资源简介 第十一章 三角形11.1 与三角形有关的线段11.1.1 三角形的边●归纳导入 三角形是一种最常见的几何图形,(投影)如古埃及金字塔,香港中银大厦,交通标志等等,处处都有三角形的形象. 【归纳】由不在同一条直线上的__三条线段__首尾顺次相接所组成的图形叫做三角形.问题:你能指出三角形的边、角、顶点吗?三角形的边有什么性质呢?【教学与建议】教学:让学生认识三角形在生活中是非常常见的图形,进而引导学生归纳三角形的定义、元素以及表示方法等.建议:在师生的交流中,学生与教师共同归纳三角形的定义及表示方法.●置疑导入 在小学,我们学习了关于三角形的哪些知识?(1)画图并用语言说明怎样的图形是三角形.(2)在画出的图形中标注顶点字母,指出三角形各部分的名称.(3)三角形按边分类,有哪几种?(4)我们学过哪些特殊的三角形?画图说明它们有什么典型特征.(5)三角形的三边之间有什么关系?(6)三角形的面积怎么求?画图说明.【教学与建议】教学:学生小学阶段已经学习了三角形的一些初步知识,主要包括三角形的概念、图形、三种基本要素、表示方法、按边分类、直角三角形、等腰三角形与等边三角形等特殊三角形的识别、三边关系、面积公式等,这些知识为学习本课奠定了基础.建议:从三角形的概念、图形、表示方法、分类、性质等方面讲解归纳,让学生明白三角形知识的大致框架.命题角度1 数三角形个数数三角形个数的方法(列举法):(1)按图形形成的过程去数;(2)按大小顺序去数;(3)从图中的某一条线段开始沿着一定方向去数;(4)先固定一个顶点, 再变换另两个顶点来数.【例1】找一找,图中有多少个三角形,并把它们写下来.解:图中有5个三角形,分别是:△ABE,△ABC,△BCE,△BCD,△DEC.命题角度2 三角形的分类三角形按角分类如下:三角形三角形按边分类如下:三角形【例2】 三角形按边分类可以用集合来表示,如图,图中小圆里的A表示(D)A.直角三角形 B.锐角三角形C.钝角三角形 D.等边三角形【例3】下面给出的四个三角形都有一部分被遮挡,其中不能判断三角形类型(按角分)的是(C) 命题角度3 利用三角形三边关系判断三条线段能否构成三角形判断三条线段能否构成三角形的方法:若两条较短的线段长之和大于最长的线段,能组成三角形;反之,则不能.【例4】下列长度的三条线段,能组成三角形的是(D)A.2,2,4 B.5,6,12C.5,7,2 D.6,8,10【例5】已知三角形的两边长分别为3和6,则这个三角形的第三条边长可以是__4(答案不唯一)__.(写出一个即可)命题角度4 三角形三边关系的综合运用1.涉及等腰三角形边的问题时,常需要分情况讨论,然后看它们是否满足三边关系,不满足的要舍去.2.求第三边长的取值范围:已知两边长之差(长边-短边)<第三边长<已知两边长之和.【例6】若等腰三角形的两边长分别是3和6,则它的周长为(B)A.17 B.15 C.13 D.13或17【例7】一个三角形三条边长分别是为x cm,(x-1)cm,(x-2)cm,它的周长不超过39 cm,则x的取值范围为__3<x≤14__.高效课堂 教学设计1.认识三角形的边、内角、顶点,能用符号语言表示三角形;理解三角形的分类.2.掌握三角形三边关系,会判断已知的三条线段能否组成三角形,会求三角形第三边的取值范围.▲重点理解三角形三边关系.▲难点三角形三边关系的运用.◆活动1 新课导入情景导入:如图,从教室到食堂有两条路可走,你会走哪条?为什么?◆活动2 探究新知1.如图:提出问题:(1)哪些图形是三角形?(2)三角形有什么特点?什么叫三角形?(3)在三角形的概念中,你认为不可或缺的要素是什么?(4)请指出图①中三角形的顶点、角、边.学生完成并交流展示.2.教材P2 思考.提出问题:(1)三角形除了按角分类,还可以按什么分?这样分的依据是什么?(2)按(1)的方法分类,分成的三角形有哪些特殊的三角形?学生完成并交流展示.3.教材P3 探究.提出问题:(1)在△ABC中,从点B出发,沿三角形的边到点C,有几条线路可以选择?每条线路的长有什么关系?从中你能得出什么结论?(2)从三角形的任意一个顶点出发到另一个顶点,上述结论都成立吗?学生完成并交流展示.◆活动3 知识归纳1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做__三角形__.2.三角形的分类:(1)按照三个内角的大小,可将三角形分为__锐角三角形__、__直角三角形__、__钝角三角形__.(2)三角形按边的相等关系分类:三角形3.三角形两边的和__大于__第三边,三角形两边的差__小于__第三边.◆活动4 例题与练习例1 如图,在△ABC中,点D,E分别在BC,AB上,AD交CE于点F.图中AC是哪些三角形的边?∠B是哪些三角形的内角?解:图中AC是△AFC,△AEC,△ADC,△ABC的边;∠B是△ABC,△ABD,△EBC的内角.例2 教材P3例.例3 已知在等腰三角形中,一边的长为9 cm,另一边的长为4 cm.小伟:“这个三角形的周长为17 cm.”小宇:“你说的不对,这个三角形的周长为22 cm.”同学们,你认为谁说的对呢?说说你的理由.解:小宇说的对,∵当腰长为4 cm时,4+4<9,不能组成三角形,∴该等腰三角形的腰长为9 cm,周长为9+9+4=22(cm).练习1.教材P4 练习第1,2题.2.若等腰三角形的两边长分别为3和7,则它的周长为__17__;若等腰三角形的两边长分别是3和4,则它的周长为__10或11__.3.已知△ABC的两边AB=2 cm,AC=9 cm.(1)求第三边BC的长的取值范围;(2)若第三边BC的长是偶数,求BC的长;(3)若△ABC是等腰三角形,求其周长.解:(1)7 cm<BC<11 cm;(2)BC的长是8 cm或10 cm;(3)∵△ABC是等腰三角形,∴BC=9 cm或BC=2 cm.当BC=2 cm时,2+2<9,不能组成三角形,∴BC=9 cm.∴△ABC的周长为2+9+9=20(cm).◆活动5 课堂小结1.三角形的概念.2.三角形的分类.3.三角形的三边关系.1.作业布置(1)教材P9 习题11.1第1题;(2)对应课时练习.2.教学反思 展开更多...... 收起↑ 资源预览