资源简介 2020年苏科版八年级上册第1章《全等三角形》测试卷满分120分姓名:___________班级:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列图形是全等图形的是( )A.B.C.D.2.如果两个图形全等,那么这两个图形必定是( )A.形状大小均相同B.形状相同,但大小不同C.大小相同,但形状不同D.形状大小均不相同3.下列说法正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形是指面积相等的两个三角形C.两个等边三角形是全等三角形D.全等三角形是指两个能完全重合的三角形4.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第_____块去,这利用了三角形全等中的_____原理( )A.1;SASB.2;ASAC.3;ASAD.4;SAS5.如图,△ABC≌△A'B'C,∠BCB'=30°,则∠ACA'的度数为( )A.30°B.45°C.60°D.15°6.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是( )A.BF=ECB.AC=DFC.∠B=∠ED.BF=FC7.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( )A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE8.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是( )A.40°B.50°C.60°D.70°9.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是( )A.(6,0)B.(4,0)C.(4,﹣2)D.(4,﹣3)10.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A.1个B.2个C.3个D.4个二.填空题(共7小题,满分28分,每小题4分)11.两个三角形全等的判定方法有 , , , (用字母表示).12.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α= °.13.如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB= .14.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2= .15.已知:如图,AE⊥BC,DF⊥BC,垂足分别为E,F,AE=DF,AB=DC,则△ ≌△ (HL).16.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的有 .(把你认为正确的序号都填上)17.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为 秒时,△ABP和△DCE全等.三.解答题(共8小题,满分62分)18.(6分)如图,△ACF≌△ADE,AD=12,AE=5,求DF的长.19.(6分)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,求图中实线所围成的图形的面积S.20.(7分)如图,点B、F、C、E在同一直线上,且BF=CE,∠B=∠E,AC,DF相交于点O,且OF=OC,求证:(1)△ABC≌△DEF;(2)OA=OD.21.(8分)如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB且CE=BC,连接DE并延长,分别交AC、AB于点F、G.(1)求证:△ABC≌△DCE;(2)若∠B=50°,∠D=22°,求∠AFG的度数.22.(8分)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.23.(9分)如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH.(1)求证:△ACD≌△BCE;(2)求证:CH平分∠AHE;(3)求∠CHE的度数.(用含α的式子表示)24.(9分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.25.(9分)如图,在△ABC中,AB=AC=3,∠B=∠C=50°,点D在边BC上运动(点D不与点B,C重合),连接AD,作∠ADE=50°,DE交边AC于点E.(1)当∠BDA=100°时,∠EDC= °,∠DEC= °.(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选:B.2.解:能够完全重合的两个图形叫做全等形,所以如果两个图形全等,那么这两个图形必定是形状大小均相同.故选:A.3.解:A、全等三角形是指形状相同、大小相等的两个三角形,故本选项错误;B、全等三角形的面积相等,但是面积相等的两个三角形不一定全等,故本选项错误;C、边长相等的两个等边三角形是全等三角形,故本选项错误;D、全等三角形是指两个能完全重合的三角形,故本选项正确.故选:D.4.解:由图可知,带第2块去,符合“角边角”,可以配一块与原来大小一样的三角形玻璃.故选:B.5.解:∵△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′=30°,故选:A.6.解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选:A.7.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.8.解:作DG⊥AB于G,DH⊥BC于H,∵D是∠ABC平分线上一点,DG⊥AB,DH⊥BC,∴DH=DG,在Rt△DEG和Rt△DFH中,,∴Rt△DEG≌Rt△DFH(HL),∴∠DEG=∠DFH,又∠DEG+∠BED=180°,∴∠BFD+∠BED=180°,∴∠BFD的度数=180°﹣140°=40°,故选:A.9.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).故选:D.10.解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.二.填空题(共7小题,满分28分,每小题4分)11.解:全等三角形的判定定理有SAS,ASA,AAS,SSS.故答案为:SAS,ASA,AAS,SSS.12.解:∵图中的两个三角形全等,∴∠α=68°.故答案为68.13.解:∵点C是AD的中点,也是BE的中点,∴AC=DC,BC=EC,∵在△ACB和△DCE中,,∴△ACB≌△DCE(SAS),∴DE=AB,∵DE=20米,∴AB=20米,故答案为:20米.14.解:如图所示:由题意可得:∠1=∠3,则∠1+∠2=∠2+∠3=45°.故答案为:45°.15.证明:∵在△ABE和△DCF中,AE⊥BC,DF⊥BC,AE=DF,AB=DC,符合直角三角形全等条件HL,所以△ABE≌△DCF,故填:ABE;DCF.16.解:∵BD=CD,点A到BD、CD的距离相等,∴△ABD和△ACD面积相等,故①正确;∵AD为△ABC的中线,∴BD=CD,∠BAD和∠CAD不一定相等,故②错误;在△BDF和△CDE中,∴△BDF≌△CDE,故③正确;∴∠F=∠DEC,∴BF∥CE,故④正确;∵△BDF≌△CDE,∴CE=BF,故⑤错误,故答案为:①③④.17.解:设点P的运动时间为t秒,则BP=2t,当点P在线段BC上时,∵四边形ABCD为长方形,∴AB=CD,∠B=∠DCE=90°,此时有△ABP≌△DCE,∴BP=CE,即2t=2,解得t=1;当点P在线段AD上时,∵AB=4,AD=6,∴BC=6,CD=4,∴AP=BC+CD+DA=6+4+6=16,∴AP=16﹣2t,此时有△ABP≌△CDE,∴AP=CE,即16﹣2t=2,解得t=7;综上可知当t为1秒或7秒时,△ABP和△CDE全等.故答案为:1或7.三.解答题(共8小题,满分62分)18.解:∵△ACF≌△ADE,AD=12,AE=5,∴AC=AD=12,AE=AF=5,∴DF=12﹣5=7.19.解:∵∠EAF+∠BAG=90°,∠EAF+∠AEF=90°,∴∠BAG=∠AEF,∵在△AEF和△BAG中,,∴△AEF≌△BAG,(AAS)同理△BCG≌△CDH,∴AF=BG,AG=EF,GC=DH,BG=CH,∵梯形DEFH的面积=(EF+DH)?FH=80,S△AEF=S△ABG=AF?AE=9,S△BCG=S△CDH=CH?DH=6,∴图中实线所围成的图形的面积S=80﹣2×9﹣2×6=50.20.证明:(1)∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵OF=OC,∴∠OCF=∠OFC,在△ABC与△DEF中,∴△ABC≌△DEF(ASA);(2)∵△ABC≌△DEF,∴AC=DF,∵OF=OC,∴AC﹣OC=DF﹣OF,即OA=OD.21.(1)证明:∵CE∥AB,∴∠B=∠DCE,在△ABC与△DCE中,,∴△ABC≌△DCE(SAS);(2)解:∵△ABC≌△DCE,∠B=50°,∠D=22°,∴∠ECD=∠B=50°,∠A=∠D=22°,∵CE∥AB,∴∠ACE=∠A=22°,∵∠CED=180°﹣∠D﹣∠ECD=180°﹣22°﹣50°=108°,∴∠AFG=∠DFC=∠CED﹣∠ACE=108°﹣22°=86°.22.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.23.(1)证明:∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)证明:过点C作CM⊥AD于M,CN⊥BE于N,∵△ACD≌△BCE,∴∠CAM=∠CBN,在△ACM和△BCN中,,∴△ACM≌△BCN(AAS),∴CM=CN,∴CH平分∠AHE;(3)∵△ACD≌△BCE,∴∠CAD=∠CBE,∵∠AMC=∠AMC,∴∠AHB=∠ACB=α,∴∠AHE=180°﹣α,∴∠CHE=∠AHE=90°﹣α.24.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.25.解:(1)∵∠BDA=100°,∠ADE=50°,∴∠ED=180°﹣100°﹣50°=30°,∵∠C=50°,∴∠DEC=180°﹣50°﹣30°=100°,故答案为:30,100;(2)当DC=3时,△ABD≌△DCE,理由如下:∵AB=3,DC=3,∴AB=DC,∵∠B=50°,∠ADE=50°,∴∠B=∠ADE,∵∠ADB+∠ADE+∠EDC=180°∠DEC+∠C+∠EDC=180°,∴∠ADB=∠DEC,在△ABD和△DCE中,∴△ABD≌△DCE;(3)可以,理由如下:∵∠B=∠C=50°,∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣50°=80°,分三种情况讨论:①当DA=DE时,∠DAE=∠DEA,∵∠ADE=50°,∠ADE+∠DAE+∠DEA=180°,∴∠DAE=(180°﹣50°)÷2=65°,∴∠BAD=∠BAC﹣∠DAE=80°﹣65°=15°,∵∠B+∠BAD+∠BDA=180°,∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣15°=115°②当AD=AE时,∠AED=∠ADE=50°∵∠ADE+∠AED+∠DAE=180°∴∠DAE=180°﹣∠AED﹣∠ADE=180°﹣50°﹣50°=80°,又∵∠BAC=80°,∴∠DAE=∠BAE,∴点D与点B重合,不合题意.③当EA=ED时,∠DAE=∠ADE=50°,∴∠BAD=∠BAC﹣∠DAE=80°﹣50°=30°,∵∠B+∠BAD+∠BDA=180°,∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣30°=100°,综上所述,当∠BDA的度数为115°或100°时,△ADE是等腰三角形. 展开更多...... 收起↑ 资源预览