资源简介 3 从统计图分析数据的集中趋势●置疑导入 为了检查面包的质量是否达标,随机抽取同种规格的面包10个,这10个面包的质量如图所示.(1)这10个面包质量的众数是__100__g__,中位数是__100__g__;(2)这10个面包的平均质量列式为__×(95+97+98+99+3×100+101+103+105)__.【教学与建议】教学:学生通过读取随机抽取的同种规格面包的质量的统计图的信息,初步体会估计相关数据的平均数、中位数、众数的过程,从而引入新课.建议:引例的解答要让学生自主参与.●复习导入 前面课上学习时我们经历了数据的收集以及整理,并且我们把收集到的数据整理成了条形、扇形及折线统计图,你还记得各类统计图的优劣吗?本节课老师将带领大家学习从统计图中获取信息.【教学与建议】教学:通过回顾三类统计图的优劣,为新授课埋下伏笔.建议:在对比各种统计图的优劣时,让学生尽可能多地参与其中.命题角度1 利用扇形统计图分析数据利用扇形统计图求加权平均数容易看出数据的权重和众数.【例1】学校快餐店有2元、3元、4元三种价格的饭菜供师生选择(每人限购一份).如图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数分别是(A)A.2.95元,3元 B.3元,3元C.3元,4元 D.2.95元,4元命题角度2 利用条形统计图分析数据结合条形统计图,可对所得到的数据进行分析,计算中位数、众数和平均数.【例2】随着智能手机的普及,抢微信红包成为春节期间人们最喜欢的活动之一.某中学九年级(5)班班长对全班50名学生在春节期间所抢的红包金额进行统计,并绘制成了如图的统计图.根据图中提供的信息,红包金额的众数和中位数分别是(C)A.20元,30元 B.30元,20元C.30元,30元 D.20元,30元命题角度3 利用折线统计图分析数据利用折线统计图比较容易看出具体的数据,找出中位数、众数.【例3】多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图所示的折线统计图.下列说法正确的是(C)A.各月阅读量最多相差47本 B.众数是42C.中位数是58本 D.每月阅读数量超过40本的有4个月命题角度4 利用扇形统计图、条形统计图分析数据扇形统计图反映各部分占总体的百分比,条形统计图中能找到具体的数据,二者结合即可分析数据.【例4】(1)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分、2分、3分、4分,共4个等级,将调查结果绘制成如图所示的条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是(C) A.2.25分 B.2.5分 C.2.95分 D.3分(2)某养鸡场有2 500只鸡准备对外出售,从中随机抽取一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题: ①图①中m的值为______;②求统计的这组数据的平均数、众数和中位数;③根据样本数据,估计这2 500只鸡中,质量为2.0 kg的有多少只?解:①28 ②x==1.52(kg),∴这组数据的平均数是1.52 kg.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8 kg.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数据都是1.5,有=1.5(kg),∴这组数据的中位数为1.5 kg;③∵在所抽取的样本中,质量为2.0 kg的数量占8%,∴由样本数据估计这2 500只鸡中,质量为2.0 kg的数量占8%,有2 500×8%=200(只),∴这2 500只鸡中,质量为2.0 kg的约有200只.高效课堂 教学设计1.进一步认识平均数、中位数、众数都是数据的代表,了解它们在描述数据时的差异.2.能根据统计图中的信息分析数据的集中趋势.结合统计图分析数据的集中趋势,解决生活中的实际问题.▲重点从统计图中分析数据的集中趋势.▲难点熟练地根据统计图分析数据的集中趋势,并能灵活运用所学的三个数据代表解决实际问题.◆活动1 创设情境 导入新课(课件)通过前面几节课的学习,我们已经知道了平均数、中位数和众数,同学们能说一说它们的概念吗?(学生展示)今天这节课我们接着来学习如何根据统计图分析数据的集中趋势.(多媒体展示课本P145上面部分)◆活动2 实践探究 交流新知【探究1】从折线统计图分析数据的集中趋势(1)这10个面包质量的众数是__100__g.(2)面包的平均质量就是求平均数,也就是列式为__×(95+97+98+99+3×100+101+103+105)__.【探究2】从条形统计图分析数据的集中趋势(多媒体展示课本P145议一议)(1)甲队队员年龄的众数是__20__,中位数是__20__;乙队队员年龄的众数是__19__,中位数是__19__;丙队队员年龄的众数是__21__,中位数是__21__.(2)估计__丙队__队员年龄最大,__乙队__队员年龄最小.(3)甲队平均年龄:__(18+19×3+20×4+21×3+22)÷12=20(岁)__乙队平均年龄:__(18×3+19×5+20×2+21+22)÷12≈19.33(岁)__丙队平均年龄:__(18+19×2+20+21×5+22×3)÷12≈20.58(岁)__【探究3】从扇形统计图分析数据的集中趋势(多媒体展示课本P145做一做)(1)计划购买课外书花费的众数是__50元__.(2)购买课外书的平均花费为__(100×10%×20+80×25%×20+50×40%×20+30×20%×20+20×5%×20)=57(元)__.【归纳】折线统计图能够表示数据的变化趋势,利用它可以比较容易看出众数;条形统计图能清楚表示出数量的多少,可以容易看出众数、中位数;扇形统计图能看出部分在总体所占的百分比,可以容易看出众数、中位数.三种统计图都可以求平均数.◆活动3 开放训练 应用举例【例1】教材P146例题【方法指导】根据扇形统计图获取数据.解:(1)日最高气温的众数是__35__℃__.(2)最高气温的平均值是:__32×10%+33×20%+34×20%+35×30%+36×20%=34.3(℃)__.【例2】为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题. (1)本次接受随机抽样调查的学生人数为______,图①中m的值为______;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【方法指导】从两个统计图中提取信息,解决问题.解:(1)40 15(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本的众数为35;将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,35号的运动鞋数量为200×30%=60(双).◆活动4 随堂练习教材P146随堂练习.解:(1)平均数:=3(分).中位数和众数都是3;(2)平均数:1×3%+2×4%+3×51%+4×32%+5×10%=3.42(分).中位数和众数都是3分.◆活动5 课堂小结与作业学生活动:这节课你有什么收获?还有哪些疑惑?教学说明:从统计图分析数据的平均数、中位数、众数.作业:课本P147习题6.4中的T1、T2、T3.本节课通过想一想、议一议、做一做等探究活动,向学生提供充分从事数学活动的机会,使他们在自主探索和合作交流的过程中进一步理解平均数、中位数、众数的实际含义;学会从条形统计图、扇形统计图等统计图中获取信息,分析相关数据的平均数、中位数、众数,从而增强统计意识和数据处理能力,培养探索精神和创新意识.教师一定要鼓励学生积极探索,体验数学活动的趣味与应用价值,让学生在相互交流中,互相启发,共同进步. 展开更多...... 收起↑ 资源预览