资源简介 沪科版九年级数学下册24.4.3《切线长定理》测试卷 一.选择题(共10小题)1.(2016 十堰二模)如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为1,△PCD的周长等于2,则线段AB的长是( )A.B.3C.2D.32.(2016 曲靖一模)如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为( )A.5B.7C.8D.103.(2015 东西湖区校级模拟)如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB为直径的半⊙O切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为( )A.9B.10C.3D.24.(2015 秦皇岛校级模拟)如图,一圆内切四边形ABCD,且BC=10,AD=7,则四边形的周长为( )A.32B.34C.36D.385.(2015 岳池县模拟)如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O的半径为r,△PCD的周长为3r,连接OA,OP,则的值是( )A.B.C.D.6.(2015秋 龙口市期末)如图,△ABC是一张周长为17cm的三角形的纸片,BC=5cm,⊙O是它的内切圆,小明准备用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线MN剪下△AMN,则剪下的三角形的周长为( )A.12cmB.7cmC.6cmD.随直线MN的变化而变化7.(2015秋 新北区校级月考)如图,PA、PB、CD与⊙O相切于点为A、B、E,若PA=7,则△PCD的周长为( )A.7B.14C.10.5D.108.(2015秋 营口校级月考)已知如图,PA、PB切⊙O于A、B,MN切⊙O于C,交PB于N;若PA=7.5cm,则△PMN的周长是( )A.7.5cmB.10cmC.15cmD.12.5cm9.(2014 齐齐哈尔一模)如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积( )A.12B.24C.8D.610.(2014秋 德城区期末)如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为( )A.20cmB.15cmC.10cmD.随直线MN的变化而变化 二.填空题(共4小题)11.(2016 丹阳市校级模拟)如图,PA、PB是⊙O的两条切线,A、B是切点,若∠APB=60°,PO=2,则⊙O的半径等于______.12.(2016春 合肥校级月考)如图,PA、PB切⊙O于点A、B,PA=6,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是______.13.(2016春 盘锦校级月考)如图,圆外切四边形ABCD,且AB=15,CD=9,则四边形的周长是______.14.(2015 滨海县一模)如图,一圆外切四边形ABCD,且AB=16,CD=10,则四边形的周长为______. 三.解答题(共6小题)15.(2015秋 东台市期中)如图所示,PA,PB是⊙O的两条切线,A,B为切点,连接PO,交⊙O于点D,交AB于点C,根据以上条件,请写出三个你认为正确的结论,并对其中的一个结论给予证明.16.(2015秋 扬州校级月考)如图,∠APB=52°,PA、PB、DE都为⊙O的切线,切点分别为A、B、F,且PA=6.(1)求△PDE的周长;(2)求∠DOE的度数.17.(2014秋 临洮县校级月考)如图示,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB上,若PA=12,则△PEF的周长是?18.(2015秋 湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1)若PA=6,求△PCD的周长.(2)若∠P=50°求∠DOC.19.(2013秋 云梦县期末)如图,已知:射线PO与⊙O交于A、B两点,PC、PD分别切⊙O于点C、D.(1)请写出两个不同类型的正确结论;(2)若CD=12,tan∠CPO=,求PO的长.20.(2015秋 无锡校级月考)如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径. 参考答案与试题解析 一.选择题(共10小题)1.(2016 十堰二模)如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为1,△PCD的周长等于2,则线段AB的长是( )A.B.3C.2D.3【分析】直接利用切线长定理得出AC=EC,DE=DB,PA=PB,进而求出PA的长,然后判定三角形APB为等边三角形即可确定AB的长.【解答】解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB,∵△PCD的周长等于3,∴PA+PB=2,∴PA=PB=,链接PA和AO,∵⊙O的半径为1,∴sin∠APO===,∴∠APO=30°,∴∠APB=60°,∴△APB是等边三角形,∴AB=PA=PB=.故选:A.【点评】此题主要考查了切线长定理及解直角三角形的知识,熟练应用切线长定理是解题关键. 2.(2016 曲靖一模)如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为( )A.5B.7C.8D.10【分析】根据切线长定理得到PB=PA、CA=CE,DE=DB,根据三角形的周长公式计算即可.【解答】解:∵PA、PB分别切⊙O于点A、B,∴PB=PA=4,∵CD切⊙O于点E且分别交PA、PB于点C,D,∴CA=CE,DE=DB,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,故选:C.【点评】本题考查的是切线长定理的应用,切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角. 3.(2015 东西湖区校级模拟)如图,四边形ABCD中,AD平行BC,∠ABC=90°,AD=2,AB=6,以AB为直径的半⊙O切CD于点E,F为弧BE上一动点,过F点的直线MN为半⊙O的切线,MN交BC于M,交CD于N,则△MCN的周长为( )A.9B.10C.3D.2【分析】作DH⊥BC于H,如图,利用平行线的性质得AB⊥AD,AB⊥BC,则根据切线的判定得到AD和BC为⊙O切线,根据切线长定理得DE=DA=2,CE=CB,NE=NF,MB=MF,利用四边形ABHD为矩形得BH=AD=2,DH=AB=6,设BC=x,则CH=x﹣2,CD=x+2,在Rt△DCH中根据勾股定理得(x﹣2)2+62=(x+2)2,解得x=,即CB=CE=,然后由等线段代换得到△MCN的周长=CE+CB=9.【解答】解:作DH⊥BC于H,如图,∵四边形ABCD中,AD平行BC,∠ABC=90°,∴AB⊥AD,AB⊥BC,∵AB为直径,∴AD和BC为⊙O切线,∵CD和MN为⊙O切线,∴DE=DA=2,CE=CB,NE=NF,MB=MF,∵四边形ABHD为矩形,∴BH=AD=2,DH=AB=6,设BC=x,则CH=x﹣2,CD=x+2,在Rt△DCH中,∵CH2+DH2=DC2,∴(x﹣2)2+62=(x+2)2,解得x=,∴CB=CE=,∴△MCN的周长=CN+CM+MN=CN+CM+NF+MF=CN+CM+NF+MB=CE+CB=9.故选A.【点评】本题考查了切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.也考查了勾股定理. 4.(2015 秦皇岛校级模拟)如图,一圆内切四边形ABCD,且BC=10,AD=7,则四边形的周长为( )A.32B.34C.36D.38【分析】根据切线长定理,可以证明圆外切四边形的性质:圆外切四边形的两组对边和相等,从而可求得四边形的周长.【解答】解:由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选:B.【点评】此题主要考查了切线长定理,熟悉圆外切四边形的性质:圆外切四边形的两组对边和相等是解题关键. 5.(2015 岳池县模拟)如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O的半径为r,△PCD的周长为3r,连接OA,OP,则的值是( )A.B.C.D.【分析】利用切线长定理得出CA=CF,DF=DB,PA=PB,进而得出PA=r,求出即可.【解答】解:∵PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,∴CA=CF,DF=DB,PA=PB,∴PC+CF+DF+PD=PA=PB=2PA=3r,∴PA=r,则的值是:=.故选:D.【点评】此题主要考查了切线长定理,得出PA的长是解题关键. 6.(2015秋 龙口市期末)如图,△ABC是一张周长为17cm的三角形的纸片,BC=5cm,⊙O是它的内切圆,小明准备用剪刀在⊙O的右侧沿着与⊙O相切的任意一条直线MN剪下△AMN,则剪下的三角形的周长为( )A.12cmB.7cmC.6cmD.随直线MN的变化而变化【分析】利用切线长定理得出BC=BD+EC,DM=MF,FN=EN,AD=AE,进而得出答案.【解答】解:设E、F分别是⊙O的切点,∵△ABC是一张三角形的纸片,AB+BC+AC=17cm,⊙O是它的内切圆,点D是其中的一个切点,BC=5cm,∴BD+CE=BC=5cm,则AD+AE=7cm,故DM=MF,FN=EN,AD=AE,∴AM+AN+MN=AD+AE=7(cm).故选:B.【点评】此题主要考查了切线长定理,得出AM+AN+MN=AD+AE是解题关键. 7.(2015秋 新北区校级月考)如图,PA、PB、CD与⊙O相切于点为A、B、E,若PA=7,则△PCD的周长为( )A.7B.14C.10.5D.10【分析】根据从圆外一点引圆的两条切线,它们的切线长相等和三角形的周长公式计算即可.【解答】解:∵PA、PB、CD与⊙O相切于点为A、B、E,∴PB=PA=7,CA=CE,DE=DB,∴△PCD的周长=PC+CD+PB=PC+CE+DE+PD=PC+CA+DB+PD=PA+PB=14,故选:B.【点评】本题考查的是切线长定理,从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角. 8.(2015秋 营口校级月考)已知如图,PA、PB切⊙O于A、B,MN切⊙O于C,交PB于N;若PA=7.5cm,则△PMN的周长是( )A.7.5cmB.10cmC.15cmD.12.5cm【分析】根据切线长定理得MA=MC,NC=NB,然后根据三角形周长的定义进行计算.【解答】解:∵直线PA、PB、MN分别与⊙O相切于点A、B、C,∴MA=MC,NC=NB,∴△PMN的周长=PM+PN+MC+NC=PM+MA+PN+NB=PA+PB=7.5+7.5=15(cm).故选:C.【点评】本题考查了切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角. 9.(2014 齐齐哈尔一模)如图,正方形ABCD边长为4cm,以正方形的一边BC为直径在正方形ABCD内作半圆,过A作半圆的切线,与半圆相切于F点,与DC相交于E点,则△ADE的面积( )A.12B.24C.8D.6【分析】由于AE与圆O切于点F,根据切线长定理有AF=AB=4cm,EF=EC;设EF=EC=xcm.则DE=(4﹣x)cm,AE=(4+x)cm,然后在三角形BCE中由勾股定理可以列出关于x的方程,解方程即可求出,然后就可以求出△ADE的面积.【解答】解:∵AE与圆O切于点F,显然根据切线长定理有AF=AB=4cm,EF=EC,设EF=EC=xcm,则DE=(4﹣x)cm,AE=(4+x)cm,在三角形ADE中由勾股定理得:(4﹣x)2+42=(4+x)2,∴x=1cm,∴CE=1cm,∴DE=4﹣1=3cm,∴S△ADE=AD DE÷2=3×4÷2=6cm2.故选D.【点评】此题主要考查圆的切线长定理,正方形的性质和勾股定理等知识,解答本题关键是运用切线长定理得出AB=AF,EF=EC. 10.(2014秋 德城区期末)如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为( )A.20cmB.15cmC.10cmD.随直线MN的变化而变化【分析】利用切线长定理得出DM=MF,FN=EN,AD=AE,进而得出答案.【解答】解:∵△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,AD=10cm,∴设E、F分别是⊙O的切点,故DM=MF,FN=EN,AD=AE,∴AM+AN+MN=AD+AE=10+10=20(cm).故选:A.【点评】此题主要考查了切线长定理,得出AM+AN+MN=AD+AE是解题关键. 二.填空题(共4小题)11.(2016 丹阳市校级模拟)如图,PA、PB是⊙O的两条切线,A、B是切点,若∠APB=60°,PO=2,则⊙O的半径等于 1 .【分析】根据切线的性质求得∠APO=30°,∠PAO=90°,再由直角三角形的性质得AO=1.【解答】解:∵PA、PB是⊙O的两条切线,∴∠APO=∠BPO=∠APB,∠PAO=90°∵∠APB=60°,∴∠APO=30°,∵PO=2,∴AO=1.故答案为:1.【点评】本题考查了切线长定理、切线的性质和直角三角形的性质,是基础知识要熟练掌握. 12.(2016春 合肥校级月考)如图,PA、PB切⊙O于点A、B,PA=6,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是 12 .【分析】由PA,PB切⊙O于A、B两点,CD切⊙O于点E,根据切线长定理可得:PB=PA=6,CA=CE,DB=DE,继而可得△PCD的周长=PA+PB.【解答】解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,∴PB=PA=6,CA=CE,DB=DE,∴△PCD的周长=PC+CE+PD=PC+CE+DE+PC=PC+CA+DB+PD=PA+PB=12.故答案为:12.【点评】此题考查了切线长定理.此题难度不大,注意从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角. 13.(2016春 盘锦校级月考)如图,圆外切四边形ABCD,且AB=15,CD=9,则四边形的周长是 48 .【分析】利用圆外切四边形的性质定理可以得出,四边形的周长是对边和的2倍,即可得.【解答】解:根据圆外切四边形的性质定理可以得出,四边形的周长是对边和的2倍,∴AB+BC+CD+AD=2×(15+9)=48.故答案为:48.【点评】此题主要考查了切线长定理以及圆外切四边形的性质,正确利用圆外切四边形对边和相等是解题关键. 14.(2015 滨海县一模)如图,一圆外切四边形ABCD,且AB=16,CD=10,则四边形的周长为 52 .【分析】利用圆外切四边形的性质定理可以得出,四边形的周长是对边和的2倍,即可得.【解答】解:根据圆外切四边形的性质定理可以得出,四边形的周长是对边和的2倍,∴AB+BC+CD+AD=52故填:52【点评】此题主要考查了圆外切四边形的性质,对边和相等. 三.解答题(共6小题)15.(2015秋 东台市期中)如图所示,PA,PB是⊙O的两条切线,A,B为切点,连接PO,交⊙O于点D,交AB于点C,根据以上条件,请写出三个你认为正确的结论,并对其中的一个结论给予证明.【分析】PA,PB是圆的切线得到∠OAP=∠OBP=90°,OA=OB,OP=OP,得到△OAP≌△OBP,∴AP=BP,∠7=∠8,又可得到△ACP≌△BCP和△AOC≌△BOC,∴∠3=∠4,∠5=∠6,由同角的余角相等得到∠1=∠5,∠2=∠6,△APB是等腰三角形,由顶角的平分线是底边上的高.得,OP⊥AB.【解答】解:如图所示,结论:①∠3=∠4;或∠7=∠8;或∠1=∠5;或∠2=∠6;②OP⊥AB;③AC=BC.证明②:∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°.在Rt△OAP与Rt△OBP中,∵,∴△OAP≌△OBP(HL),∴PA=PB,∠3=∠4,∴OP⊥AB.【点评】本题是切线长定理的证明,利用切线的概念,全等三角形的判定和性质,等腰三角形的性质求解. 16.(2015秋 扬州校级月考)如图,∠APB=52°,PA、PB、DE都为⊙O的切线,切点分别为A、B、F,且PA=6.(1)求△PDE的周长;(2)求∠DOE的度数.【分析】(1)根据切线长定理得到DA=DC,EB=EC,PA=PB=6,于是得到DE=DA+EB,即可得到结论;(2)根据切线的性质得到OB⊥PB,OA⊥PA,∠BOE=∠FOD=∠BOC,∠FOD=∠AOD=∠AOF,根据四边形的内角和得到∠AOB=360°﹣90°﹣90°﹣52°=128°,即可得到结论.【解答】解:(1)∵PA、PB、DE都为⊙O的切线,∴DA=DC,EB=EC,PA=PB=6,∴DE=DA+EB,∴PE+PD+DE=PA+PB=12,即△PDE的周长为12;(2)连接OF,∵PA、PB、DE分别切⊙O于A、B、F三点,∴OB⊥PB,OA⊥PA,∠BOE=∠FOD=∠BOC,∠FOD=∠AOD=∠AOF,∵∠APB=52°,∴∠AOB=360°﹣90°﹣90°﹣52°=128°,∴∠DOE=∠FOE+∠FOD=(∠BOF+∠AOF)=∠BOA=64°.【点评】主要考查了切线的性质、切线长定理、勾股定理等几何知识点的应用问题;解题的关键是作辅助线,灵活运用有关定理来分析、判断. 17.(2014秋 临洮县校级月考)如图示,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB上,若PA=12,则△PEF的周长是?【分析】由切线长定理知,AE=CE,FB=CF,PA=PB=12,然后根据△PEF的周长公式即可求出其结果【解答】解:∵PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在弧AB上,∴AE=CE,FB=CF,PA=PB=12,∴△PEF的周长=PE+EF+PF=PA+PB=24.【点评】本题主要考查了切线长定理的应用,解此题的关键是求出△PEF的周长=PA+PB. 18.(2015秋 湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1)若PA=6,求△PCD的周长.(2)若∠P=50°求∠DOC.【分析】(1)根据切线长定理得到PA=PB,AC=CE,BD=DE,根据三角形的周长公式计算即可;(2)证明Rt△AOC≌Rt△EOC,得到∠AOC=∠COE和∠DOE=∠BOD,计算即可.【解答】解:(1)连接OE,∵PA、PB与圆O相切,∴PA=PB=6,同理可得:AC=CE,BD=DE,△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;(2)∵PAPB与圆O相切,∴∠OAP=∠OBP=90°∠P=50°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,在Rt△AOC和Rt△EOC中,,∴Rt△AOC≌Rt△EOC(HL),∴∠AOC=∠COE,同理:∠DOE=∠BOD,∴∠COD=∠AOB=65°.【点评】本题考查的是切线长定理和全等三角形的判定和性质,掌握从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角是解题的关键. 19.(2013秋 云梦县期末)如图,已知:射线PO与⊙O交于A、B两点,PC、PD分别切⊙O于点C、D.(1)请写出两个不同类型的正确结论;(2)若CD=12,tan∠CPO=,求PO的长.【分析】(1)由切线长定理得①PC=PD,②∠CPO=∠DPA,由垂径定理得③CD⊥BA,④∠CEP=90°,由切割线定理得,⑤PC2=PA PB;(2)连接OC,由切线长定理得PC=PD,∠CPO=∠DPA,再由垂径定理得DE,则求得CP,即可得OC,最后根据勾股定理得出OP的长.【解答】解:(1)不同类型的正确结论有:①PC=PD,②∠CPO=∠DP,③ACD⊥BA,④∠CEP=90°,⑤PC2=PA PB;(2)连接OC∵PC、PD分别切⊙O于点C、D∴PC=PD,∠CPO=∠DPA∴CD⊥AB∵CD=12∴DE=CE=CD=6.∵tan∠CPO=,∴在Rt△EPC中,PE=12∴由勾股定理得CP=6∵PC切⊙O于点C∴∠OCP=90°在Rt△OPC中,∵tan∠CPO=,∴∴OC=3,∴OP==15.【点评】本题考查了切线长定理、勾股定理和垂径定理,是一道综合题,难度较大. 20.(2015秋 无锡校级月考)如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.【分析】(1)根据切线的性质得到OB平分∠EBF,OC平分∠GCF,OF⊥BC,再根据平行线的性质得∠GCF+∠EBF=180°,则有∠OBC+∠OCB=90°,即∠BOC=90°;(2)由勾股定理可求得BC的长,进而由切线长定理即可得到BE+CG的长;(3)最后由三角形面积公式即可求得OF的长.【解答】解:(1)连接OF;根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBE+∠OCF=90°,∴∠BOC=90°;(2)由(1)知,∠BOC=90°.∵OB=6cm,OC=8cm,∴由勾股定理得到:BC==10cm,∴BE+CG=BC=10cm.(3)∵OF⊥BC,∴OF==4.8cm.【点评】此题主要是综合运用了切线长定理和切线的性质定理.注意:求直角三角形斜边上的高时,可以借助直角三角形的面积进行计算. 展开更多...... 收起↑ 资源预览