资源简介 2 用频率估计概率●情景导入 《红楼梦》第62回中有这样的情节:当下又值宝玉生日已到,原来宝琴也是这日,二人相同……袭人笑道:“这是他来给你拜寿,今儿也是他们生日,你也该给他拜寿.”宝玉听了喜的忙作了下揖去,说:“原来今儿也是姐妹们芳诞.”平儿还福不迭……探春忙问:“原来刑妹妹也是今儿?我怎么就忘了.”……在上面的名著中提到了生日相同的问题.那么,在几个人中,2个人的生日相同的概率到底有多大呢?我们还能用树状图或表格求这个问题的概率吗?我们又有什么样的方法求这个问题的概率呢?带着这些问题我们来学习用频率估计概率.【教学与建议】教学:引入与生日有关的话题,激发学生的学习兴趣.建议:提出用以前学习的知识求概率无法得出结果,引入用频率来估计概率.●置疑导入 问题1:每年有多少天?问题2:400个人,一定有生日相同的人吗?问题3:300个人,一定有生日相同的人吗?问题4:猜想“50个人中有两人生日相同”是大概率事件还是小概率事件?【教学与建议】教学:通过猜测与事实的矛盾冲突引入新课.建议:多鼓励学生发表自己的观点.命题角度1 利用频率估计概率当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,我们可以通过统计频率来估计概率.【例1】(1)菱湖是全国著名的淡水鱼产地,某养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,则塘里大约有鱼(B)A.1 600条 B.1 000条 C.800条 D.600条(2)在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为__30__.命题角度2 统计与概率的综合运用加强数学的应用性,在数学活动中获得生活经验,加强应用统计与概率的意识.【例2】为庆祝中国共产党建党102周年,某校开展了“党在我心中”党史知识竞赛,竞赛得分为整数,王老师为了解竞赛情况,随机抽取了部分参赛学生的得分并进行整理,绘制成如下不完整的统计图表:组别 成绩x(分) 频率A 75≤x<80 6B 80≤x<85 14C 85≤x<90 mD 90≤x<95 nE 95≤x≤100 p请你根据上面的统计图表提供的信息解答下列问题:(1)上表中的m=______,n=______,p=____;(2)这次抽样调查的成绩的中位数落在哪个组?请补全频数分布直方图;(3)已知该校有1 000名学生参赛,请估计竞赛成绩不低于90分的学生有多少人?(4)现要从E组随机抽取两名学生参加上级部门组织的党史知识竞赛,E组中的小丽和小洁是一对好朋友,请用列表或画树状图的方法求出恰好抽到小丽和小洁的概率.解:(1)18 8 4(2)成绩的中位数落在C组,补全频数分布直方图如图所示;(3)1 000×=240(人),答:估计竞赛成绩不低于90分的学生有240人;(4)将“小丽”和“小洁”分别记为A,B,另两个同学分别记为C,D,画树状图如下:由树状图可知,共有12种等可能的结果,其中恰好抽到小丽和小洁的共有2种,∴P(恰好抽到小丽和小洁)==.高效课堂 教学设计1.经历试验、统计等活动,体会随机事件内部所蕴涵的客观规律.2.能用试验频率估计一些随机事件发生的概率,进一步体会概率的意义.▲重点用试验的方法估计一些复杂随机事件发生的概率.▲难点大量重复试验得到频率稳定值的分析.◆活动1 创设情境 导入新课(课件)我们知道,任意抛一枚质地均匀的硬币,“正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:实验者 抛掷次数n “正面朝上”次数m 频率m/n隶莫弗 2 048 1 061 0.518 1布丰 4 040 2 048 0.506 9皮尔逊 12 000 6 019 0.501 6皮尔逊 24 000 12 012 0.500 5 观察上表,我们可以发现实验次数越多,频率越接近概率.◆活动2 实践探究 交流新知【探究1】提出问题(多媒体出示)(1)400个同学中,一定有2个同学的生日相同(可以不同年)吗?(2)300个同学中,一定有2个同学的生日相同(可以不同年)吗?(3)有人说:“50个同学中,就很可能有2个同学的生日相同.”你同意这种说法吗?处理方式:教师找学生回答问题,引发学生认知冲突.答案预设:(1)一定有2个同学的生日相同,根据抽屉原理.(2)不一定有2个同学的生日相同,但是可能性较大.(3)同意.【探究2】设计方案提出问题:(多媒体出示)请你尝试设计试验方案,估计“50个人中,有2个同学的生日相同”的概率,并与同伴交流.方案设计:方案一:小组内把每个成员收集出来的数据组成50个数据.方案二:小组之间交换数据组成50个数据.方案三:全班选取5名同学收集的数据,组成50个数据.方案四:把全班50名同学的生日组成50个数据.方案五:每组中选取一名同学收集的数据组成50个数据.方案六:50名同学随机说出自己收集的一个数据,组成50个数据.方案七:50名同学随意写一个日期,组成50个数据.方案八:教师用多媒体投影展示50名中国伟人的生日.【探究3】统计数据1.每名组长到讲台上用多媒体展示自己小组调查的数据,记录其中有无2个人生日相同的情况.班长进行统计,有记为“1”,无记为“0”.2.教师鼓励其他同学展示自己调查的数据.3.教师引导学生用其他方法统计数据.4.班长统计试验的总次数为m,记为“1”的次数为n,据此估计“50个人中,有2个人的生日相同”的概率.5.你还有其他比较简便的方法来估计“50个人中,有2个人的生日相同”的概率吗?【探究4】方法提炼1.同学们设计的试验方案可以分为几类?为什么?谈谈你的看法.2.在之前的概率学习中,你用过类似的方法吗?3.请你设计一个方案,估计“6个同学中有2个同学生肖相同”的概率.学生答案预设:1.设计的方案分成两大类:一是真实调查,二是模拟试验.2.在掷骰子、转转盘、摸球、摸扑克牌等游戏中,用到过这种方法.3.类似生日相同的试验设计方案,估计“6个同学中有2个同学生肖相同”的概率.归纳:(1)用频率估计概率:当试验次数足够大时,随机事件出现的频率稳定于相应的理论概率附近;(2)用频率估计概率的条件:试验的次数必须足够大.◆活动3 开放训练 应用举例例1 六一期间,某公园游戏场举行“迎奥运”活动.有一种游戏的规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的不透明的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动的人数为40 000人次,公园游戏场发放的福娃玩具为10 000个.(1)求参加一次这种游戏活动得到福娃玩具的频率;(2)请你估计袋中白球有多少个.【方法指导】(1)由40 000人次中公园游戏场发放的福娃玩具为10 000个,结合频率的意义可直接求得;(2)由概率与频率的关系可估计从袋中任意摸出一个球,恰好是红球的概率,从而引进未知数,构造方程求解.解:(1)因为=,所以参加一次这种游戏活动得到福娃玩具的频率为;(2)因为试验次数很大时,频率接近于理论概率,所以估计从袋中任意摸出一个球,恰好是红球的概率是.设袋中白球有x个.根据题意,得=,解得x=18,经检验,x=18是原分式方程的解,且符合题意,所以估计袋中白球有18个.◆活动4 随堂练习1.不透明的袋子里放有4个黑球和若干个白球(这些球除颜色外都相同),老师将全班学生分成10个小组,进行摸球试验,经过大量重复摸球试验,统计显示,从中摸出白球的频率稳定在0.2附近,则袋子中白球的个数是(D)A.4 B.3 C.2 D.12.甲、乙两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是(D)A.掷一枚正六面体的骰子,出现1点的概率B.任意写一个整数,它能被2整除的概率C.抛一枚质地均匀的硬币,出现正面朝上的概率D.从一个装有2个白球和1个红球的袋子中任取1个球,取到红球的概率3.一个不透明的袋子中放有除颜色外都相同的黑、白两种球,其中黑球6个,白球若干个.为了估算袋子中白球的个数,摇匀后从袋子中取出1个球,然后放回,共取50次,其中取出白球45次,则可估算袋子中白球的个数为__54__.4.一个有10万人的小镇,随机调查了2 000人,其中有250人看中央1台的早间新闻,在该镇随便问一个人,他看早间新闻的概率大概是多少?该镇看早间新闻的大约有多少人?解:他看早间新闻的概率大概是=0.125,该镇看早间新闻的人数大约是100 000×0.125=12 500(人).◆活动5 课堂小结与作业学生活动:你这节课的主要收获是什么?有什么感受?教学说明:大量的重复试验,可以用频率来估计概率.作业:课本P71习题3.4中的T1、T2.通过本节课的学习,使学生明白通过大量的重复试验,可以把稳定在某个常数附近的频率作为事件发生的概率.教师需要引导学生体会统计概率的本质是估计,用频率估计概率的目的是为了解释现象、解释生活,而不是为了得到一个准确的数值. 展开更多...... 收起↑ 资源预览