资源简介 (共34张PPT)一、复习引入:问题:两圆的位置关系有哪些 有五种:外离、外切、相交、内切、内含.从公共点的个数来分,可分为:无公共点一个公共点两个公共点相交外离外切相交内切内含 思考:当两圆相离、外切、相交、内切、内含时,两圆半径与两圆的圆心距有什么关系? 切点在两圆的连心线上两圆有唯一公共点:两圆无公共点:内切或外切外离或内含连心线垂直平分公共线我们可以通过什么样的步骤来判断这几种位置关系?第一步:计算两圆的半径r1,r2; 第二步:计算两圆的圆心距d;第三步:根据d与r1,r2之间的关系,判断两圆的位置关系二典型例题两圆位置关系的判定题型探究例1.判断下列两圆的位置关系:(1)(x+2)2+(y-2)2=1与(x-2)2+(y-5)2=16;解:(1)根据题意得,两圆的半径分别为和两圆的圆心距因为所以两圆外切.解:将两圆的方程化为标准方程得故两圆的半径分别为两圆的圆心距因为所以两圆相交.(2)x2+y2+6x-7=0与x2+y2+6y-27=0.变式:已知两圆(x-3)2+(y+2)2=,(x+1)2+(y-1)2=试求为何值时,两圆:(1)有唯一公共点;分析:有唯一公共点两圆的位置关系是怎样的?内切或外切变式:已知两圆(x-3)2+(y+2)2=,(x+1)2+(y-1)2=试求为何值时,两圆(1)有唯一公共点;相交(2)有两个公共点;变式:已知两圆(x-3)2+(y+2)2=,(x+1)2+(y-1)2=试求为何值时,两圆(1)有唯一公共点;(2)有两个公共点;(3)无公共点.外离或内含【点评】 判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:①化成圆的标准方程,写出圆心和半径;②计算两圆圆心的距离d;③通过d,r1+r2,|r1-r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.注意:两圆有唯一公共点-------内切或外切两圆无公共点-------外离或内含两圆相切有关的问题例2.求过点且与圆切于原点的圆的方程.xyOAM分析:C(-5,-5)y=x外切例2.求过点且与圆切于原点的圆的方程.解法一:将圆化为标准方程,得则圆心,半径为.所以经过此圆心和原点的直线方程为:设所求圆的方程为由题可知,在此圆上,且圆心在直线上则有:得因此,所求圆的方程是例2.求过点且与圆切于原点的圆的方程.xyOy=3AM分析:C(-5,-5)y=x解法二:将圆化为标准方程,得则圆心,半径为.所以经过此圆心和原点的直线方程因为在圆上,所以圆心在的垂直平分线上,即在直线上.由得圆心为(3,3),半径为,因此,所求圆的方程是变式:求半径为8且与圆切于原点的圆的方程.M分析:C(-5,-5)xyO外切或内切【点评】 圆与圆相切是两圆位置关系中最为特殊的情况,利用两圆相切的性质(切点在两圆的连心线上)来求解。注意:两圆相切时,充分利用好图形分析出是外切还是内切,还是两者都可以.(不能漏解)与两圆相交有关的问题例3.若两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0相交于A,B两点,(1)求两圆公共弦AB所在的直线的方程;ABxyC1C2例3.若两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0相交于A,B两点,(1)求两圆公共弦AB所在的直线的方程;例3.若两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0相交于A,B两点,(1)求两圆公共弦AB所在的直线的方程;【解】 (1)两圆方程相减得x-2y+4=0,即公共弦AB所在的直线方程为x-2y+4=0小结:求两个圆的公共弦所在直线的方程就是将两个圆的方程相减.例3.若两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0相交于A,B两点,(1)求两圆公共弦AB所在的直线的方程;(2)求弦AB的长度;【解】例3.若两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0相交于A,B两点,(1)求两圆公共弦AB所在的直线的方程;(2)求弦AB的长度;(3)求以两圆公共弦为直径的圆的方程.【解】例3.若两圆C1:x2+y2-2x+10y-24=0,C2:x2+y2+2x+2y-8=0相交于A,B两点,(1)求两圆公共弦AB所在的直线的方程;(2)求弦AB的长度;(3)求以两圆公共弦为直径的圆的方程.思考(1)求圆心在直线y=-x上,且经过A,B两点的圆的方程.【点评】 涉及圆的弦长问题,一般都考虑利用半径、弦心距、半弦长构成的直角三角形求解.而不采取求出弦的两端点坐标,然后利用两点间的距离求解.PMNC2XY方法技巧1.判断两个圆的位置关系常用圆心距d与两圆半径的和、差比较大小.d=R+r时,两圆外切;d=|R-r|时,两圆内切;d<|R-r|时,两圆内含;d>|R+r|时,两圆外离;|R-r|三方法感悟下课了谢谢同学们的积极参与感谢各位老师的批评指正请多赐教 展开更多...... 收起↑ 资源预览