资源简介 充分条件与必要条件 一、选择题(每小题5分,共20分) 1.(2021·邢台高一检测)若a>b>c,则( ) A.“x>b”是“x>a”的充分不必要条件 B.“x>a”是“x>c”的充要条件 C.“x>c”是“x>a”的必要不充分条件 D.“x>b”是“x>c”的既不充分也不必要条件 2.已知集合A={1,a},B={1,2,3},则“a=3”是“A?B”的( ) A.充分条件 B.必要条件 C.既是充分条件也是必要条件 D.既不是充分条件也不是必要条件 3.(2021·长春高一检测)在如图电路中,条件p:开关A闭合,条件q:灯泡B亮,则p是q的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4.(2021·邢台高一检测)四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 二、填空题(每小题5分,共10分) 5.(2021·邯郸高一检测)“A∩B={2}”是“2∈A且2∈B”的________条件. 6.(2020·枣庄高一检测)已知条件p:-1<x<1,q:x>m,若q是p的必要条件,则实数m的取值范围是________. 三、解答题 7.(10分)(2020·济南高一检测)已知集合M={x|-1<x<4},N={x|x-a>0}. (1)当a=1时,求M∩N,M∪N; (2)若x∈M是x∈N的充分不必要条件,求实数a的取值范围. 能力过关 一、选择题(每小题5分,共10分) 1.(2021·绥化高一检测)设p:≤x≤1;q:a≤x≤a+1,若p是q的充分不必要条件,则实数a的取值范围是( ) A.0<a< B.0≤a≤ C.0≤a< D.0<a≤ 2.(多选题)已知A,B为实数集R的非空集合,则AB的必要不充分条件可以是( ) A.A∩B=A B.A∩RB=? C.RBRA D.B∪RA=R 3.下列条件中是“a+b>0”的充分条件的是 ( ) A.a>0,b>0 B.a<0,b<0 C.a=3,b=-2 D.a>0,b<0且|a|>|b| 二、填空题(每小题5分,共10分) 4.“△ABC为直角三角形”是“其三边关系a2+b2=c2”的________条件.(填“充分不必要”“必要不充分”“既不充分也不必要”“充要条件”) 5.用“充分不必要”“必要不充分”“充要”“既不充分也不必要”填空: (1)“ax2+bx+c=0有实根”是“ac<0”的________条件. (2)“△ABC≌△A′B′C′”是“△ABC∽△A′B′C′”的________条件. 三、解答题 6.(10分)已知集合A={x|3-a≤x≤3+a},B={x|x≤0或x≥4}. (1)当a=2时,求A∩B; (2)若a>0,且“x∈A”是“x∈RB”的充分不必要条件,求实数a的取值范围. 一、选择题(每小题5分,共20分) 1.(2021·邢台高一检测)若a>b>c,则( ) A.“x>b”是“x>a”的充分不必要条件 B.“x>a”是“x>c”的充要条件 C.“x>c”是“x>a”的必要不充分条件 D.“x>b”是“x>c”的既不充分也不必要条件 分析选C.对于A:“x>b”是“x>a”的必要不充分条件,故A错误;对于B:“x>a”是“x>c”的充分不必要条件,故B错误;对于C:“x>c”是“x>a”的必要不充分条件,故C正确;对于D:“x>b”是“x>c”的充分不必要条件,故D错误. 2.已知集合A={1,a},B={1,2,3},则“a=3”是“A?B”的( ) A.充分条件 B.必要条件 C.既是充分条件也是必要条件 D.既不是充分条件也不是必要条件 分析选A.当a=3时,A={1,3},故A?B,若A?B?a=2或a=3,不一定有a=3,故“a=3”是“A?B”的充分条件. 3.(2021·长春高一检测)在如图电路中,条件p:开关A闭合,条件q:灯泡B亮,则p是q的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 分析选A.若开关A闭合,则灯泡B亮,所以p?q; 若灯泡B亮,则开关A闭合或开关C闭合,所以q?p不成立,所以p是q的充分不必要条件. 4.(2021·邢台高一检测)四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 分析选A.若四边形ABCD为菱形,则AC⊥BD;反之,若AC⊥BD,则四边形ABCD不一定为菱形.故“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件. 二、填空题(每小题5分,共10分) 5.(2021·邯郸高一检测)“A∩B={2}”是“2∈A且2∈B”的________条件. 分析若A∩B={2},则2∈A且2∈B一定成立,但是若2∈A且2∈B,则集合A和集合B还可能有其他公共元素,即A∩B={2}不一定成立,故“A∩B={2}”是“2∈A且2∈B”的充分不必要条件. 答案:充分不必要 6.(2020·枣庄高一检测)已知条件p:-1<x<1,q:x>m,若q是p的必要条件,则实数m的取值范围是________. 分析条件p:-1<x<1,q:x>m, 因为q是p的必要条件,所以m≤-1. 答案:m≤-1 三、解答题 7.(10分)(2020·济南高一检测)已知集合M={x|-1<x<4},N={x|x-a>0}. (1)当a=1时,求M∩N,M∪N; (2)若x∈M是x∈N的充分不必要条件,求实数a的取值范围. 分析(1)因为a=1,所以N={x|x>1}, 所以有M∩N={x|1<x<4},M∪N={x|x>-1}. (2)若x∈M是x∈N的充分不必要条件, 则有MN, 因为N={x|x-a>0}={x|x>a}. 所以a≤-1. 能力过关 一、选择题(每小题5分,共10分) 1.(2021·绥化高一检测)设p:≤x≤1;q:a≤x≤a+1,若p是q的充分不必要条件,则实数a的取值范围是( ) A.0<a< B.0≤a≤ C.0≤a< D.0<a≤ 分析选B.因为p:≤x≤1;q:a≤x≤a+1, 且p是q的充分不必要条件, 所以{x|a≤x≤a+1}, 则且两不等式中的等号不同时成立. 解得:0≤a≤. 2.(多选题)已知A,B为实数集R的非空集合,则AB的必要不充分条件可以是( ) A.A∩B=A B.A∩RB=? C.RBRA D.B∪RA=R 分析选ABD.因为AB?RBRA,所以RBRA是AB的充分必要条件,因为AB?A?B?A∩B=A?A∩RB=??B∪RA=R,故选ABD. 3.下列条件中是“a+b>0”的充分条件的是 ( ) A.a>0,b>0 B.a<0,b<0 C.a=3,b=-2 D.a>0,b<0且|a|>|b| 分析选ACD.问题是“谁”是“a+b>0”的充分条件;因为“a>0,b>0”?“a+b>0”, “a<0,b<0”“a+b>0”,“a=3,b=-2”?“a+b>0”. “a>0,b<0且|a|>|b|”?“a+b>0”,所以A,C,D中的条件均是“a+b>0”的充分条件,B中的条件不是“a+b>0”的充分条件. 二、填空题(每小题5分,共10分) 4.“△ABC为直角三角形”是“其三边关系a2+b2=c2”的________条件.(填“充分不必要”“必要不充分”“既不充分也不必要”“充要条件”) 分析若△ABC三边关系满足a2+b2=c2,则△ABC为直角三角形,若△ABC是直角三角形,不一定有a2+b2=c2;故“△ABC为直角三角形”是“其三边关系a2+b2=c2”的必要不充分条件. 答案:必要不充分 5.用“充分不必要”“必要不充分”“充要”“既不充分也不必要”填空: (1)“ax2+bx+c=0有实根”是“ac<0”的________条件. (2)“△ABC≌△A′B′C′”是“△ABC∽△A′B′C′”的________条件. 分析(1)因为ax2+bx+c=0有实根, 所以Δ=b2-4ac≥0,ac<0不一定成立; 但ac<0时,Δ=b2-4ac≥0一定成立, 所以“ax2+bx+c=0有实根”是“ac<0”的必要不充分条件. (2)△ABC≌△A′B′C′?△ABC∽△A′B′C′, △ABC∽△A′B′C′△ABC≌△A′B′C′,所以“△ABC≌△A′B′C′”是“△ABC∽△A′B′C′”的充分不必要条件. 答案:(1)必要不充分 (2)充分不必要 三、解答题 6.(10分)已知集合A={x|3-a≤x≤3+a},B={x|x≤0或x≥4}. (1)当a=2时,求A∩B; (2)若a>0,且“x∈A”是“x∈RB”的充分不必要条件,求实数a的取值范围. 分析(1)当a=2时,A={x|1≤x≤5},B={x|x≤0或x≥4},所以A∩B={x|4≤x≤5}; (2)因为B={x|x≤0或x≥4}, 所以RB={x|0<x<4}, 由“x∈A”是“x∈RB”的充分不必要条件, 得ARB,且A≠?, 又A={x|3-a≤x≤3+a}(a>0), 所以即0<a<1. 所以实数a的取值范围是0<a<1. 展开更多...... 收起↑ 资源预览