅速地揭示出并捕捉住前人所未注意的有重要价值的新现象,紧紧抓住这种现象进行深入研究,终于取得成功。
二、天然放射线的发现
1896年法国著名数学家和物理学家彭加勒(Poincare,H.1854-1912)注意到X射线是从受阴极射线轰击而发出荧光的玻璃管壁上产生的。他提出是不是所有能强烈地发荧光和磷光的物质都能发射出X射线。法国物理学家亨利·贝克勒(Becquerel,H.A.1852-1908)由此受到启发,立即开始研究究竟有哪些荧光和磷光物质能发射X射线。他把许多磷光和荧光物质一一放在密封照相底片上置于阳光下曝晒,底片都没有感光。他想起十五年前和他父亲一起制备的磷光物质硫酸铀酰钾晶体,于是他把一块这种晶体放在日光下曝晒,直到它发出很强的荧光,然后把它和用黑纸包封的照相底片放在一起,发现底片感光了。他错误地认为这种晶体发射X射线。1896年2月24日他向法国科学院报告了这一实验,认为X射线与荧光有关。
3月1日,贝克勒把在抽屉里和铀盐放在一起的一张密封的底片拿去冲洗,显影后发现一件奇怪的事:这张底片已经感光,上面有很明显的铀盐的象,和刚经过日晒的铀盐产生的影象同样清晰。究竟日晒和荧光对于铀盐发出的这种神秘射线有没有关系呢?于是他亲自用纯试剂合成一些硫化物荧光物质,并设法加强它们的磷光,但它们日晒后都不能使底片感光。经过几个月的反复试验,贝克勒确信使底片感光的真实原因是铀和它的化合物不断地放射出一种奇异的射线,日晒与荧光都与照相底片感光无关,他把这种射线称为“铀射线”。
1896年5月18日,贝克勒宣布:发射铀射线的能力是铀元素的一种特殊性质,与采用哪一种铀化合物无关。铀及其化合物终年累月地发出铀射线,纯铀所产生的铀射线比硫酸铀酰钾强三至四倍。铀射线是自然产生的,不是任何外界原因造成的(光照、加热、阴极射线激发等不需要),所以既与荧光无关,也和X射线不同。铀射线能穿透过黑纸使照相底片感光,能使空气电离,使验电器放电,这些性质与X射线相同。但它的穿透能力不如X射线,它不能穿透肌肉和木板。
铀射线的发现,立即引起科学界的极大兴趣。当时在巴黎大学攻读博士学位的居里夫人,即玛丽·斯克洛多芙斯卡(Sklodowska,M.1867-1934),决定选择铀射线的本质和来源问题作为自己的博士论文题目。1897年她开始研究。要深入研究铀射线的本质,首先要有一台能精确测量铀射线强度的仪器。玛丽的丈夫、法国物理学教授居里(Curie,P.1859-1906)设计了一个灵敏而简易的铀射线检验器。经过几周的研究,玛丽先弄清楚了铀射线的强度与试样中铀的浓度成正比,而与含铀化合物的化学组成无关,也不受外界光照和温度起落的影响。由此可以确认这种辐射是铀原子一种特性。1898年,她和德国人施米特(Schmidt,G.C.1856-1949)分别发现钍元素也具有这种性质,表明这种性质并非铀元素所独有。于是玛丽建议把这种性质叫做“放射线”,把具有放射线的元素如铀和钍叫做“放射性元素”。
三、放射性元素钋和镭的发现
居里夫人对很多种矿物标本逐个检验有无放射性。检验了几百种物质,都没有放射性。但当她检验到一种沥青铀矿和一种铜铀云母矿时,发现它们有很强的放射性,其强度比根据其中铀或钍的含量所预计的强度大得多。她又根据天然铜铀云母矿精确分析得到的组成,自己合成了铜铀云母,发现天然铜铀云母的放射性是人工合成试样的4.5倍。这两种矿物的异常的放射性,只能解释为其中含有某种含量很少但比铀和钍的放射性强得多的新元素。
1896年6月,居里夫妇开始合作搜索这种新元素。他们先到沥青铀矿中去找。他们把这种矿石分解后,用系统的化学分析程序把其中的各种元素按组一组一组逐步分开。每经过一步分离,就测定两部分的放射线,根据溶液和沉淀有无放射性或放射性的大小来确定新元素在哪一部分中。经过几次淘汰搜索的范围逐步缩小,最后他们发现在沥青铀矿中有两种而不是一种新的放射性元素。1898年7月他们根据放射性证实了一种新放射性元素的存在,当时他们还只得到了一点富集了这种新元素的硫化铋,它的放射性远比金属铀的放射性大得多。要知道在沥青铀矿中这种新元素的含量只有一亿分之一,用一般的化学方法把它富集起来是何等艰巨啊!玛丽为这个新元素命名为“Polonium”(钋),这是为了纪念她的祖国波兰。五个月后,居里夫妇又根据放射性发现了另一种新的放射性元素,它已富集在氯化钡结晶里。这种混有新元素的晶体比金属铀的放射性竟大九百倍。居里夫妇给该元素命名为“Radium”(镭),意思是“赋予放射性的物质”。钋富集在硫化铋沉淀中,镭富集在氯化钡晶体中,这说明它们的化学性质分别很象铋和钡,而与铀相差很远。但是,这时居里夫妇还没有得到一点点纯的镭或钋的化合物。他们决定下一阶段的工作是从沥青铀矿制取纯的镭化合物。他们估计从沥青铀矿中提取了铀以后钋和镭可能原封不动地存留在废矿渣中,因为钋和镭的化学性质与铀相差很远。于是他们便从奥地利处理沥青铀矿的国营矿场买到了便宜的废矿渣。从1899年到1902年底,居里夫妇在物理学校的矿烂工棚里艰苦地工作了45个月,一公斤一公斤地处理了两吨废矿渣。经过几百万次的溶解、沉淀和结晶等提炼工作,终于得到仅仅100毫克的光说纯氯化镭。它的放射性强大得令人吃惊,竟是铀盐的二百万倍!把它放在玻璃瓶里,玻璃瓶就放出紫色的荧光,它也能使金刚石、红宝石、萤石、硫化锌、铂氰化钡等发出磷光。他们对镭的原子量进行了初步测定,大约是225,从而确定了它在周期表中处于ⅡA族钡的下面。
1903年6月25日,36岁的玛丽·居里夫人在巴黎大学通过了博士论文答辨,论文题目是《放射性物质的研究》。这年11月,英国皇家学会授予居里夫妇载维金质奖章。12月10日居里夫妇和贝克勒一道荣获这一年的诺贝尔物理学奖,分享奖金。
1910年,居里夫人和法国化学家德比尔纳(Debierne,A.1874-1949)合作,通过电解氯化镭取得了金属镭,研究了它的性质。1911年,居里夫人获得了诺贝尔化学奖。全世界只有为数极少的几位科学家两次获得诺贝尔奖,居里夫人是其中唯一的女科学家。
玛丽·斯克洛多芙斯卡1867年11月7日出生沙俄统治下的华沙,当时波兰已经亡国一百多年了。她少年时就有强烈的爱国思想,在青年时代又爱上了科学,决心要以科学振兴祖国,为波兰争光。她于1891年来到巴黎求学,先后以优异的成绩获得数学和物理学硕士学位,1895年与已是物理学教授的居里结婚,结成了一对后来非常著名的科学伴侣。从1898年6月起居里决定和玛丽合作共同探索沥青铀矿中的新的放射性元素,他们的亲密合作一直持续了八年。1906一天居里在大街上被载重马车撞倒,车轮夺去了他的生命。居里夫人悲痛欲绝,几乎神经失常。经过长期疗养后刚刚康复,她就以惊人的毅力,不仅担负起抚养两个女儿的家庭重担,承担了居里在巴黎大学的教授席位,而且为放射科学的建立和发展又作出了重大贡献,从而获得了1911年诺贝尔化学奖。镭的发现在科学界引发了一场革命,居里夫妇的工作是原子能应用研究的开端。但居里夫人不仅是有重大贡献的科学家之一,而且是一位高尚无私的人。当时镭的价格十分昂贵,但居里夫人甘于过着简朴的生活,她毫无保留地公布了镭的提炼方法,没有申请专利。正如她所说“镭不应该使任何人发财,镭是化学元素,应该属于大家”。她所获得的巨额奖金,也几乎全部用于接济穷苦的学生,或支援了科学团体。1934年7月4日,居里夫人在长期患恶性贫血白血病后与世长辞。医生的证明是:“夺去居里夫人生命的真正罪人是镭”。她把自己的一生献给了科学事业。
四、α、β、γ三种射线的发现
居里夫妇曾发现,镭发出的射线有两种。1898年,出生于新西兰在剑桥大学卡文迪许实验室工作的青年物理学家卢瑟福(Rutherford,E.1871-1937)开始投入放射性的研究工作。他用强磁铁使铀射线偏转,发现射线分为方向相反的两股,这表明它至少包含有两种不同的射线,一种非常容易被吸收,称为α射线;另一种具有较强的穿透力,称为β射线。1900年法国人维拉德(Villard,P.1860-1934)观察到,镭除了上面两种射线之外,还存在着第三种射线,它不受磁场的影响,与X射线非常类似。在此之前,卢瑟福已于1898年发现一种比α和β射线穿透力更大的射线存在,这就是维拉德1900年所确认的这种射线。后来卢瑟福把它称为γ射线,并于1914年确定了它是一种波长比X射线更短的电磁波。贝克勒1899年发现β射线在磁场中偏转的方向与阴级射线相同。居里夫人证明它荷负电。1900年贝克勒测定了它的荷质比,确认β射线就是电子流。为了揭示α射线的本质,卢瑟福作了多年的努力。1902年,他用强磁场使射线发生的偏转,证明了它是带正电荷的粒子流,这种粒子被称为α粒子。1906年他测定了α粒子的荷质比,证明它的数量级与氢或氦离子相同,但当时的实验精度还不能分辨出它带一个还是两个电荷。1907年卢瑟福到英国曼彻斯特大学任教授后,和年轻的德国物理学家盖革(Geiger,H.1882-1945)一起工作,利用他发明的计数管和克鲁克斯创造的闪烁计数法,计数了一克镭一秒钟内放出的α粒子数,测量了从镭源得到的总电量,从而计算出每个α粒子带有两个单位电荷。卢瑟福由此推测出α粒子是带有两个正电荷的氦离子。卢瑟福又和合作者拍摄了α粒子的光谱线,证明它和氦的光谱线一样,由此判定,α粒子是氦离子。
阿佛加德罗:创立分子学说
在物理和化学中,有一个重要的常数叫阿佛加德罗常数。它表示1摩尔的任何物质所含的分子数。
在物理学和化学中,还有一常见的定律叫阿佛加德罗定律。它的内容是在同一温度、同一压强下,体积相同的任何气体所含的分子数都相等,这一定律是意大利物理学家阿佛加德多于1811年提出的,在19世纪,当它没有被科学界所确认和得到科学实验的验证之前,人们通常把它称为阿佛加德罗的分子假说。假说得到科学的验证,被确认为科学的真理后,人们才称它为阿佛加德罗定律。在验证中,人们证实在温度、压强都相同的情况下,1摩尔的任何气体所占的体积都相等。例如在0℃、压强为760mmHg时,1摩尔任何气体的体积都接近于22.4升,人们由此换算出:1摩尔任何物质都含有阿佛加德罗常数个分子,这一常数被人们命名为阿佛加德罗常数,以纪念这位杰出的科学家。
阿佛加德罗在科学史上占据这样一个重要地位,那么他究竟是个什么样的人呢?让我们从分子论的提出说起。
分子论的提出
就在英国化学家道尔顿正式发表科学原子论的第二年(1808年),法国化学家盖·吕萨克在研究各种气体在化学反应中体积变化的关系时发现,参加同一反应的各种气体,在同温同压下,其体积成简单的整数比。这就是著名的气体化合体积实验定律,常称为盖·吕萨克定律。盖吕萨克是很赞赏道尔顿的原子论的,于是将自己的化学实验结果与原子论相对照,他发现原子论认为化学反应中各种原子以简单数目相结合的观点可以由自己的实验而得到支持,于是他提出了一个新的假说:在同温同压下,相同体积的不同气体含有相同数目的原子。他自认为这一假说是对道尔顿原子论的支持和发展,并为此而高兴。
没料到,当道尔顿得知盖·吕萨克的这一假说后,立即公开表示反对。因为道尔顿在研究原子论的过程中,也曾作过这一假设后被他自己否定了。他认为不同元素的原子大小不会一样,其质量也不一样,因而相同体积的不同气体不可能含有相同数日的原子。更何况还有一体积氧气和一体积氮气化合生成两体积的一氧化氮的实验事实(O2+N2——>2NO)。若按盖·吕萨克的假说,n个氧和2n个氮原子生成了2n个氧化氮复合原子,岂不成了一个氧化氮的复合原子由半个氧原子、半个氮原子结合而成?原子不能分,半个原子是不存在的,这是当时原子论的一个基本点。为此道尔顿当然要反对盖·吕萨克的假说,他甚至指责盖·吕萨克的实验有些靠不住。
盖·吕萨克认为自己的实验是精确的,不能接受道尔顿的指责,于是双方展开了学术争论。他们俩人都是当时欧洲颇有名气的化学家,对他们之间的争论其他化学家没敢轻易表态,就连当时已很有威望的瑞典化学家贝采里乌斯也在私下表示,看不出他们争论的是与非。
就在这时意大利一位名叫阿佛加德罗的物理学教授对这场争论发生了浓厚的兴趣。他仔细地考察了盖·吕萨克和道尔顿的气体实验和他们的争执,发现了矛盾的焦点。1811年他写了一篇题为:“原子相对质量的测定方法及原子进入化合物的数目比例的确定”的论文,在文中他首先声明自己的观点来源于盖·吕萨克的气体实验事实,接着他明确地提出了分子的概念,认为单质或化合物在游离状态下能独立存在的最小质点称作分子,单质分子由多个原子组成,他修正了盖·吕萨克的假说,提出:“在同温同压下,相同体积的不同气体具有相同数目的分子。”“原子”改为“分子”的一字之改,正是阿佛加德罗假说的奇妙之处。由此可见,对科学概念的理解必须一丝不苟。对此他解释说,之所以引进分子的概念是因为道尔顿的原子概念与实验事实发生了矛盾,必须用新的假说来解决这一矛盾。例如单质气体分子都是由偶数个原子组成这一假说恰好使道尔顿的原子论和气体化合体积实验定律统一起来。根据自己的假说,阿佛加德罗进一步指出,可以根据气体分子质量之比等于它们在等温等压下的密度之比来测定气态物质的分子量,也可以由化合反应中各种单质气体的体积之比来确定分子式。最后阿佛加德罗写道:“总之,读完这篇文章,我们就会注意到,我们的结果和道尔顿的结果之间有很多相同之点,道尔顿仅仅被一些不全面的看法所束缚。这样一致性证明我们的假说就是道尔顿体系,只不过我们所做的,是从它与盖·吕萨克所确定的一般事实之间的联系出发,补充了一些精确的方法而已。”这就是1811年阿佛加德罗提出分子假说的主要内容和基本观点。
分子假说的曲折经历
现在,大家都认识到分子论和原子论是个有机联系的整体,它们都是关于物质结构理论的基本内容。然而在阿佛加德罗提出分子论后的50年里,人们的认识却不是这样。原子这一概念及其理论被多数化学家所接受,并被广泛地运用来推动化学的发展,然而关于分子的假说却遭到冷遇。阿佛加德罗发表的关于分子论的第一篇论文没有引起任何反响。3年后的1814年,他又发表了第二篇论文,继续阐述他的分子假说。也在这一年,法国物理学家安培,就是那个在电磁学发展中有重要贡献的安培也独立地提出了类似的分子假说,仍然没有引起化学界的重视。已清楚地认识到自己提出的分子假说在化学发展中的重要意义的阿佛加德罗很着急,在1821年他又发表了阐述分子假说的第三篇论文,在文中他写道:“我是第一个注意到盖·吕萨克气体实验定律可以用来测定分子量的人,而且也是第一个注意到它对道尔顿的原子论具有意义的人。沿着这种途径我得出了气体结构的假说,它在相当大程度上简化了盖,吕萨克定律的应用。”在他讲述了分子假说后,他感慨地写道:“在物理学家和化学家深入地研究原子论和分子假说之后,正如我所预言,它将要成为整个化学的基础和使化学这门科学日益完善的源泉。”尽管阿佛加德罗作了再三的努力,但是还是没有如愿,直到他1856年逝世,分子假说仍然没有被大多数化学家所承认。
道尔顿的原子论发表后,测定各元素的原子量成为化学家最热门的课题。尽管采用了多种方法,但因为不承认分子的存在,化合物的原子组成难以确定,原子量的测定和数据呈现一片混乱,难以统一。于是部分化学家怀疑到原子量到底能否测定,甚至原子论能否成立。不承认分子假说,在有机化学领域中同样产生极大的混乱。分子不存在,分类工作就难于进行下去,例如醋酸竟可以写出19个不同的化学式。当量有时等同于原子量,有时等同于复合原子量(即分子量),有些化学家干脆认为它们是同义词,从而进一步扩大了化学式、化学分析中的混乱。
无论是无机化学还是有机化学,化学家对这种混乱的局面都感到无法容忍了,强烈要求召开一次国际会议,力求通过讨论,在化学式、原子量等问题上取得统一的意见。于是1860年9月在德国卡尔斯鲁厄召开了国际化学会议。来自世界各国的140名化学家在会上争论很激烈,但役达成协议。这时意大利化学家康尼查罗散发了他所写的小册子,希望大家重视研究阿佛加德罗的学说。他回顾了50年来化学发展的历程,成功的经验,失败的教训都充分证实阿佛加德罗的分子假说是正确的,他论据充分,方法严谨,很有说服力。经过50年曲折经历的化学家此时已能冷静地研究和思考,终于承认阿佛加德罗的分子假说的确是扭转这一混乱局面的唯一钥匙。阿佛加德罗的分子论终于被确认,阿佛加德罗的伟大贡献终于被发现,可惜此时他已溘然长逝了。甚至没有为后人留下一一张照片或画像。现在唯一的画像还是在他死后,按照石膏面模临摹下来的。
科学的业绩永载史册
阿佛加德罗出生在一个世代相袭的律师家庭。按照他父亲的愿望,他攻读法律,16岁时获得了法学学上学位,20岁时又获得宗教法博士学位。此后当了3年律师。蝶蝶不休的争吵和尔虞我诈的斗争使他对律师生活感到厌倦。1800年他开始研究数学、物理、化学和哲学,并发现这才是他的兴趣所在。1799年意大利物理学家伏打发明了伏打电堆,使阿佛加德罗把兴趣集中于窥视电的本性。1803年他和他兄弟费里斯联名向都灵科学院提交了一篇关于电的论文,受到了好评,第二年就被选为都灵科学院的通讯院士。这一荣誉使他下决心全力投入科学研究。1806年,阿佛加德罗被聘为都灵科学院附属学院的教师,开始了他一边教学、一边研究的新生活。
由于阿佛加德罗的才识,1809年他被聘为维切利皇家学院的数学物理教授,并一度担任过院长。在这里他度过了卓有成绩的10年。分子假说就是在这里研究和提出的。1819年,阿佛加德罗成为都灵科学院的正式院士,不久担任了都灵大学第一个数学物理讲座的第一任教授。1850年,阿佛加德罗从这一教职上退休。
自从1821年他发表的第三篇关于分子假说的论文仍然没有被重视和采纳后,他开始把主要精力转回到物理学方面。阿佛加德发表了很多著作,重要的著作是四大卷的《可度量物体物理学》。从历史观点来说,这是关于分子物理学最早的一部著作。
这些著作和论文是阿佛加德罗辛勤劳动的结晶。从一个律师成为一个科学家,他是作了很大的努力的。他精通法语、英语和德语,拉丁语和希腊语的造诣也很高。他那渊博的知识来源于勤奋的学习。他博览群书,所做的摘录多达75卷,每卷至少700页。最后一卷是1854年编成的,是他逝世前两年的学习记录,可谓活到老学到老。
阿佛加德罗生前非常谦逊,对名誉和地位从不计较。他没有到过国外,也没有获得任何荣誉称号,但是在他死后却赢得了人们的崇敬,1911年,为了纪念阿佛加德罗定律提出100周年,在纪念日颁发了纪念章,出版了阿佛加德罗选集,在都灵建成了阿佛加德罗的纪念像并举行了隆重的揭幕仪式。1956年,意大利科学院召开了纪念阿佛加德罗逝世100周年纪念大会。在会上意大利总统将首次颁发的阿佛加德罗大金质奖章授予两名著名的诺贝尔化学奖获得者:英国化学家邢歇伍德、美国化学家鲍林。他们在致词中一致赞颂了阿佛加德罗,指出“为人类科学发展作出突出贡献的阿佛加德罗永远为人们所崇敬”。
阿佛加德罗的分子学说
一、阿佛加德罗的一生
化学家阿佛加德罗(Avogadro,A.1776-1856)是意大利都灵市人,出生于一位著名的律师家庭。16岁时取得了法学士学位,20岁时获得法学博士学位,并当了几年的律师。他厌倦律师工作,从24岁起他开始对数学、物理学发生了浓厚的兴趣。阿佛加德罗学习认真,工作负责。尽管他懂法文、英文和德文,可是他的科学理论除意大利外,外国很少有人知道。1804年都灵科学院推选他当通讯院士,1819年才正式选为科学院院士。1820年被聘为都灵大学数学、物理学教授,一直在这里教学和科研多年。他一生发表了50多篇论文,内容十分丰富,还有最重要的著作《可度量物体物理学》共4大卷。阿佛加德罗生前没有获得任何荣誉称号。死后才赢得人们的崇敬。1911年为纪念阿佛加德罗定律提出100周年,意大利在都灵建立了阿佛加德罗纪念像,出版了他的选集,颁发了纪念章。
1956年,意大利科学院召开了纪念阿佛加德罗逝世100年大会。在会上意大利总统将首次颁发的加佛加德罗大金质奖章授与两位著名的诺贝尔化学奖获得者──英国化学家欣谢尔伍德(Hinshelwood,S.C.1897-1967)和美国化学家鲍林。他们在致词中一致赞颂,他“为人类科学发展作出贡献的阿佛加德罗永远为人们所崇敬。”
二、三论分子未能得到重视
化学家道尔顿发表原子学说的第二年,化学家盖·吕萨克提出了气体化合体积定律。他将自己做的化学实验结果与原子学说相对照,认为原子学说所说化学反应中各种原子以简单数目相结合的论点,可以用自己的实验予以支持,于是他提出了一个新的假说:“在同温同压下,相同体积的不同气体含有相同数目的原子”他认为这一假说是对原子学说的支持和发展。没想到,道尔顿坚决反对这个假说,因为原子学说认为不同元素的原子大小不会一样,其重量也不一样,因而相同体积的不同气体不可能含有相同数目的原子。正当化学界对盖·吕萨克提出的假说开展争论时,阿佛加德罗对这个问题也发生了浓厚的兴趣。他仔细考察了盖·吕萨克和道尔顿争论之所以相持不下,矛盾无法解决,关键在于没有指出分子的存在。
1811年,阿佛加德罗在法国《物理杂志》发表一篇经典性的论文,题为《论测定物体中原子相对重量及其化合物中数目比例的一种方法》,论述了有关原子量的测定,化学式的确立等,他根据盖·吕萨克的实验事实,进行了合理的推论,引入了分子概念。文章指出,原子是参加化学反应的最小质点,分子则是游离态单质或化合物能独立存在最小质点。分子由原子组成,单质分子由相同元素的原子组成,化合物分子则由不同元素的若干原子组成。他还根据盖·吕萨克定律的实验事实,修正了盖·吕萨克假说中的错误。认为“在同温同压下,相同体积的不同气体具有相同数目的分子。”此假说的奥妙之处在于把原子换成了分子,这样跟道尔顿的原子学说就没有矛盾了,跟实验事实也统一起来了,这样跟道尔顿的原子学说就没有矛盾了,跟实验事实也统一起来了。根据阿佛加德罗的假说,只要承认任何物质可以独立存在的最小微粒是分子,那么单个的气体分子就不是单个的原子,而是由两个或两个以上的原子所组成,如氢、氧、氮、氯的分子都是由2个原子组成的。虽然阿佛加德罗假说,言之成理,持之有据,可是并未获得化学界的承认。1814年,阿佛加德罗发表了第二篇关于阐述分子假说的论文,仍然没有引起什么反响,同样遭到冷遇。就是在这一年,法国物理学家安培(Ampere,A.M.1775-1836)也独立提出了类似的分子假说,也没有引起化学界的注意。这时阿佛加德罗更清楚地认识到自己提出的分子假说在化学发展中的重要意义。他对这种现象非常着急,于是在1821年又发表了阐述分子假说的第三篇论文。在文中写道:“我是第一个注意到盖·吕萨克气体实验定律可以用来测定分子量的人,而且也是第一个注意到它对道尔顿的原子学说具有意义的人。沿着这种途径我得出了气体结构假说,它在相当大的程度上简化了盖·吕萨克定律的应用”。在阿佛加德罗论述了分子假说后,感慨地写:“在物理学家和化学家深入地研究原子学说和分子假说之后,正如我所预言,它将要成为整个化学的基础和使化学这门科学日益完善的源泉。”尽管阿佛加德罗前后三论,作了最大的努力,但是,还是没有获得人们的认可。
三、分子学说的再生
道尔顿提出原子学说后,测定原子量已成为化学家研究的重要课题。但是由于不承认分子的存在,化合物的原子组成就无法确定,以至原子量测定的数据呈现一片混乱。于是有的化学家对原子量能否测定表示怀疑,甚至对原子学说是否正确也产生了怀疑,不承认分子假说,在有机化学中同样产生了极大的混乱,如醋酸就可以写出19个不同的化学式,当量有时等于原子量,有时等于重合原子量(即分子量),无论无机化学还是有机化学中的混乱局面,都使化学家无法容忍。因而他们要求召开一次国际会议,力求通过讨论,在化学式、原子量等问题上取得统一的意见。于是1860年9月在德国卡尔斯鲁厄召开了国际化学会议。来自世界各国的140位化学家在会上争论热烈,但没有统一的意见。明珠是不怕被土埋的,到一定的时候,仍然会破土而出,放出光芒。这时意大利化学家康尼查罗(Cannizzaro,S.1826-1910)散发了他写的《化学哲学教程提要》的单行本。他回顾了50年来化学发展的历程,成功的经验和失败的教训,都充分证实了阿佛加德罗的分子假说是正确的。这个单行本一开始就写道:“我相信,近年来科学的进步、已经证实了阿佛加德罗、安培和杜马关于气态物质具有相似结构的假说,即同体积的气体,无论是单质还是化合物,都含有相同数目的分子,而不含有相同数目的原子,因为不面物质的分子以及在不同状态下的相同物质的分子可能含有不同数目的原子,其性质也可能相同,也可能不同”。接着康尼查罗在书中着重介绍了求原子量和分子量的基本方法,还研究了应用杜隆和培蒂的原子热容定律来验证自己所得原子量的正确性。康尼查罗还指出当量与原子量的不同,原子有自己不变的原子量,但也可能具有不同的当量。化学家经过50来年的曲折历程,终于承认阿佛加德罗的分子假说了。阿佛加德罗的伟大贡献被发现,立即光芒四射,成为扭转这一混乱局面的理论武器。
阿累尼乌斯建立电离理论的争论
自1799年意大利物理学家伏打发明电池以后,英国化学家尼柯尔森(Nic-holson,W.1753-1815)和卡里斯尔(Carlisle,A.1768-1840)最先发现溶液具有导电性。他们把两根铂丝的一端放在不很纯的水中,而把两根铂丝的另一端连接电池的两极,发现两极上都有气体出现,据检验负极上是氢气,正级上是氧气。这是他们在1800年发表的实验结果。接着,他们电解酸、碱、盐溶液,也得到同样的结果。人们感到奇怪的是,为什么氢气和氧气会出现在不同的电极。后来,英国化学家法拉第(Faraday,M.1791-1867)将分解前的物质称为电解质,把电流进入溶液的极叫做阳级,把电流从溶液出来的极叫做阴极。他认为,在溶液中电流是由带电荷的分解物运送前进的。他把这样的运输物叫做离子。意思是说这种物质是用电经分解出来的。其中带正电荷向阴极移动的离子叫做阳离子;带负电荷向阳极移动的离子叫做阴离子。其他如法国化学家希托夫(Hittorf,J.W.1824-1914)和柯尔劳希(Kohlrausch,F.W.1840-1910)都研究过离子在溶液中的迁移,但他们也都认为离子是通电流后产生的。在众多的电解质导电的研究者中,只有英国化学家威廉逊(Willianson,A.W.1824-1904)和德国化学家克劳胥斯(Clausius,R.J.E.1822-1888)认为,电解质的分子与形成它们的原子之间存在着动态平衡,电解质分子与邻近分子之间不断地交换原子,因此分子的离解和原子的化合永远在连续不断地进行着。但是,他们又认为这些离解出来的原子只能在很短的时间内存在,即他们只相信电解质只有极小的离解度,认为在常温下溶液中的分子不可能大量的离解。
瑞典化学家阿累尼乌斯(Arrhenius,S.1859-1927)从1882年秋开始对溶液的导电性进行了一系列的测量,直到次年才结束。他把实验的结果通过整理、概括、计算又花了几个月时间。同时,他还查阅了学术刊物中与这个问题有关的论文,对有关数据都作了比较,探索各种物质意想不到的现象和解释。最使他惊奇的是氨的性质。这种物质在气体状态时是不导电的,而它的水溶液却是导体,溶液越稀,导电性越好。阿累尼乌斯查明卤酸也都有类似的性质。为什么会出现这样的现象呢?到1883年5月阿累尼乌斯才根据实验作出这样的结论:溶液稀释时,导电性增加的原因是水。
阿累尼乌斯兴致勃勃地把他的新理论向化学家克利夫(Cleve,P.T.1840-1905)介绍:要解释电解质水溶液在稀释时导电性的增加,必须假定电解质在溶液中具有两种不同的形态。即非活动性的分子形态和活动性的离子形态。实际上,稀释时电解质的部分分子分解为离子,这是活性的形态;而另一部分则不变,这是非活性的形态。因为当时代学家一般都认为溶液中的离子是通入电流后产生的。所以当克利夫听到阿累尼乌斯的解释,毫不掩饰他的不满,说阿累尼乌斯的论点纯粹是胡说八道。阿累尼乌斯又重申了他的看法,克利夫却尖刻地冷笑地说:“这是蛮好的理论嘛!”阿累尼乌斯本想获得克利夫的认可和支持,没想到是这样的结果。
阿累尼乌斯肯定那些认为通电流后电解质才离解的看法是错误的,深信自己的解释是正确的。因而他对克利夫的挖苦丝毫没有使他丧失信心。于是他又到医学院去找研究化学的生理学教授汉马尔斯腾(Hammerstein.A.1841-1932)。汉马尔斯腾怀着极大的兴趣听了阿累尼乌斯的介绍。他发现这种见解非常独特,而且是对现象的合理解释,建议他继续研究。阿累尼乌斯决定对他的想法进行理论上的概括,并准备写成论文发表。他把第一篇题名为《电解质的导电率研究》,第二篇题名为《电解质的化学理论》。这两篇论文于1884年6月经斯德哥尔摩科学院讨论后推荐发表。阿累尼乌斯渴望留在乌普萨拉工作,把两篇论文的校样作为学位论文向大学提出。学术委员会接受了这两篇论文,并指定在1884年5月进行答辨。阿累尼乌斯获得委员会的赞许,答辨得很好。但克利夫教授仍然不同意他的理论。他认为:“纯粹是空想,我不能想象,比如,氯化钾怎样会在水中分解为离子。钾在水中单独存在可能吗?任何一个小学生都知道,钾遇水就会产生强烈的反应,同时形成氢氧化钾和氢气。可是氯呢?它的水溶液是淡绿色的,又有剧毒,而氯化钾溶液则是无色的,完全无毒。”
答辩进行得很强烈,特别费力的是同克利夫教授的辩论。当时,不同意关于在分子、原子和离子之间存在着本质的差别。阿累尼乌斯竭力证明,在溶液中,特别是在氯化钾溶液中,存在的不是钾原子和氯分子,而是两种元素的离子。钾离子不同于中性的钾原子,它带阳电荷。因此,性质上与中性原子不同。氯离子带阴电荷,不同于中性的双原子的氯分子,而完全具有另一种性质。
虽然溶液中离子的形成不决定于电流的想法,威廉逊、克劳胥斯等化学家早已提出过,但仅仅是一种没有验证的假设。阿累尼乌斯不但论述得很明确而且通过实验证明了这个假设的正确性。他甚至还计算出,在氯化氢的溶液中,有92%的溶质处于活性形态,也就是说大部分溶质分解为离子了。这些结果也为其他科学家所证实。例如,德国化学家奥斯特瓦尔德(Ostwald,W.1853-1932)虽不是研究电离过程的,可是,他在研究盐酸的催化作用时却查明,它的总量中只有98%对过程起加速作用。这一数值与阿累尼乌斯计算出来的数值是接近的。用硫酸进行试验时,也得到相似结果。根据奥斯特瓦尔德的意见,由于硫酸的浓度不同,起催化作用的硫酸可以由50%到90%,而阿累尼乌斯查明的数值则是47.6%到85%。尽管阿累尼乌斯搜集了大量的实验材料,以及无可辩驳的证据,但是,由于委员会支持克利夫等人的意见。对论文答辨还是给以第三级评语。
阿累尼乌斯论文答辨以后。更加坚信自己的理论是正确的。次日,他把自己的两篇论文分别寄给欧洲最著名的研究溶液的科学家克劳胥斯、范霍夫(van'tHoff,J.H.1852-1911),万尔(Meyer,J.L.1830-1895),奥斯特瓦尔德,获得四位化学家的赞扬和肯定。其中奥斯特瓦尔德专程与他讨论。
阿累尼乌斯进一步研究认为,在电解中两极间的电位差只起指导离子运动方向的作用,并没有分解分子;相同当量的离子,不管溶质是什么,都带有同量的电荷,因而在两极沉淀物的当量是相同的,这与法拉第的认识是一致的。这个理论还解释了各种溶液中的反应热。例如稀释的强酸和强碱的中和热,不管它们是什么,都是相同的。这是因为在强酸和强碱之间的反应都是氢离子和氢氧根离子结合成水分子的反应,中和热都相同。其它溶液中的反应热都可以从电离理论得到解释。分析化学反应中的许多现象,如沉淀、水解、缓冲作用、酸和碱的强度以及指示剂的变色等也都可以从电离理论得到合理的解释。
阿累尼乌斯由于提出了电离学说,于1903年荣获了诺贝尔化学奖。阿累尼乌斯的电离理论为物理化学的发展开创了新阶段,同时也促进了整个化学的进步。
甚至归初反对过电离理论的克利夫,也在阿累尼乌斯获得诺贝尔奖后认为:“这一新的理论是在困难中成长起来的。那时化学家不认为它是一种化学理论,物理学家也不认为它是一种物理学理论。但是,这种理论却在化学与物理学之间架起了一座桥梁。”克利夫还认为阿累尼乌斯与贝采里乌斯是瑞典的骄傲。他在纪念贝采尼乌斯的讲演会上说:“从贝采里乌斯肩上卸下的斗篷,现在已经由阿累尼乌斯戴上了。”
氨气和发现与合成
1727年英国的牧师、化学家哈尔斯(Hales,S.1677-1761),用氯化铵与石灰的混合物在以水封闭的曲颈瓶中加热,只见水被吸入瓶中而不见气体放出。1774年化学家普利斯德里重作这个实验,采用汞代替水来密闭曲颈瓶,制得了碱空气(氨)。他还研究了氨的性质,发现它易溶于水、可以燃烧,还发现在氨气中通以电火花时,其容积增加很多,而且分解为两种气体;一种是可燃的氢气;另一种是不能助燃的氮气。从而证实了氨是氮和氢的化合物。其后戴维等化学家继续研究,进一步证实了2容积的氨通过火花放电之后,分解为1容积的氮气和3容积的氢气。
19世纪以前,农业生产所需氮肥的来源,主要是有机物的副产物和动植物的废物,如粪便、种子饼、腐鱼、屠宰废料、腐烂动植物等。那时哨石的产量很有限,而且主动用于军工业生产。1809年,智利的沙漠地区发现了一个巨大的硝酸钠矿床,很快就开发利用。到1850年世界上硝盐的供应,主要是智利。随着农业的发展和军工生产的需要,迫切要求建立规模巨大的探索性的研究。他们设想,能不能把空气中大量的氮气固定下来。于是开始设计以氮和氢为原料的合成生产氨的流程。
尤其是在1847年,德国发生了农业危机,首都柏林爆发了抢夺粮食的“土豆革命”,引起了政府重视生产粮食,因而开展了对土壤的研究。在土壤的肥料问题上,曾经流行一种腐殖质理论,认为作物是依赖土壤中的腐殖质为养料的。而腐殖质这种东西只能来源于腐败的动植物体,因此肥料的来源是有限的。当时德国的著名化学家李比希致力于研究植物所需要的碳和氢的来源问题。为此,他对稻草和其它许多干草的分析中发现,植物中含碳的量不是因土壤的条件不同而有所不同,因此他支持植物中的碳来自大气的观点。他在分析各种植物的汁液时,发现其中都含有氨,同时发现雨水中也有氨。大气中的氮很不活泼,也不能直接被植物所吸收,而氨却容易被植物吸收,因此他判断植物是通过吸收氨来获得含氮养料的。李比希的实验结论,第一,指出腐殖质理论的局限性,把植物氮的来源限制于腐殖质;第二,指出了腐殖质理论的表面性,只知道植物氮来源于腐殖质,而不知道氮是怎样被植物吸收的;第三,指明了开辟新的氮肥源的重要性。
1900年法国化学家勒夏特利是最先研究氢气和氮气在高压下直接合成氨的反应。很可惜,由于他所用的氢气和氮气的混合物中混进了空气,在实验过程中发生了爆炸。在没有查明发生事故的原因的情况下,就放弃了这项实验。德国化学家能斯特(Nernst,W.1864-1941),对于研究具有重大工艺价值的气体反应有兴趣,民研究了氮、氢、氨的气体反应体系,但是由于他在计算时,用了一个错误的热力学据,以致得出不正确的理论,因而认为研究这一反应没有什么前途,把研究停止了。
虽然在合成氨的研究中化学家遇到的困难不少,但是,德国的物理学家、化工专家哈伯(Haber,F.1868-1934)和他的学生勒·罗塞格诺尔(LeRossignol,R.)仍然坚持系统的研究。起初他们想在常温下使氨和氢反应,但没有氨气产生。又在氮、氢混合气中通以电火花,只生成了极少量的氨气,而且耗电量很大。后来才把注意力集中在高压这个问题上,他们认为高压是最有可能实现合成反应的。根据理论计算,表明让氢气和氮气在600℃和200个大气压下进行反应,大约可能生成8%的氨气。如果在高压下将反应进行循环加工,同时还要不断地分离出生成的氨气,势必需要很有效的催化剂。为了探索有效的催化剂,他们进行了大量的实验,发现锇和铀具有良好的催化性能。如果在175-200个大气压和500-600℃的条件下使用催化剂,氮、氢反应能产生高于6%的氨。
哈柏把他们取得的成果介绍给他的同行和巴更苯胺纯碱公司,并在他的实验室做了示范表演。尽管反应设备事先做了细致的准备工作,可以实验开始不久,有一个密封处就受不住内部的压力,于是混合气体立即冲了出来,发出惊人的呼啸声。
他们立即把损坏的地方修好,又进行几小时的反应后,公司的经理和化工专家们亲眼看见清澈透明的液氨从分离器的旋塞里一滴滴地流出来。但是,实验开始时发生的现象确实是一个严重的警告,说明在设计这套装置,必须采取各种措施,以避免不幸事故发生。哈伯的那套装置,在示范表演后的第二天发生了爆炸。整个设备倾刻之间变成一堆七歪八扭的烂铁。随后,刚刚安装好的盛着催化剂锇的圆柱装置也爆炸了。这时金属锇粉遇到空气又燃烧起来,结果,把积存备用的价值极贵的金属锇几乎全部变成了没有多用处的氧化锇。
尽管连续出了一些爆炸事故,但巴登公司的经理布隆克和专家们还是一致认为这种合成氨方法具有很高的经济价值。于是该公司不惜耗巨资,还投入强大的技术力量、并委任德国化学工程专家波施(Bosch,C.1874-1940)将哈伯研究的成果设计付诸生产。波施整整花了5年的时间主要作了两项工作。第一,从大量的金属和它们的化合物中筛选出合成氨反应的最适合的催化剂。在这项研究中波施和他的同事做了两万多次实验,才肯定由铁和碱金属的化合组的体系是合成氨生产最有效、最实用的催化剂,用以代替哈伯所用的锇和铀。第二,是建造了能够高温和高压的合成氨装置。最初,他采用外部加热的合成塔,但是反应连续几小时后,钢中的碳与氨发生反应而变脆,合成塔很快地报废了。后来,他就将合成塔衬以低碳钢,使合成塔能够耐氢气的腐蚀。第三,解决了原料气氮和氢的提纯以及从未转化完全的气体中分离出氨等技术问题。经波施等化工专家的努力,终于设计成了能长期使用的操作的合成氨装置。1910年巴登苯胺纯碱公司建立了世界上第一座合成氨试验工厂,1913年建立了大工业规模的合成氨工厂。这个工厂是第一次世界大战期间开始为德国提供当时其缺少的氮化合物,以生产炸药和肥料。
贝采里乌斯发现硒
硒是1818年内瑞典化学家贝采里乌斯发现的,硒的发现以及其后对晒化物的研究有很多轶闻趣事,从中我们不难看出,在化学发展的进程个,化学家不辞辛苦,勇于实践的精神。
贝采里乌斯(1779~1848)是与道尔顿、阿佛加德罗同时代的人,他从事了多力面的研究工作,作出了很多重大贡献,成为十九世纪上半叶最著名的化学家之一.道尔顿的原子论提出后,对原子量的测定就成了当时促进化学发展的最重要的“基本建设”,贝采里乌斯十分重视这项工作,他花费了20多年的时间,在极其简陋的实验室里,对两千多种物质进行了准确的分析,为计算原子量和提出其它学说提供了丰富的科学实验根据.同时,他还发明了许多新的分析仪器,创立了许多新的实验方法,使定量分析获得了极大的进步.他的分析技术在当时被公认为是最高超的.他从乌拉尔铂矿中首次分离出了钯、锇、铑、铱四种元素,从四氟化硅中制得了单质硅,又从铅室中发现了新元素硒.他首创了用拉丁字母作为元素的符号,并用以表达物质的化学式.他提出的“电化二元论”,几乎解释了当时已知的全部无机化合物的构成,1835年他又首次提出催化的概念,所有这些,对化学的发展都起到了极其重要的作用。
在长期的科学实践中,他培养了大批的化学人才,当时欧州各国的许多杰出的化学工作者都乐于到他的实验室进行学习和工作,维勒、李比希、杜马等都是他的助手和学生。
1818年,刚过不惑之年的贝采里乌斯为了分析铅室沉积物的组成,研究它们对硫酸生产的危害,同时也为了取得生产利润,为他的实验室筹措资金,给瑞典的一家硫酸厂投了资,并承担了该厂的检验工作.但是不久,这家工厂就毁于一场大火,投资不但没有获得利润,连本钱也搭进去了,这无疑便他十分沮丧.但他仍怀着极大的热情坚持不懈地分析着收集到的沉淀物的组成,在多次认真细仔的分析中,意外地发现了硒这一稀有的新元素,这是他从这次投资和检验工作个得到的最大的收获,是比金钱更贵重的回报.贝采里乌斯如获至宝,马上对硒展开了研究,很快就发现这一新元素与碲很相似.碲是1700年发现的,在拉丁文中碲(Teiius)是行星地球的意思.贝采里乌斯给他的宠儿起名硒.硒(Selenium)在古希腊语中是月亮女神的意思.他进一步认识到:硒与硫之间有更多的相似性,在他的第一部出版物中说道:“硒正好居于硫和碲之中间,并与硫的性质更接近”.“硒的性质介于金属与非金属之间”.
贝采里乌斯没有足够的时间去研究所有的硒化物,只能把有机硒化物的研究交给他的学生们去做,同时给予关注和指导。1847年1月23日这天正是他的寿诞之日,他的学生维勒教授写来贺信,并向他报喜:“今天,您的一个小孙子、硒的孩子—硒巯基已经来到世界.”这指的是乙硒醇,它是被维勒的学生C·西蒙制备出来的.但此后有机硒化学的发展是十分艰难的,甲硒醇-这一系列的第一个同系物直到1930年后才见报道.贝采里乌斯曾指出:C-Se键不如C-S键牢固,Se-Se键也要比S-S键弱得多,化学的和物理的因素都能引起键的分解破坏,这会给有机硒化物的合成和分析工作带来极大的困难,利用硒化氢的强酸性(比硫化氢的酸性大2000倍,与甲酸接近)可能会做一些事情.但是硒化氢对于鼻粘膜的特殊刺激作用早已被贝采里乌斯领教过,他给这一不愉快的经历以生动的描述:“我确信,没有一个化学家在经受这种气体一吹之,终生会忘记它”!维勒就乙硒醇的合成给贝采里乌斯的信中用了意为地狱的和恶魔的宇来形容这种气味.硫化物的气味早已是“臭名昭著”的,而硒化物比它还要难闻得多,并且这种气味又极易穿透和附着在衣服、鞋袜、毛发和皮肤上.化学家为了研究工作可以尽量忍受,但他的家庭成员、邻居和朋友们却不能容忍.瑞德教授就有过亲身的经历:当他还是剑桥大学的一名青年助教时,泡普教授建议他制备甲基乙基硒.瑞德很快发现在室内进行实验定会惹人讨厌,他把实验搬到楼顶上去做,以为这样“通风”最好,不会再遭人反对,不料气味很快扩散到整个剑桥,以致引起了全校的骚动,破坏了正在这里召开的达尔文诞生一百周年纪念会.气味源很快就被找到了,瑞德当然遭到了指责、但也得到了与会科学家们的同情与谅解.无奈,瑞德把他的实验搬到远离市区的一个沼泽地去作,工作和生活上的不便瑞德都能克服,但公众对这一实验的恐惧和反对仍不能消除,尤其是招来了大批喜欢这种气味的蚊虫的包围和叮咬,干拢得他难以把实验进行下去.
这个故事告诉我们:在贝采里乌斯时代,化学家们的工作,尤其是对有机硒化物的研究是何等的艰难!
进入本世纪50年代以来,随着科学技术的发展,对硒及硒化物的研究提出了新的要求.硒是优良的光电和半导体材料,大量应用在光电管、激光器、整流器的制造和无线电传真、电视技术上.这一时期,微量元素在生物学和医学个的作用已引起人们的高度重视.1936年,在美国科达他州发现牛、羊等牲畜普遍患有土磷病.症状是脱毛、牙、蹄发软,并有不育和畸胎.经研究方知:当地的土壤中含硒量较高,硒被植物吸收,再被动物食入即引起中毒.有趣的是:不同类族的植物吸收硒的量的差异是很大的,一部分植物的生长是依赖于晒的,在无硒的土壤中是找不到它们的,而这样的“指示植物”又能维持一些寄生虫、昆虫幼虫的生长,这表明,硒对于植物学和动物学来说是十分重要的。
1950年发现低浓度的硒能防止实验动物的肝坏死,减少各种因营养不良引起的病症.世界不同地区都报导了用硒化物治疗家畜疾病的病例,这就促进了人们对硒化物用于医疗方面的研究.各国学者的研究都表明:硒对人体是一个十分重要的元素,它直接参加酶的代谢,缺硒可引起许多营养缺乏病的发生,导致肿瘤和心血管疾病发病率的提高.与心血管疾病有关的微量元素除了钒、铬之外,最主要的就是硒.中国学者对克山病的研究结果在这方面作出了重要贡献.美国学者的研究又证实,硒和维生素E共用可以抗癌,可以对抗Pb、Hg、Cd、Ta的毒性;硒化物的防辐射性远高于硫化物.
从贝采里乌斯发现硒至今已有175年的历史,硒是一种稀有而分散的元素,对它的研究工作的进展是艰难而缓慢的.这可能是它的稀缺、“奇臭”和毒性造成的.但硒在生理、生化等方面的独特的功能巳引起生物化学、药学、公共卫生、医疗、保健等各个领域的科学家的高度重视,相信有更多的化学工作者会投身到硒化学的研究中。
苯的发现和苯分子结构学说
苯的发现和苯分子结构学说
苯是在1825年由英国科学家法拉第(MichaelFaraday,1791-1867)首先发现的。19世纪初,英国和其他欧洲国家一样,城市的照明已普遍使用煤气。从生产煤气的原料中制备出煤气之后,剩下一种油状的液体却长期无人问津。法拉第是第一位对这种油状液体感兴趣的科学家。他用蒸馏的方法将这种油状液体进行分离,得到另一种液体,实际上就是苯。当时法拉第将这种液体称为"氢的重碳化合物"。1834年,德国科学家米希尔里希(E.E.Mitscherlich,1794-863)通过蒸馏苯甲酸和石灰的混合物,得到了与法拉第所制液体相同的一种液体,并命名为苯。待有机化学中的正确的分子概念和原子价概念建立之后,法国化学家日拉尔(C.F.Gerhardt,1815-856)等人又确定了苯的相对分子质量为78,分子式为C6H6。苯分子中碳的相对含量如此之高,使化学家们感到惊讶。如何确定它的结构式呢?化学家们为难了:苯的碳、氢比值如此之大,表明是高度不饱和的化合物。但它又不具有典型的不饱和化合物应具有的易发生加成反应的性质。德国化学家是一位极富想象力的学者,他曾提出了碳四价和碳原子之间可以连接成链这一重要学说。对苯的结构,他在分析了大量的实验事实之后认为:这是一个很稳定的"核",6个碳原子之间的结合非常牢固,而且排列十分紧凑,它可以与其他碳原子相连形成芳香族化合物。于是,凯库勒集中精力研究这6个碳原子的"核"。在提出了多种开链式结构但又因其与实验结果不符而一一否定之后,1865年他终于悟出闭合链的形式是解决苯分子结构的关键,他先以(Ⅰ)表示苯结构。1866年他又提出了(Ⅱ)式,后简化为(Ⅲ)式,也就是我们现在所说的凯库勒式。
有人曾用6只小猴子形象地表示苯分子的结构.关于凯库勒悟出苯分子的环状结构的经过,一直是化学史上的一个趣闻。据他自己说这来自于一个梦。那是他在比利时的根特大学任教时,一天夜晚,他在书房中打起了瞌睡,眼前又出现了旋转的碳原子。碳原子的长链像蛇一样盘绕卷曲,忽见一蛇抓住了自己的尾巴,并旋转不停。他像触电般地猛醒过来,整理苯环结构的假说,又忙了一夜。对此,凯库勒说:"我们应该会做梦!……那么我们就可以发现真理,……但不要在清醒的理智检验之前,就宣布我们的梦。"应该指出的是,凯库勒能够从梦中得到启发,成功地提出重要的结构学说,并不是偶然的。这是由于他善于独立思考,平时总是冥思苦想有关的原子、分子、结构等问题,才会梦其所思;更重要的是,他懂得化合价的真正意义,善于捕捉直觉形象;加之以事实为依据,以严肃的科学态度进行多方面的分析和探讨,这一切都为他取得成功奠定了基础。
苯的发现者—法拉弟
1825年6月16日,在英国皇家学会举行的一次学术会议上,法拉第(MichaelFaraday1791-1867)宣读了他的关于发现苯的论文,叙述了他是怎样从一种复杂的混合物中分离出这种碳氢化合物的,还介绍了这种化合物的性质和测定组成的方法和结果。当时年轻的法拉第还只有三十四岁,但是他已经在皇家研究院工作了十二年之久。
法拉第用来分离出笨的原料是一种油,在当时,伦敦这个城市为了生产照明用的气体(也称煤气),通常是将鲸鱼或鳕鱼的油滴到已经加温的炉子里,以产生煤气,然后再将这种气体加压到十三个大气压,把它储存在容器中,供各方面使用。在压缩气体的过程中,同时得到了一种副产品—油状液体。
法拉第对这种油状液体发生了兴趣,几乎花了五年时间来研究它。为了从混合物中分离出他所想要得到的组份,法拉第设法弄到了数量相当可观的油状液体,他细心地进行蒸馏,每隔10℃更换一次接受容器,把气体冷凝成各个组份。他觉得这样做还不够细致,于是再重复地精制这些馏份,最后法拉弟终于得到了具有重大意义的结果。他发现在80℃到87℃区间内蒸馏时,沸点比较恒定,在这个时候蒸出大量的液体时,温度没有多大变化。而在蒸馏其他组份时,温度经常要升高。这一点启发了法拉第,他继续研究在这个温度区间内获得的某种固定组份的物质,最后终于分离出一种新的碳氢化合物。
法拉第描述这种碳氢化合物,略带杏仁味,在一般的条件下,它是一种无色透明的液体当把这种液体放在冰水中冷却到零度时,它就会结晶变成固体,在玻璃容器的器壁上长出树枝状的结晶,如果从冰水中取出容器,让温度慢慢上升,这种固体在5.5℃时熔化,如果把熔化后的液体暴露在空气中,最后它会完
全挥发。
值得注意的是,法拉第当时测得这种化合物的熔点为5.5℃,沸点82.2℃,在15.5℃时它的比重是0.85。与现在所测得的苯的熔点(5.5℃),沸点(80.1℃),10℃时比重为0.87865,在数值上是比较接近的,它们之间的差别是因为当时法拉第分离出来和苯还不够纯。
法拉第还观察了这种液体不导电,微溶于水,易溶于油、醚和醇中,在阳光照射下,让氯气与这种物质作用,生成两种物质,一种是结晶,另一种是粘稠状的液体,它们无疑是对二氯苯与邻二氯苯。
法拉第将这种液体的蒸气通过热的氧化铜,把它分解成二氧化碳和水,例如在60℃时,0.776克蒸气分解产生的二氧化碳和水相当于0.711704克碳和0.064444克氢,说明这个化合物中碳与氢的重量之比为12:1。但由于当时法拉第所用的原子量与现在不同,当时的标准是C=6,H=1,所以法拉第就认为这种化合物的实验式是C2H,并把它称为是重碳氢化物(bicarburetofhydrogen)。如果法拉第能采用现在的原子量标准C=12,H=1的话,它肯定能正确地表达出苯的实验式是CH。
法拉第还用引爆这种化合物的蒸气与氧气的混和物的方法,测得它的蒸气密度是2.44(以氧气的密度等于1为标准),但是由于法拉第当时此还认识得不够清楚,所以他也没有能进一步推测出苯的分子式是C6H6。尽管如此,法拉第毕竟应该算是第一位分离出苯这种碳氢化合物的化学家,而且第一次研究了苯的性质,测定了苯的组成,所以发现苯的功劳应该归于法拉第。
波义耳:把化学确立为科学
化学史家都把1661年作为近代化学的开始年代,因为这一年有一本对化学发展产生重大影响的著作出版问世,这本书就是《怀疑派化学家》,它的作者是英国科学家罗伯特·波义耳。革命导师恩格斯也同意这一观点,他誉称“波义耳把化学确立为科学”。波义耳是怎样一位科学家?在发展化学科学上作出了哪些突出的贡献呢?
巨人辈出时代的平凡经历
波义耳生活在英国资产阶级革命时期,也是近代科学开始出现的时代,这是一个巨人辈出的时代。波义耳在1627年1月25日生于爱尔兰的利兹莫城。就在他诞生的前一年,提出“知识就是力量”著名论断的近代科学思想家弗兰西斯·培根刚去世。伟大的物理学家牛顿比波义耳小16岁。近代科学伟人,意大利的伽利略、德国的刻卜勒、法国的笛卡尔都生活在这一时期。
波义耳出生在一个贵族家庭,家境优裕为他的学习和日后的科学研究提供了较好的物质条件。童年时,他并不显得特别聪明,他很安静,说话还有点口吃。没有哪样游戏能使他入迷,但是比起他的兄长们,他却是最好学的,酷爱读书,常常书不离手。8岁时,父亲将他送到伦敦郊区的伊顿公学,在这所专为贵族子弟办的寄宿学校里,他学习了3年。随后他和哥哥法兰克一起在家庭教师陪同下来到当时欧洲的教育中心之一的日内瓦过了2年。在这里他学习了法语、实用数学和艺术等课程,更重要的是,瑞士是宗教改革运动中出现的新教的根据地,反映资产阶级思想的新教教义熏陶了他。此后波义耳在实际行动中虽然未参与任何一派,但是他在思想上一直是倾向于革命的。
1641年,波义耳兄弟又在家庭教师陪同下,游历欧洲,年底到达意大利。旅途中即使骑在马背上,波义耳仍然是手不释卷。就在意大利,他阅读了伽利略的名著《关于两大世界体系的对话》。这本书给他留下了深刻的印象,20年后他的名著《怀疑派化学家》就是模仿这本书的格式写的。他对伽利略本人更是推崇备至。
波义耳的哥哥们和他们的父亲一样,在英国的资产阶级革命中都是保皇派。1644年,他父亲在一次战役中死去。家庭情况的突变,经济来源的中断,使波义耳回到战乱的英国。回国后他随着同情革命的姐姐莱涅拉夫人一起迁居到伦敦。在伦敦他绪识了科学教育家哈特利怕,哈特利泊鼓励他学习医学和农业。
波义耳在家里是14个兄弟姊妹中最小的一个:在他三岁时,母亲不幸去世。也许是缺乏母亲照料的缘故,他从小体弱多病。有一次患病时,由于医生开错了药而差点丧生,幸亏他的胃不吸收将药吐了出来,才未致命。经过这次遭遇,他怕医生甚于伯病,有了病也不愿找医生。并且开始自修医学,到处寻找药方、偏方为自己治病。哈特利伯的鼓励使他下决心研究医学。当时的医生都是自己配制药物,所以研究医学也必须研制药物和做实验,这就便波义耳对化学实验发生了浓厚的兴趣。
在研究医学的过程中,他翻阅了医药化学家的许多著作,他很崇拜比他大50岁的比利时医药化学家海尔蒙特。海尔蒙特不论白天黑夜,完全投入化学实验,自称为“火术的哲学家”。这就成为波义耳学习的榜样。波义耳为自己创造了一个实验室,整日浑身沾满了煤灰和烟,完全沉浸于实验之中。波义耳就是这样开始了自己献身于科学的生活,直到1691年底逝世。
英国皇家学会的元老
一批对科学感兴趣的人,其中包括教授、医生、神学家等,从1644年起定期地在某一处聚会,讨论一些自然科学问题。他们自称它为无形学院。1648年因为伦敦战局不稳,更因为资产阶级革命派的军队攻占了牛津,革命派首领克伦威尔任命无形学院的成员维尔金斯担任牛津瓦当学院的院长,无形学院的部分成员也纷纷迁往牛津,活动的中心从伦敦转移到牛津。1660年,因政局趋于稳定,活动中心又转回到伦敦。随着无形学院的队伍扩大,在1660年的一次集会上,宣布正式成立一个促进物理——数学实验知识的学院。不久经国王批准,这学院变成以促进自然科学知识为宗旨的皇家学会。皇家学会根据培根的思想,十分强调科学在工艺和技术上的应用,建立起新的自然哲学,成为著名的学术团体。
波义耳1646年在伦敦就参加了无形学院的活动。后来由于厌倦首都上层社会生活中的空虚,更重要的是想集中精力做一些科学实验,于是迁往他父亲一所偏远的庄园,在那里读书、进行科学实验,一住就是8年。庄园的生活虽然安静,但是对于波义耳的科学活动毕竟有很多不便之处,特别是他很想念那些无形学院的朋友们。1654年,他迁往牛津,寄宿在牛津大学附近一个药剂师家里。以后他又建立了自己设备齐全的实验室,并为自己聘用了一些助手,有些助手还是些很有才华的学者。例如罗伯特·虎克后来也戌为一个著名的科学家,他发现了形变同应力成正比的固体弹性定律,制成了显微镜,观察到植物细胞。这些助手在波义耳领导下进行观察和实验,并帮助波义耳收集整理科学资料和来往信件。这样就在波义耳的周围形成了一个科学实验小组,波义耳的实验室也一度成为无形学院的集会活动场所。波义耳的一系列科研成果都是在这里取得的,那本划时代的名著《怀疑派化学家》也是在这里完成的。据统计,在1660一1666年的6年里,他写了10本书,在《皇家学会学报》上发表了20篇论文。在牛津,波义耳一直是无形学院的核心人物,正式成立一个促进实验科学的学术团体也是波义耳的主张。不过当皇家学会在伦敦成立时,波义耳身在牛津,所以没有成为该学会的第一批正式会员,但是大家都公认波义耳是皇家学会的发起人之一,固而被任命为首属干事之一。
1668年,波义耳得知他姐夫去世的消息后,决定从牛津迁往伦敦,和他亲爱的姐姐莱涅拉夫人住在一起。到伦敦后,他又在他姐姐家的后院建造了一所实验室,继续进行他的研究工作。对于社交活动,他看得很淡漠,甚至有点厌恶。但是他却把自己的科学活动与皇家学会密切地联系起来,因而在皇家学会赢得很高的声誉,是科学界公认的领袖。1670年他园劳累而中凤,经过很长时间的治疗才痊愈。因此1680年波义耳被选为皇家学会会长时,他因为体弱多病又讨厌宣誓仪式而拒绝就任。
杰出的成就,不朽的贡献
波义耳在科学研究上的兴趣是多方面的。他曾研究过气体物理学、气象、热学、光学、电和磁、无机化学、分析化学、化学、工艺、物质结构理论以及哲学、神学。其中成就突出的主要是化学。
和当时的许多科学家一样,波义耳首先研究的对象是空气。通过对空气物理性质的研究,特别是真空实验,他认识到真空所产生的吸力乃是空气的压力。他做了一系列实验来考察空气的压力和体积的关系,并推导出空气的压力和它所占体积之间的数学关系。在他的著作《关于空气弹性及其物理力学的新实验》中,他明确地提出:“空气的弹性和它的体积成反比”。法国物理学家马略特在此后15年也根据实验独立地提出这一发现。所以后人把关于气体体积随压强而改变的这一规律称作波义耳——马略特定律。这一定律用当今较精确的科学语言应表达为;一定质量的气体在温度不变时,它的压强和体积成反比。
1、正确地指出了研究化学的目的
17世纪以前的化学知识,一部分是炼金术的内容,目的在于变贱金属为黄金或白银;一部分是医药学的内容,目的在于发展医药,治病救人;一部分是化工生产的内容,目的在于增加产品的种类和提高产品的质量。化学研究没有独立性,主要由于没有明确的、正确的研究目的,而是其它部分的附属物。关于研究化学的目的问题,波义耳提出了与以前的炼金术家、医药学家和化工生产者有本质不同的见解。他认为研究化学的目的不是醉心于炼金术和医药,而是在于认识物质的本性。为此就需要进行专门的实验,收集所观察到的事实,使化学从炼金术和医药学中解放出来,发展成为一门专为探索自然界本质的科学。他说:“化学,到目前为止,还是认为只在制造医药和工业品方面具有价值。但是我们所说的化学,绝不是医学或药学的婢女,也不是甘当工艺和冶金的奴仆。化学本身作为自然科学中的一个独立部分,是探索宇宙奥秘的一个方面。化学,必须是为真理而追求真理的化学。”波义耳的自然观促使人们逐渐认识到,化学是具有自然特性的一门需要积极发展的科学。由于研究化学有了明确的研究目的、范畴和方向,使化学研究彻底地从炼金术、医药学、化工生产中解放出来,大大地推动了化学科学的发展。所以恩格斯高度评价说:“波义耳把化学确立为科学。”直到现在,波义耳所确定的化学研究的目的,对化学的研究和发展仍然具有指导意义。
2、第一个科学的元素定义
自文艺复光以后,欧洲出现了资本主义文化思想的萌芽,人文主义逐渐发展起来,提倡以人为本位的个性解放,反对以神为本位的宗教思想。同时科学家又提出了许多封建力量相对抗的观点,冲击着各种是的自然观。到了17世纪,由于资产阶级的兴起,在欧洲资本主义生产关系逐渐产生,资产阶级民主革命先后在英、法、德、美等国取得胜利,推动了生产力的迅速发展,使工业和科学有广阔的发展前景,大大扩展了人们的思想眼界,促进了人们对自然认识的飞跃。首先在天文学中,随后在力学、光学和生理学中提出了一系列的新学说。这些科学的研究对象从可观察的、可测量的宏观物体和现象,进入到微观领域的研究。在化学中积累了许多知识需要整理,对化学反应过程需要解释。在这个时期波义耳在构成物质本源的研究提出科学的见解。
17世纪以前在物质构成的认识问题上,希腊哲学家亚里士多德提出的“土、水、气、火四元素学说”和医药学家提出的“汞、硫、盐三元素学说”一直在起作用,影响着化学的发展,甚至笛卡儿也相信不疑。但是年轻的波义耳对这个问题十分惑疑,难道亚里士多德和医药学家的见解真正是正确的吗?一切物体都仅仅是由这几种元素构成的吗?如果是这样的话,炼金术为什么不能找到点金石?这个问题应该通过实验来解决。
波义耳用实验证明,黄金不怕火烧,不会被火分解,更不会在火的作用下生成盐、硫或汞;但它可以跟其它金属融在一起变成合金,还可以熔解在王水里,而且所得到的产物经过适当处理黄金又可以恢复原性重现出来。他实验得出把砂子和灰碱两种东西混合在一起,经过加热可以熔化成透明的玻璃;生成的玻璃再也不会分解成土、水等东西。把灰碱和油脂烧煮会变成肥皂,但将肥皂加热所得到的产物却是跟碱和油脂完全不同的渣块。榨压葡萄得到的果汁,经过发酵可以变成酒精,果汁和酒精也都不会变成盐或硫。波义耳还指出,不少的化学变化都可以说明,同一物质经过不同处理可以转变成其它各种东西。这说明物质的组成和性质是复杂的,即不是亚里士多德所说的四元素,也不是医药学家所说的三元素。他还研究了在冶金和金属加工业中,金属锻烧以后所得的灰渣比金属还重的现象,决不是金属分解以后留下的元素,而得到的是比金属本身更复杂的物质。波义耳通过许多事实的论证后,给元素下了一个比较科学的定义:“我指的元素应当是某些不同任何其他物质所构成的原始的和简单的物质或完全纯净的物质”,“是具有一定确定的、实在的、可觉察到的实物,他们应是同一般化学方法不能再分解为更简单的某些实物。”这是世界上第一个科学的元素定义。由于波义耳给化学元素提出了科学的定义,为人类研究物质的组成指明了方向。虽然波义耳提出了科学的元素概念,由于时代的局限性,他并没有明确指出那些物质是真正的元素,而且仍然把火、水、气等当作元素。
3、发展了古代的微粒说
古希腊唯物主义哲学家德谟克利特认为物质是由微粒构成的。到17世纪这个观点重新复活起来,并获得了发展,牛顿、胡克、波义耳都是坚持微粒说的代表人物。关于光线通过棱镜而折射的问题,他们都以微粒作解释,可以微粒只是一种推想的东西实际上谁也没有看过。化学家为了解释化学反应过程,也求助于微粒的运动和变化。虽然波义耳深信微粒说,但把它应用于化学却出现了问题。化学物质的性质是多种多样的,反应过程是复杂的,只是用微粒及其运动是难以解释的。他说:“我建议的关于特殊本源的微粒说,其重大困难就在于自然物体实际见到这种繁多的特性会起源于这样少的两种因素,而且简单到只是物质和位移运动,这是不能令人置信的。”他根据盐能溶于水而不能溶于油或汞,但黄金能溶于汞而不能溶于水和油,硫能溶于油而不能溶于水或汞等现象,认为应该在微粒说上面添加一些别的东西以补充其内容。他设想物质的基本微粒有各种不同形态和大小,并以不同的方式运动,或者相互固定在各种不同的次序和排列上,并在它们的细孔里保持着某些流出物或发散物。如同各个字母一样,可以有各种不同的方式组合起来,每个组合体代表一个化学物质。这就是他给微粒说添加的所谓“物体中的变异原理”。波义耳的变异原理,丰富了古希腊以来关于微粒说的内容,发展了哲学家的微粒说。
实验和观察是一切的基础
在波义耳众多的科研成果中,还有几项不能磨灭的化学成就。波义耳常说,“要想做好实验,就要敏于观察。”这几项成就都是实验中敏锐观察的结果。
在一次紧张的实验中,放在实验室内的紫罗兰,被溅上了浓盐酸,爱花的波义耳急忙把冒烟的紫罗兰用水冲洗了一下,然后插在花瓶中。过了一会波义耳发现深紫色的紫罗兰变成了红色的。这一奇怪的现象促使他进行了许多花木与酸碱相互作用的实验。由此他发现了大部分花草受酸或碱作用都能改变颜色,其中以石蕊地衣中提取的紫色浸液最明显,它遇酸变成红色,遇碱变变成蓝色。利用这一特点,波义耳用石蕊浸液把纸浸透,然后烤干,这就制成了实验中常用的酸碱试纸——石蕊试纸。
也是在这一类实验中,波义耳发现五信子水浸液和铁盐在一起,会生成一种不生沉淀的黑色溶液。这种黑色溶液久不变色,于是他发明了一种制取黑墨水的方法,这种墨水几乎用了一个世纪。
在实验中,波义耳发现,从硝酸银中沉淀出来的白色物质,“如果暴露在空气中,就会变成黑色。这一发现,为后来人们把硝酸银、氯化银、溴化银用于照像术上,做了先导性工作。
晚年的波义耳在制取磷元素和研究磷、磷化物方面也取得了成果,他根据“磷的重要成分,乃是人身上的某种东西”的观点,顽强努力地钻研,终于从动物尿中提取了磷。经进一步研究后,他指出:磷只在空气存在时才发光;磷在空气中燃烧形成白烟,这种自烟很快和水发生作用,形成的溶液呈酸性,这就是磷酸,把磷与强碱一起加热,会得到某种气体(磷化氢),这种气体与空气接触就燃烧起来,并形成缕缕自烟。这是当时关于磷元素性质的最早介绍。
波义耳所以取得这么大的成就,正如他所说:“人之所以能效力于世界,莫过于勤在实验上下功夫。”
波义耳研究化学的科学方法
波义耳的科学研究方法,也是他极其重要的贡献,是影响科学研究和发展很重要的东西。
一、把科学实验作为研究化学的基本方法
“实验科学始祖”──弗·培根认为:“一般说来,要窥探大自然的奥秘,除了实验之外,别无其它门径可入。”作为培根哲学思想信奉者的波义耳也强调物理学、化学知识的真正基础是实验。他指出,不能停留在对自然界作偶然的观察而要主动地向自然进攻。要作系统的而且往往是人为的调整自然界,调整物理世界,以使在非常不同的条件下观察它,也就是,通过有目的的实验去观察自然现象。实验和观察的方法是形成科学思想的基础,化学必须依靠实验来确定自己的基本定律。
波义耳把比较严密的实验方法引入化学研究,为使化学成为一门实验科学打下基础。波义耳一个有眼光的自然科学家,应该“比亚里士多德学派更经常地留心考究经验;不要满足于自然界自然地产生的现象,当人们需要找出经验时,他们渴望通过有目的地装备起来的试验去扩大他们的经验。”可见波义耳不仅要求科学工作者要注意实验,而且要主动地实验,从实验中总结经验。波义耳明确指出:“化学,为了完成其光荣而庄严的使命,就不能认为目前为止的研究方法是正确的。是必须抛弃古代传统的思辨方法”,只有这样,化学才能象“已经觉醒了的天文学、物理学那样,立足于严密的实验基础之上。”他勉励科学工作者说:“人之所以能效力于世界者,莫过于勤在实验上做功夫。”这也是波义耳取得成功的重要科学方法,也是学习科学的重要科学方法。
二、重视对实验的理论分析
波义耳认为实验材料毫无疑问是非常重要的,因为没有材料的理论是没有根据的,也就是虚伪的理论。但是他也不相信科学原理、定律或规律是从实验材料中现成地得出来的。他认为实验材料是理论家用来进行思维加工的,用这些材料作研究的依据从中提出科学的见解,去对历史上发生的事件或现象作出因果性的解释。可见,波义耳重视实验,并没有忽视理论思维。
作为弗·培根信奉者的波义耳,虽然同培根一样强调实验方法的重要性,但他跟培根却有些不同。培根认为科学原理将会是通过对自然现象的研究以一种机械论的方式自然而然地涌现出来。波义耳则不同意这样的观点。他不仅重视以实验为基础的归纳法,而且也注意用笛卡儿的演绎法。对实验进行理论分析,使实验和理论、归纳法和演绎法的关系能够有正确的理解。所以波义耳在科学方法论的研究和应用,对培根的实验方法有所发展。
波义耳也和培根一样,重视汇集浩瀚的自然科学史料,搜集繁多的化学实验材料。他亲笔记载了许多有关物质的流动性、坚硬度、多孔性、颜色、凝聚、火焰、空气、液体、呼吸、人体血液、金属等实验材料。但搜集这些材料的目的,不是想机械地从中归纳出科学原理和定律,而是把它们作为理论家分析研究的原材料。所以,波义耳是把实验和理论结合起来研究的,这就发展了培根提出来的实验方法论。
三、重视假设的研究方法
波义耳认为实验材料只能是科学家分析研究事物的依据,以便从中提出各种假设用以解释自然现象或历史事件。材料无疑是十分重要的,因为没有材料的假设是毫无根据的空想。波义耳说:“恐怕很少有人比得上我对实验怀着深挚的爱和重视了,然而对我来说,如果有人提出某个有创造力的概念……那么,我就会比他向我透露某个精巧的实验更加感激他。”可见波义耳既重视实验又重视假设的作用。他认为科学家孜孜不倦地进行科学实验,但却不要过早提出科学原理或公理,可以在提出原理或公理之前先提出猜测性的假设。看看所提出的假设是不是具有解释问题的能力,即使这样慎之又慎也还会有错误,但可以从错误中获得教益。之所以需要这样谨慎地对等科学,因为人们对待问题常常会被表面现象所迷惑,看不见事物的内在本质。假设有时可能不正确,只有对现象作出比较深刻的分析,才能确定假设是否具有真正的价值。他曾作过很好的比喻:“某些假设就象出售药品的药店一样,第一眼看到的可能是毒蛇和鳄鱼,还有其他可怕的和有害的物品,但实际上却是有益于人们身心健康的有效药物的储藏室。”即使先错误地作出药物都是有毒的假设,但经过谨慎地分析之后,就可以作出对人们健康有益的正确的假设了,所以人们研究事物,为了不被表面的现象所迷惑,先作个假设,再检验它解决问题的能力,以确定假设是不是能够成立。这种过程是研究科学很需要的。
波义耳研究酸、碱的故事
酸、碱、盐是古代人们早已知道的。醋酸可以说是古代人知道最早的酸。一般食醋中的含量不过4-5%。古时的人常认为果汁中含有的酸都是醋酸,其实各种果汁所含的酸是不同的。食盐、硝、明矾、绿矾、锅灰等物质也是古代人们知道的。如15世纪德国炼金术家费来丁(Valentine,B.)提出物质是由汞、硫、盐三种元素组成的观点,其中就有盐。关于酸、碱、盐的系统研究,则是17世纪中叶英国化学家波义耳开始的。他发现酸碱指示剂,对酸、碱进行了识别和分类,使人们形成了酸和碱的统一概念。
有一天,波义耳的园丁把一篮美丽的紫罗兰送到书房里,当他欣赏紫罗兰的鲜艳和芳香后,随手摘了一束向实验室走去。他一边走一边沉思着,现在实验室里可能正在蒸馏矾类(重金属的硫酸盐)制取矾油(浓硫酸),不知道进行得怎样了?走到实验室把门推开,只见缕缕浓烟不断地从蒸馏器流到玻璃接受器。象往常一样他每天照例要检查实验人员的工作,这时候顺手把紫罗兰放在桌上,然后去倾注硫酸。一下子刺激性的硫酸蒸汽从瓶口冒出,很快漫延到桌子的周围。蒸馏完毕后,他拿起紫罗兰准备回到书房。这时他发现紫罗兰也在微微冒烟,因为酸沫溅在上面去了。他想应该把这些酸沫洗掉否则紫罗兰会遭到腐蚀,于是把花放在水盆里浸洗,自己坐在窗前。过了一会儿发现盆子中出现奇迹!这些紫罗兰竟然变成了红色。波义耳把书本扔到一边,立刻拿起花篮回到实验室。要求实验员准备几个杯子,在每个杯子中装一种酸并注入一些水,然后他把紫罗兰分成若干小束分别放入各种酸溶液中。他静静地注意观察着,发现花朵的紫蓝色逐渐变成浅红色,过了一会儿全部变成红色了。
波义耳认为这种现象十分有意义,他根据许多种已知酸使紫罗兰变成红色的事、实,概括出这样的规律:不仅盐酸、硫酸能使紫罗兰变成红色,其它的所有酸也同样可以把紫罗兰从蓝色转变成红色,其它的所有酸也同样可以把紫罗兰从蓝色转变成红色。他认为这是一个很重要的发现,以后只需要把紫罗兰的花瓣放进一种溶液中能轻而易举地确定它是是不酸性。他们用水或酒精分别制取紫罗兰的不浸液或酒精浸液作为检查酸的溶液,比直接用紫罗兰花朵方便得多。
科学研究往往有这样一类现象,由一种事物或理论的发现,而引起了对其它事物或理论的发现。波义耳研究各种酸对紫罗兰的作用,从而联想到,紫罗兰对碱溶液是不是也有某种特殊的反应呢?是不是还有其它的有色植物,比紫罗兰的效果更好呢?如果要解决这个问题,也只有用实验室来回答。不畏疲劳、善于深思的波义耳为了寻求科学真理,进一步研究了有关鉴别酸、碱溶液的方法。他发现不仅紫罗兰、玫瑰花等或它们的浸液可以鉴别酸、碱溶液,其它不少的药草、地衣、有色树皮和植物的根都具有区别酸、碱溶液的作用。其中以石蕊的效果最后,遇酸变红,遇碱变蓝。他们不仅把石蕊制成浸液,而且用浸液把纸浸透、烤干,制成石蕊纸。
他把能区别酸、碱的这些药剂,称为酸碱指示剂,用石蕊制成的纸,称为石蕊试纸。把这种纸片放进被检验的溶液中,只要纸片改变了颜色,就能证明这种溶液是酸性还是碱性的。不仅用酸碱指示剂可以区分出酸、碱,而且根据变色的程度可以粗略地反映出酸、碱的程度。
波义耳还指出,酸除了具有酸味、能使指示剂变色外,还是一种强有力的溶剂;碱除了能使指示剂变色外,具有滑腻感和除垢的性质,它能溶解油类和硫磺,还具有与酸对抗和破坏酸的能力。波义耳驳斥了当时流行的一种酸碱论,即德国化学家塔亨尼乌斯(Tachenius,1620-1690)等人的观点,他们简化生命过程的化学现象,把生命机体中发生的化学反应都归结为酸碱反应,因此他们认为所有的物质不是酸就是碱。波义耳指出,物质可以分为三类:除了酸碱外,还有盐。波义耳的观点虽然也不很全面,却较其它的分类方法合理得多。
创立高分子化学的施陶丁格
棉、麻、丝、木材、淀粉等都是天然高分子化合物,从某种意义上来说,甚至连人本身也是一个复杂的高分子体系。在过去漫长的岁月中,人们虽然天天与天然高分子物质打交道,对它们的本性却一无所知。现在我们已认识什么是高分子,并建立了颇具规模的高分子合成工业,生产出五光十色的塑料、美观耐用的合成纤维、性能优异的合成橡胶,致使高分子合成材料与金属材料、无机非金属材料并列构成材料世界的三大支柱。面对这一辉煌成就,我们不能不缅怀高分子科学的奠基人、德国化学家施陶丁格。
论文发表的背景
什么是高分子呢?它是由许多结构相同的单体聚合而成的,分子量往往是几万、儿十万。结构的形状也很特别,如果说普通分子象个小球,那未高分子由于单体彼此连接成长链,就象一根有50米长的麻绳。有些高分子长链之间又有短链相结而成网状。又由于大分子与大分子之间存在引力,这些长链不但各自卷曲而且相互缠绕,形成了既有一定强度、又有不同程度弹性的固体。因为分子大,长链一头受热时,另一头还不热,故熔化前有个软化过程,这就使它具有良好的可塑性,正是这种内在结构,使它具有包括电绝缘在内的许多特性,成为新型的优质材料。人们对它们的组成、结构的认识和合成方法的掌握经历了一个实践——认识——实践的曲折过程。
1812年,化学家在用酸水解木屑、树皮、淀粉等植物的实验中得到了葡萄糖,证明淀粉、纤维素都由葡萄糖组成。1826年,法拉第通过元素分析发现橡胶的单体分子是C5H8,后来人们测出C5H8的结构是异戊二烯。就这样,人们逐步了解了构成某些天然高分子化合物的单体。
1839年,有个名叫古德意尔的美国人,偶然发现天然橡胶与硫磺共热后明显地改变了性能,使它从硬度较低、遇热发粘软化、遇冷发脆断裂的不实用的性质,变为富有弹性、可塑性的材料。这一发现的推广应用促进了天然橡胶工业的建立。天然橡胶这一处理方法,在化学上叫作高分子的化学改性,在工业上叫作天然橡胶的硫化处理。
进一步试验,化学家们将纤维素进行化学改性获得了第一种人造塑料——赛璐珞和人造丝。1889年法国建成了最早的人造丝工厂,1900年英国建成了以木浆为原料的粘胶纤维工厂,天然高分子的化学改性,大大开阔了人们的视野。1907年,美国化学家在研究苯酚和甲醛的反应中制得了最早的合成塑料——酚醛树脂,俗名电木。1909年德国化学家以热引发聚合异戊二烯获得成功。在这一实验启发下,德国化学家采用与异戊二烯结构相近的二甲基丁二烯为原料,在金属钠的催化下,合成了甲基橡胶,开创了合成橡胶的工业生产。
上述对高分子化合物的单体分析,天然高分子的化学改变了实践和在合成塑料、合成橡胶方面的探索,使人们深切地感到必须弄清高分子化合物的组成、结构及合成方法。对于这个基础理论问题人们所知甚少,这一理论发展的缓慢与高分子本身的复杂特性有关。化学家们一直搞不清它们的分子量究竟是多少,它为什么难于透过半透膜而有点象胶体,它为什么没有固定的熔点和沸点,不易形成结晶?这些独特的性质以当时流行的化学观来看是很难理解的。
早在1861年,胶体化学的奠基人,英国化学家格雷阿姆曾将高分子与胶体进行比较,认为高分于是由一些小的结晶分子所形成。并从高分子溶液具有胶体性质着眼,提出了高分子的胶体理论。这理论在一定程度上解释了某些高分子的特性,得到许多化学家的支持。尽管也有化学家提出了不同看法,但均未引起注意。我们将支持格雷阿姆的高分子胶体理论的称为胶体论者。他们拿胶体化学的理论来套高分子物质,认为纤维素是葡萄糖的缔合体。所谓缔合即小分子的物理集合。他们还因当时无法测出高分子的未端基团,而提出它们是环状化合物。在当时只有德国有机化学家施陶丁格等少数儿个人不同意胶体论者的上述看法。施陶丁格发表了“关于聚合反应”的论文,他从研究甲醛和丙二烯的聚合反应出发,认为聚合不同于缔合,它是分子靠正常的化学键结合起来。天然橡胶应该具有线性直链的价键结构式。这篇论文的发表;就象在一潭平静的湖水中扔进一块石头,引起了一场激烈的论战。
一场

展开更多......

收起↑

资源预览