2023-2024学年四年级下册(苏教版)第一单元平移、旋转和轴对称(单元复习讲义)(含解析)

资源下载
  1. 二一教育资源

2023-2024学年四年级下册(苏教版)第一单元平移、旋转和轴对称(单元复习讲义)(含解析)

资源简介

第一单元平移、旋转和轴对称(单元复习讲义)
1、平移和旋转不改变图形的形状和大小,只是改变图形的位置。
2、与时针旋转方向相同的是顺时针旋转,与时针旋转方向相反的是逆时针旋转。
3、把一个图形沿一条直线对折后,折痕两边完全重合的图形叫做轴对称图形,折痕所在的直线叫做对称轴。
4、所学图形中是轴对称图形:
有1条对称轴有等腰三角形和等腰梯形;
有2条对称轴是长方形;
有3条对称轴是等边三角形;
有4条对称轴是正方形;
有无数条对称轴是圆。
【例题一】下面各组合图形中,能画出3条对称轴的是( )
A. B. C.
【分析】依据轴对称图形的意义,即在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,据此可以画出它们的对称轴.
【详解】 A中图形有2条对称轴;
B中图形有2条对称轴;
C中图形有3条对称轴;
故选C.
【分析】解答此题的主要依据是:轴对称图形的意义及其特征.注意画对称轴要用虚线.
【例题二】画出下面图形的对称轴,你能发现什么规律?
我的发现是:
规律:正多边形对称轴的条数和边数相同。
【分析】一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,据此分别画出四种图形的对称轴,观察之后发现正多边形对称轴的条数和边数相同。
【详解】
我的发现是:正多边形对称轴的条数和边数相同。
【分析】本题考查了画轴对称图形的对称轴,解答本题的关键是根据轴对称图形的意义和特征画出对称轴后发现正n边形有n条对称轴的规律。
【例题三】将三角形ABC先向下平移2格,再向右平移5格,得到图形A'B'C'.将图形A'B'C'绕点B'逆时针旋转90°,得到图形C.
【详解】
一、选择题
1.把图形①向右平移( )格,得到图形②。
A.5 B.6 C.7 D.8
2.从3:15到3:30,分针顺时针旋转了( )°。
A.30 B.90 C.15 D.45
3.在下边的图形中再给2个格子画上阴影,使阴影部分成为一个轴对称图形。不同的画法一共有( )。
A.4种 B.6种 C.8种 D.10种
4.下列图形中,有2条对称轴的是( )。
A. B. C. D.
5.把一张正方形纸按如下方法对折两次后,在如图所示的位置上打一个孔,把纸展开后得到的应是(  )。
A. B. C. D.
6.下图是把三角形绕点A顺时针旋转( )。

A.180° B.90° C.360°
二、填空题
7.正方形有( )条对称轴,从12:00到3:00,时针旋转了( )度.
8.从6:00到9:00,时针在钟面上旋转了( )度;从3:15到3:45,分针在钟面上旋转了( )度。
9.一辆汽车沿着笔直的公路行驶是( )现象,风扇的转动是( )现象。
10.如图,时针从数字“12”到数字“2”,时针绕中心点顺时针方向旋转了( )°;时针从数字“6”到数字( ),时针绕中心点顺时针方向旋转了120°。

11.下面图形甲绕点O按( )方向旋转( )度,就得到图形乙。
12.钟面上时针从指向“5”转到指向“8”,是按( )方向旋转了( )°。
13.下面的小船图和金鱼图分别是怎样运动的?它们的运动有什么相同点和不同点?看图填空。
小船图向( )平移了( )格;金鱼图向( )平移了( )格。
14.如图,盘秤上已有( )kg的物品,再加入( )kg的物品,可以使指针顺时针旋转180°。
15.从上午9:15到9:30,分针会按( )(填“顺”或“逆”)时针方向旋转( )°。
三、判断题
16. 左图是一个轴对称图形。( )
17.平面图形在平移或旋转前后,都只是位置发生了改变,形状和大小都没有改变。( )
18.铅笔平移前后的线条是平行的。( )
19.长方形有2条对称轴,正方形有无数条对称轴. ( )
20.下图是轴对称图形。( )
21.将图形绕点O逆时针旋转90°后的图形是。( )
四、解答题
22.作图.
(1)以直线MN为对称轴作图A的轴对称图形,得到图形B;
(2)将图形B绕点O逆时针旋转90度,得到图形C;
(3)将图形C向右平移6格,得到图形D.
23.下面蝴蝶_____通过平移到达黑蝴蝶的位置。它是怎样平移?写一写。
24.按要求填一填、画一画.
(1)向  平移了  格。
(2)向  平移了  格。
(3)将向左平移4格。
25.把下图中左边的圆平移,使平移后的圆与右边的正方形组成轴对称图形。
(1)圆应该向什么方向平移几格?
(2)你能画出组成的轴对称图形的所有对称轴吗?
26.看清题意,动手操作。
(1)将图②先向______平移_______格,再向______平移________格,就能与图形①组合成一个正方形。
(2)画出图形① 绕O点顺时针旋转90°后的图形。
27.下面图形中是轴对称图形的打“√”,并画出对称轴.
28.(1)用数对表示图①中A的位置,A(_______,_____)。
(2)画出图①先向右平移7格,再向下平移2格后的图形。
(3)画出图②绕点O顺时针旋转90°后的图形。
29.按要求画一画,填一填。
(1)小鱼图先向( )平移了( )格,又向( )平移了( )格。
(2)画出把长方形向左平移10格后的图形。
(3)画出把平行四边形绕点A顺时针旋转90°后的图形。
(4)把图形B补充完整,使它成为一个轴对称图形。
30.大科学家牛顿有一次在纸上画了一幅图.这三幅图的排列是有规律的,你知道第四幅图应是什么样子吗?
31.说一说,如何通过平移图形A、B、C、D,使左下图变成右下图?
32.想想做做。
(1)图形①平移到图形②的位置,可以先向( )平移( )格,再向( )平移( )格。
(2)把三角形绕A点逆时针方向旋转90°,画出旋转后的图形。
参考答案:
1.D
【分析】从图形①中找出一个关键点,再从图形②中找出这个关键点的对应点,通过判断关键点与对应点之间的位置关系,进而明确图形①是如何平移到图形②的。
【详解】把图形①向右平移8格,得到图形②;
故答案为:D
【分析】本题考查平移现象,关键是找出图形的关键点和对应点。
2.B
【解析】钟面上12个数字把钟面平均分成12份,每份所对应的圆周角是360°÷12=30°,即每两个相邻数字间的夹角是30°,即指针从一个数字走到下一个数字时,绕中心轴旋转了30°,从3:15到3:30,分针从3旋转到了6,就是旋转了3个30°,据此解答。
【详解】30°×3=90°
故答案为:B
【分析】关键是弄清在钟面上指针从一个数字走到下一个数,绕中心旋转了多少度,从3:15到3:30,分针顺时针旋转了几个数字。
3.C
【分析】一个图形沿着一条直线折叠,直线两边的部分能够完全重合,这样的图形叫做轴对称图形,据此找出涂色方法。
【详解】画法如下:
一共有8种不同的画法。
故选择:C。
【分析】掌握轴对称图形的概念,涂色时要按一定的规律来涂。
4.D
【分析】把一个平面图形沿一条直线对折,折痕两边的图形能够完全重合,这样的图形叫做轴对称图形,折痕所在的直线是轴对称图形的对称轴。常见的平面图形中,等腰三角形、等边三角形、长方形、正方形、等腰梯形、圆是轴对称图形。
【详解】A.等腰梯形有1条对称轴;
B.圆有无数条对称轴;
C.平行四边形不是轴对称图形;
D.长方形有2条对称轴。
故答案为:D
【分析】此题考查了轴对称图形的意义及对称轴的画法,属于基础题,应熟练掌握。
5.A
【分析】把正方形对折两次后,总共有4层,所以直接排除D选项,然后要确定孔的位置,打孔的位置对对应的是原正方形的左上角和右下角的位置,据此进行判断。
【详解】A.孔的数量和位置都正确;
B.孔的位置不对,错误;
C.孔的位置不对,错误;
D.孔的数量不对,错误;
故答案选:A
【分析】此题属于图形的折叠问题,考查了学生的空间想象能力和动手操作的能力,可以实践探究,进行求证。
6.B
【分析】旋转:在平面内,将一个图形绕一点按某个方向转动一定的角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。旋转前后图形的位置和方向改变,形状、大小不变。选择直角三角形的一条直角边,看旋转前和旋转后所形成的角度即可。
【详解】直角三角形的一条直角边,旋转前和旋转后所形成的角度是90度。
故答案为:B
【分析】明确选择合适的边判断旋转的角度是解决本题关键。
7. 4 90
8. 90 180
【分析】旋转钟面一圈是360度,一圈有12个大格子,1个大格子是30度。时针从6旋转到9走了3个大格子。分针从3到9走了6个大格子。
【详解】从6:00到9:00,时针在钟面上旋转了90度;从3:15到3:45,分针在钟面上旋转了180度。
【分析】在钟面上,无论分针还是时针,旋转1个大格子是30度,旋转1个小格子是6度。先判断问题中是分针旋转还是时针旋转,再判断旋转的是大格子还是小格子。
9. 平移 旋转
【分析】汽车在笔直的公路上行驶是直线运动,所以是平移。风扇转动,是绕一个点作曲线运算,是旋转。
【详解】一辆汽车沿着笔直的公路行驶是平移现象,风扇的转动是旋转现象。
【分析】平移是直线运动,旋转是绕一个点作曲线运动。
10. 60 10
【分析】时针1小时转动30度,2小时转动60度,3小时转动90度,以此类推即可。
【详解】时针从数字“12”到数字“2”,过了2小时,即时针绕中心点顺时针方向旋转了60°;120°÷30°=4,过了4小时,6+4=10(时),即时针从数字“6”到数字10,时针绕中心点顺时针方向旋转了120°。
【分析】明确1小时,时针绕中心点顺时针方向旋转了30度是解决本题关键。
11. 逆时针 90
12. 顺时针 90
【分析】时针从指向“5”转到指向“8”,是按顺时针方向旋转了3个大格。时钟上12个数字把钟面平均分成12个大格,每个大格是30°。时针旋转了3个大格,就是3×30°。
【详解】3×30°=90°
则钟面上时针从指向“5”转到指向“8”,是按顺时针方向旋转了90°。
【分析】本题是一个钟表问题,钟表12个数字,每相邻两个数字之间的夹角为30°,借助图形,更容易解决。
13. 右 9 右 7
【分析】平移:在平面内,将一个图形上的所有点都按照某个方向作相同距离移动的图形运动。平移后图形的位置改变,形状、大小、方向不变;据此从图形中选出一个关键点,再从平移后的图形中选出这个关键点的对应点,通过分析关键点与对应点的位置关系,判断图形平移的方向和距离。
【详解】小船图向右平移了9格;金鱼图向右平移了7格。
【分析】本题考查图形的平移,关键是找准关键点和对应点。
14. 1 2
【分析】根据表盘上指针的位置,判断盘秤里物品的重量;由图可知,1kg物品可以使指针顺时针旋转90°,那么指针顺时针旋转180°需要有2千克的物品物品。
【详解】根据指针位置可以看出:盘秤上已有1千克的物品;
1kg物品可以使指针顺时针旋转90°;
再加入2千克的物品可以使指针顺时针旋转180°。
故答案为:1;2
【分析】本题重点是仔细观察图片中指针的位置,判断出现盘秤里物品的重量。考查了旋转现象。
15. 顺 90
【分析】钟面上12个数字把钟面平均分成12份,每份所对应的圆心角是360°÷12=30°,即每两个相邻数字间的夹角是30°,即指针从一个数字走到下一个数字时,绕中心轴旋转了30°,从上午9:15到9:30,分针从3旋转到了6,就是旋转了3个30°,据此解答。
【详解】3×30°=90°
从上午9:15到9:30,分针会按顺时针方向旋转90°。
【分析】关键是明白指针从一个数字走到下一个数字时,绕中心轴旋转的度数,分针由上午9:15到9:30,走了几个数字。
16.√
【分析】根据轴对称图形的特征解答即可。
【详解】如图,分成上下两部分,且这两部分能够完全重合,所以它是一个轴对称图形。
故答案为:√
【分析】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫轴对称图形。
17.√
【分析】平移:在平面内,将一个图形上的所有点都按照某个方向作相同距离移动的图形运动。平移后图形的位置改变,形状、大小、方向不变。
旋转:在平面内,将一个图形绕一点按某个方向转动一定的角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。旋转前后图形的位置和方向改变,形状、大小不变。
【详解】平面图形在平移或旋转前后,都只是位置发生了改变,形状和大小都没有改变。
故原题说法正确。
故答案为:√
【分析】明确平移旋转只改变位置,大小形状不变是解决本题关键。
18.×
【分析】铅笔如果在一条横线上左右平移,平移前后的线条在同一条直线上,就不会出现平行。如果上下平移,平移前后的线条是平行的。据此解答。
【详解】由分析可得,铅笔平移前后的线条不一定是平行的,原说法错误。
故答案为:×。
【分析】本题考查平移的特征。平移时物体或图形的位置发生变化而形状、大小不变,且本身方向不发生改变
19.×
【详解】略
20.√
【分析】轴对称图形是:一个图形沿着一条直线对折后两部分完全重合;根据轴对称图形的特征,即可判断。
【详解】长方形对折后,两侧部分完全重合,是轴对称图形,所以判断正确;
【分析】本题考查了轴对称图形,找出对称轴,看图形沿着对称轴对折后,两部分是不是完全重合是解题的关键。
21.×
【解析】略
22.
【详解】(1)以直线MN为对称轴作图A的对称点,再顺次连接即可得到图形B.
(2)先将图形B与点O相连的两条边绕点O逆时针旋转90°,再利用平行四边形的性质画出另外两条边,即可得到图形C.
(3)先将图形C的各个顶点向右平移6格,再顺次连接得到图形D.如图所示:
【分析】此题考查了轴对称的性质以及图形的旋转与平移的方法的综合应用,注意组合图形的特点进行画图.
23.③
蝴蝶③先向右平移4格,再向上平移6格到达黑蝴蝶的位置。
【分析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心。所以,它并不一定是绕某个轴的;依此根据平移与旋转定义判断即可。
【详解】下面蝴蝶③通过平移到达黑蝴蝶的位置;
蝴蝶③先向右平移4格,再向上平移6格到达黑蝴蝶的位置。
【分析】本题是考查平移、旋转的意义。图形的平移与旋转的相同点是大小、形状不变,平移不改变方向,旋转改变方向。
24.(1)右,6,
(2)上,4,
(3)如图所示:
【分析】本题主要是考查图形的平移.图形平移后形状、大小不变,只是位置变化。
【详解】观察图形可知:
(1)右边的各顶点分别是由左边的的顶点向右平移6格得到的;
(2)上面的的顶点分别是由下面的顶点向上平移4格得到的;
(3)把图中的顶点分别向左平移4格,然后首尾连接各点,即可画出。
25.(1)圆应该向右平移5格。
(2)示例:
【解析】略
26.(1)上;4;左;5
(2)图见解析
【详解】(1)观察图中可知,图②先向上平移4格,再向左平移5格,就能与图形①组合成一个正方形;
(2)画旋转图形的方法:把图形的每个点与旋转中心连接,再量出题目要求旋转的角度,最后依次连接,据此作图。
27.
【详解】考点:轴对称图形的辨识;画轴对称图形的对称轴.
分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.
解答:根据轴对称图形的意义可得.
28.(1)(8,6)
(2)见详解
(3)见详解
【分析】(1)用数对表示位置时,通常把竖排叫列,横排叫行。一般情况下,确定第几列时从左往右数,确定第几行时从前往后数。表示列的数在前,表示行的数在后,中间用逗号“,”隔开,数对加上小括号。据此可知A点的位置用数对表示为(8,6)。
(2)根据平移的特征,把图①的关键点分别先向右平移7格,再向下平移2格,再依次连结各关键点的对应点,即可得到图①先向右平移7格、再向下平移2格后的图形;画图如下。
(3)作旋转一定角度后的图形步骤:确定旋转中心、旋转方向和旋转角;点O不动,
按顺时针方向转90°,分别作出图②各关键点的对应点,作出新图形,顺次连接作出的各关键点的对应点即可。画图如下。
【详解】(1)A点在图中第8列、第6行,用数对表示它的位置是(8,6);
(2)画出图①先向右平移7格,再向下平移2格后的图形。如下:
(3)画出图②绕点O顺时针旋转90°后的图形:
【分析】作平移后的图形,关键是确定对称点(对应点)的位置;作旋转后的图形,关键是确定旋转中心、旋转方向和旋转角度。
29.(1)右;9;下;4
(2)(3)(4)如下图。
【分析】(1)根据平移的特征,小鱼从左上方平移到右下方,先把小鱼的各个顶点分别向右平移9格,再向下平移4格后的图形;
(2)把长方形的关键点分别向左平移10格,然后首尾连接各点,即可得到长方形向左平移10格后的图形;
(3)根据图形旋转的方法,把平行四边形绕A点顺时针旋转90°,以A为旋转中心,先找出另外几个顶点绕点A顺时针旋转90度后的对应点,再把这把这几个顶点依次连接起来,即可得出旋转后的图形,据此可画图解答;
(4)根据轴对称图形的性质,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键的对称点,然后连接,即可使它成为一个轴对称图形。
【详解】(1)小鱼图先向右平移了9格,又向下平移了4格;
(2)(3)(4)如下图:
【分析】本题是考查图形的平移、旋转和作轴对称图形,要根据轴对称图形的性质作轴对称图形,平移后的图形和旋转后的图形的相同点是大小、形状不变,不同的是平移不改变方向,而旋转改变方向。
30.
【详解】第一个是两个2相对,第二个是两个4相对,第三个是两个6相对,那么第四个就是两个8相对.
31.A向右平移3格,再向下平移3格;B向左平移3格,再向下平移3格;C向上平移3格,再向右平移3格;D向上平移3格,再向左平移3格。(答案不唯一)
【详解】答案不唯一,移动顺序可交换。
32.(1)下;5;右;4 (或者右;4;下;5)
(2)

展开更多......

收起↑

资源预览