2023-2024学年六年级下册数学期中备考专项讲义(西师大版)第四单元-扇形统计图(知识梳理+解决问题二)

资源下载
  1. 二一教育资源

2023-2024学年六年级下册数学期中备考专项讲义(西师大版)第四单元-扇形统计图(知识梳理+解决问题二)

资源简介

第四单元 扇形统计图
(知识梳理+解决问题二)
一、解答题
1.希望小学六年级(1)班同学锻炼情况如下图。
(1)根据上面两图,先求出全班人数,再求出参加足球锻炼的人数,并在条形统计图中补充完整。
(2根据所得信息,请你提出一个数学问题并解答。
2.下面是楠楠家去年11月份的生活支出情况统计图,看图回答问题。
(1)图中表示其他支出的扇形的圆心角是( )°;
(2)去年11月份她家的文化支出一共是320元,则水电气的支出一共是( )元。
(3)去年11月份的食品支出比去年10月份少了10%,去年12月份的食品支出比去年11月份多了25%。去年12月份的食品支出与去年10月份的食品支出相比,是多了还是少了?变化的幅度是多少?
3.认真践行“健康第一”的教育理念,帮助学生在体育锻炼中享受乐趣、增强体质、健全人格、锤炼意志,培养学生每天坚持体育锻炼的习惯。张老师开展了“我最喜爱的一项体育活动”的调查,要求每名学生必选且只能选一项。现随机调查了部分学生,并将其结果绘制成如下不完整的条形统计图和扇形统计图。
请结合以上信息解答下列问题:
(1)在这次调查中一共调查了 名学生;
(2)补全条形统计图并标明相应数据;
(3)分析统计图表得到,喜爱 和 项目的人数之和正好占调查总人数的50%;
(4)喜欢跳绳的人数与喜欢羽毛球的人数的比为 ∶ 。
4.2020年11月,丁真因为一脸纯真朴素的笑容意外走红网络,成为理塘县的旅游大使,推动了当地旅游业的发展。据统计,国庆期间,格聂辖区实现旅游总收入约90万元,下图是格聂辖区各收益占旅游总收入的扇形统计图。
(1)餐饮收益为多少万元?
(2)住宿收益比旅游商品收益多多少万元?
5.幸福小学开展丰富多彩的体育锻炼活动,下面是根据六(1)班进行“你最喜欢的一项体育活动”调查结果绘制的统计图。
(1)根据两幅图中的相关信息,可以知道六年级(1)班有( )人,喜欢足球的人数占全班的( )。
(2)先算出喜欢跳绳的人数,再把条形统计图补充完整。
(3)涛涛收集了自己一年级至六年级跳绳个数的数据,为了了解跳绳能力的变化程度,选择( )统计图比较合适。
6.有一家运动品牌公司对消费者锻炼身体的方式进行了市场调查,调查结果显示消费者主要以跑步、球类、游泳作为日常的锻炼方式,他们将其制作成了下面两幅统计图,请你结合图中的已知信息完成下面各题。(调查时每人只选一种运动方式)
(1)补充扇形统计图。
(2)这次市场调查一共调查了( )人。
(3)选择游泳的有多少人?
7.福星小区开展“垃圾分类,我们一起来”活动,倡导居民将垃圾分为四类:厨余垃圾、可回收物、有害垃圾、其他垃圾。下面是2021年福星小区居民垃圾分类情况统计图,观察统计图回答下面问题。
(1)将统计图填写完整。
(2)从图中你能获得哪些信息?请写出两条。
信息1:_____________________________________
信息2:_____________________________________
(3)根据统计图中的信息,请你为福星小区的垃圾分类情况提出合理建议。
8.下面扇形统计图是对人们日常生活中常用支付方式的调查结果。(参与本次随机调查的共200人。)
(1)使用( )支付的最多,占总人数的( )%,有( )人。
(2)使用现金支付的占( )%,有( )人。
(3)自己提出一个问题并解答。
(4)通过这次调查,你得到哪些信息,谈谈自己的感想。
9.如今很多人都是手机不离手,疫情发生以来,有的人手机使用时间比以前更长了,也有人养成了健康有节律的手机使用习惯,近日,中国青年报社对中学生、大学生和上班族进行了每天使用手机时间的调查,记者把调查结果绘制成如图的统计图。
(1)调查的人中,使用手机少于1小时的人数占调查总人数的百分之几?
(2)如果调查的人中,使用手机时间为1-3小时的人数比少于1小时的多128人,那么调查的人中,每天使用手机在5小时以上的有多少人?
10.为了分析学生对中国传统文化的了解程度,希望小学对学生进行随机抽查(了解程度:A-很了解,B-比较了解,C-了解较少,D-不了解),并将调查结果制成统计图(如下):
(1)本次共调查了( )人。
(2)本次调查中对中国传统文化“很了解”的占总人数的( )%。
(3)请你把条形统计图补充完整。
11.如今很多人都是手机不离手,疫情发生以来,有的人手机使用时间比以前更长了,也有人养成了健康有节律的手机使用习惯,近日,中国青年报社对中学生、大学生和上班族进行了每天使用手机时间的调查,记者把调查结果绘制成如图的统计图。
(1)调查的人中,使用手机少于1小时的人数占调查总人数的百分之几?
(2)如果调查的人中,使用手机时间为1-3小时的人数比少于1小时的多128人,那么调查的人中,每天使用手机在5小时以上的有多少人?
12.六1班学生全部参加了兴趣小组。下面两幅图是根据六1班学生参加兴趣小组情况绘制成的统计图。
(1)参加科技组的有( )人,六1班共有( )人。
(2)书法组的人数占六1班人数的( )%,围棋组人数占六1班人数的( )%。
(3)把条形统计图补充完整。
13.充足的睡眠是保障高效学习的重要因素。小学生每天睡眠时间应达到10小时,初中生应达到9小时,高中生应达到8小时。为了了解学生的睡眠情况,新华小学对六年级学生进行了调查,并根据调查数据制作了条形统计图和扇形统计图。
(1)睡眠9~10小时学生人数占六年级学生的( )%。
(2)结合两个统计图的数据,算出新华小学六年级学生一共有( )人。
(3)把条形统计图和扇形统计图补充完整。
(4)睡眠11小时以上的学生人数比睡眠9~10小时的学生人数少( )%。
14.下图是张叔叔1个月工资的安排情况统计图。
(1)张叔叔每个月各项花费一共多少元?
(2)张叔叔想要买一台6720元的电脑,他需要几个月的储蓄才能买到?
15.下面是一个修路队四天的修路情况统计图。
(1)第4天修的长度占这四天修的总长度的百分之多少?
(2)第几天修的长度最长?第几天修的长度最短?
(3)已知该修路队这四天修的总长度是500米,那么第2天和第3天一共修了多少米?
16.全国城市生活垃圾每年超过1.5亿吨,并以每年8%到9%的速度递增,每年因垃圾造成的资源损失价值在250亿到300亿元,垃圾分类刻不容缓。据统计,某市人均每日产生生活垃圾0.82千克,这些生活垃圾中掺杂着有害垃圾、可回收物、易腐垃圾等,占比如图1;其中,可回收物中有废纸、金属、玻璃、布料等物质,占比如图2。
(1)A小区平均每日收集易腐垃圾200千克。按照图1的占比计算,平均每日可收集其他垃圾多少千克?
(2)B小区有住户40人。按照该市人均每日产生生活垃圾的量来计算,实行垃圾分类后,该小区一天可收集可回收物多少千克?
(3)1吨回收的废纸通过加工可制造成800千克的再生纸,可以节省木材300千克,减少污染74%。某市日产生活垃圾1.2万吨,如果通过垃圾分类对其中的可回收物实现分类、再加工,可以制造再生纸多少吨?
17.如图是彤彤家12月份生活支出费用情况的统计图。
(1)彤彤家12月份( )支出费用最多,( )支出费用最少,赡养老人支出费用占总支出的( )%。
(2)如果彤彤家12月份总支出费用是1500元,彤彤家12月份的教育支出费用是多少元?
(3)如果彤彤家12月份生活费支出费用是200元,彤彤家12月份总支出费用是多少元?
18.飞飞家12月的生活费开支一共是4000元,分布情况如下图:
(1)飞飞家12月的( )开支最多,占整个生活费的( )%。
(2)飞飞家12月用于教育的开支比水电开支多多少元?(列式解答)
19.阳光小学六年级学生参加了今年的体质达标测试,请结合两幅统计图提供的信息,回答下面的问题。
(1)六年级共有( )人参加了体能测试。
(2)把扇形统计图和条形统计图补充完整。
(3)优秀人数比及格人数多( )%。
20.某校开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛,同学们积极参与。参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖(分)、三等奖(分)和优秀奖(分),将获奖结果绘制成如图所示的两幅统计图。
请你根据图中所给信息解答下列问题:
(1)获得一等奖的人数所占的百分比是多少?
(2)在这次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整。
参考答案
1.(1)50人;9人;见详解;(2)参加跑步的人数比参加跳绳的人数多百分之几?50%
【分析】(1)观察条形统计图和扇形统计图,跑步有12人,跑步的人数占总人数的24%,已知一个数的百分之几是多少,求这个数,用除法求出全班的总人数;再减去参加篮球、跳绳、跑步以及其他项目的人数,即可求出参加足球锻炼的人数,并补充到条形统计图中。
(2)参加跑步的人数比参加跳绳的人数多百分之几?用参加跑步的人数减去参加跳绳的人数,求出多的人数,再除以参加跳绳的人数,即可得解。
【详解】(1)12÷24%=50(人)
50-15-8-12-6=9(人)
答:全班的人数有50人,参加足球锻炼的人数有9人。
作图如下:
(2)提出问题:参加跑步的人数比参加跳绳的人数多百分之几?
(12-8)÷8
=4÷8
=0.5
=50%
答:参加跑步的人数比参加跳绳的人数多50%。
【分析】此题考查的目的是理解掌握条形统计图和扇形统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题。
2.(1)36;
(2)288;
(3)多了;多12.5%
【分析】(1)把楠楠家去年11月份的生活总支出看作单位“1”,先求出其他支出占生活总支出的百分率,再乘整个圆的圆心角360°;
(2)把楠楠家去年11月份的生活总支出看作单位“1”,文化支出一共是320元占生活总支出的20%,根据量÷对应的百分率=单位“1”表示出11月份的生活总支出,最后乘水电气支出占生活总支出的百分率;
(3)把去年10月份的食品支出看作单位“1”,去年11月份的食品支出=去年10月份的食品支出×(1-10%),去年12月份的食品支出=去年11月份的食品支出×(1+25%),最后根据A比B多百分之几的计算方法:(A-B)÷B×100%或B比A少百分之几的计算方法:(A-B)÷A×100%求出变化幅度,据此解答。
【详解】(1)360°×(1-16%-36%-18%-20%)
=360°×10%
=36°
所以,图中表示其他支出的扇形的圆心角是36°。
(2)320÷20%×18%
=1600×18%
=288(元)
所以,水电气的支出一共是288元。
(3)假设去年10月份的食品支出为1。
1×(1-10%)×(1+25%)
=1×0.9×1.25
=1.125
因为1.125>1,所以去年12月份的食品支出比去年10月份的食品支出多。
(1.125-1)÷1×100%
=0.125÷1×100%
=0.125×100%
=12.5%
答:去年12月份的食品支出比去年10月份的食品支出多了,多了12.5%。
【分析】理解并掌握扇形统计图的特点及作用,并且能够根据统计图提供的信息解决有关实际问题是解答题目的关键。
3.(1)150;
(2)见详解;
(3)足球;跑步;
(4)5;7
【分析】(1)把调查总人数看作单位“1”,根据统计图可知,喜欢打羽毛球的人数有21人,占调查总人数的14%,根据百分数除法的意义,用21÷14%即可求出调查总人数;
(2)用总人数分别减去喜欢羽毛球、篮球、跳绳、跑步的人数,即可求出喜欢足球的人数,据此补全条形统计图;
(3)根据求一个数占另一个数的百分之几,用除法计算,用喜欢篮球的人数÷调查总人数×100%即可求出喜欢篮球人数占总人数的百分之几;用喜欢跑步的人数÷调查总人数×100%即可求出喜欢跑步人数占总人数的百分之几;用喜欢跳绳的人数÷调查总人数×100%即可求出喜欢跳绳人数占总人数的百分之几;据此分析出哪两个项目的人数之和正好占调查总人数的50%;
(4)根据题意直接写出喜欢跳绳的人数与喜欢羽毛球的人数的比,再化简即可。
【详解】(1)21÷14%=150(名)
在这次调查中一共调查了150名学生。
(2)150-21-39-15-45=30(名)
条形统计图如下:
(3)喜欢篮球:39÷150×100%
=0.26×100%
=26%
喜欢跑步:45÷150×100%
=0.3×100%
=30%
喜欢跳绳:15÷150×100%
=0.1×100%
=10%
30%+20%=50%
根据分析可知,喜爱跑步和足球项目的人数之和正好占调查总人数的50%;
(4)喜欢跳绳的人数与喜欢羽毛球的人数的比:15∶21
=(15÷3)∶(21÷3)
=5∶7
喜欢跳绳的人数与喜欢羽毛球的人数的比为5∶7。
【分析】此题考查的目的是理解掌握统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题。
4.(1)3.96万元
(2)19.89万元
【分析】(1)由于总收入为单位“1”,用1减去住宿收益占总收益的百分率减去旅游商品收益占总收益的百分率以及马帮收益占总收益的百分率即可求出餐饮收益占总收益的百分率,由于单位“1”已知,用乘法,即可求出餐饮收益是多少万元。
(2)用总收入分别乘着两份收益的百分比,求出各自的收益,再相减即可。
【详解】(1)90×(1-55.6%-33.5%-6.5%)
=90×4.4%
=3.96(万元)
答:餐饮收益为3.96万元。
(2)90×55.6%-90×33.5%
=50.04-30.15
=19.89(万元)
答:住宿收益比旅游商品收益多19.89万元。
【分析】本题主要考查扇形统计图的应用以及百分数的应用,找准单位“1”是解题的关键。
5.(1)40;22.5
(2)10人;作图见详解
(3)折线
【分析】(1)将六年级(1)班人数看作单位“1”,最喜欢乒乓球的人数÷对应百分率=六年级(1)班人数;喜欢足球的人数÷全班人数=喜欢足球的人数占全班的百分之几。
(2)总人数-足球、乒乓球、其他的人数和=喜欢跳绳的人数,根据数据画出相应长度的直条,注明数量即可。
(3)折线统计图不仅能看清数量的多少,还能通过折线的上升和下降表示数量的增减变化情况,据此确定统计图的类型。
【详解】(1)
(人)
六年级(1)班有40人,喜欢足球的人数占全班的。
(2)
(人)
作图如下:
(3)涛涛收集了自己一年级至六年级跳绳个数的数据,为了了解跳绳能力的变化程度,选择折线统计图比较合适。
【分析】利用扇形统计图解决问题,就是解决有关不同类型的百分数应用题,按照百分数相关解题思路解答即可。
6.(1)见详解;
(2)800人;
(3)200人
【分析】(1)把参与市场调查的总人数看作单位“1”,选择跑步的人数占总人数的百分率=1-(选择球类的人数占总人数的百分率+选择游泳的人数占总人数的百分率);
(2)把参与市场调查的总人数看作单位“1”,选择跑步的有240人占总人数的30%,已知一个数的百分之几是多少,求这个数用除法计算,参与调查的总人数=选择跑步的人数÷30%;
(3)选择游泳的人数占总人数的25%,已知一个数,求这个数的百分之几是多少用乘法计算,选择游泳的人数=参与调查的总人数×25%,据此解答。
【详解】(1)1-(45%+25%)
=1-70%
=30%
(2)240÷30%=800(人)
所以,这次市场调查一共调查了800人。
(3)800×25%=200(人)
答:选择游泳的有200人。
【分析】掌握求一个的百分之几是多少和已知一个数的百分之几是多少求这个数的计算方法是解答题目的关键。
7.(1)见详解
(2)信息1:将垃圾分成两类的占40%;
信息2:将垃圾分成四类的占20%。
(3)建议该小区居民养成将垃圾分成四类的习惯,这样便于环境保护和垃圾处理。
【分析】(1)将该小区居民总数看作单位“1”,根据减法的意义,用减法求出将垃圾分成三类的占百分之几,根据求出数据完成扇形统计图;
(2)根据对图的观察,提取图中直观能看见的信息即可(答案不唯一);
(3)根据对图的观察,提取图中直观能看见的信息,并且结合生活常识提一些积极向上并且切实可行的意见即可。(答案不唯一)
【详解】(1)将垃圾分成三类的占的百分率:
1-40%-20%-5%
=60%-20%-5%
=40%-5%
=35%
作图如下:
(2)信息1:将垃圾分成两类的占40%;
信息2:将垃圾分成四类的占20%。
(以上答案不唯一)
(3)建议该小区居民养成将垃圾分成四类的习惯,可以在小区里加大宣传力度,这样便于环境保护和垃圾处理。(以上答案不唯一)
【分析】本题考查了对扇形统计图的特点和作用的掌握,关键需要明确,扇形统计图用整个圆面积表示总量,这个总量是100%。
8.(1)微信;30;60
(2)25;50
(3)(4)见详解
【分析】(1)使用哪种支付的最多,即找出扇形统计图中,区域面积最大的即可,由图可知,微信支付的最多,占总人数的30%,由于总人数是单位“1”,单位“1”已知,用乘法,即200×30%即可求出结果;
(2)总人数是单位“1”,用1减去每种支付方式占总数的百分率即可期初现金支付占多少,再用总人数乘现金所占的百分率即可求解;
(3)可以提出支付宝支付有多少人?(问题不唯一),用总人数×支付宝所占的百分率即可求解。
(4)结合生活实际来谈一下现在的状况,例如现金支付没有以前多,微信支付宝支付的更多,越来越趋近网络化。(答案不唯一,说法合理即可)
【详解】(1)200×30%=60(人)
使用微信支付的最多,占总人数的30%,有60人。
(2)1-15%-22.5%-30%-7.5%=25%
200×25%=50(人)
所以使用现金支付的占25%,有50人。
(3)使用支付宝支付有多少人?(问题不唯一)
200×22.5%=45(人)
答:使用支付宝支付的有45人。
(4)随着现在社会的进步,越来越趋近网络化,现在支付的方式逐渐增多,带现金的人也越来越少。
【分析】本题主要考查扇形统计图的应用,要清楚扇形统计图的含义是解题的关键。
9.(1)2%
(2)360人
【分析】(1)把调查的总人数看作单位“1”,根据减法的意义,用减法解答。
(2)把调查的总人数看作单位“1”,先求出使用手机时间为1-3小时的人数比少于1小时的多占调查总人数的百分之几,再根据已知一个数的百分之几是多少,求这个数,用除法求出调查的总人数,然后根据求一个数的百分之几是多少,用乘法求出每天使用手机在5小时以上的人数。
【详解】(1)1-35%-45%-18%
=65%-45%-18%
=20%-18%
=2%
答:调查的人中,使用手机少于1小时的人数占调查总人数的2%。
(2)128÷(18%-2%)
=128÷16%
=800(人)
800×45%=360(人)
答:调查的人中,每天使用手机超过5小时的有360人。
【分析】此题考查的目的是理解掌握扇形统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题。
10.(1)400
(2)35
(3)见详解
【分析】(1)由图可知,B-比较了解的人数有160人,占总人数的40%,根据分数除法的意义,用除法可以求出总人数;
(2)用A-很了解的人数除以总人数,乘100%,即可算出“很了解”的人数占总人数的百分数;
(3)用总人数减去A-很了解,B-比较了解,D-不了解的人数,即可求出C-了解较少的人数,再补充条形统计图即可。
【详解】由分析可得:
(1)共调查人数:160÷40%=400(人)
(2)对中国传统文化“很了解”的人数占总人数的百分数为:
140÷400×100%
=0.35×100%
=35%
(3)C-了解较少的人数为:
400-140-160-20
=260-160-20
=100-20
=80(人)
作图如下:
【分析】本题考查了理解和掌握条形和扇形统计图的特征,并能从图中提取出有用的信息去解答题目。
11.(1)2%
(2)360人
【分析】(1)把调查的总人数看作单位“1”,根据减法的意义,用减法解答。
(2)把调查的总人数看作单位“1”,先求出使用手机时间为1-3小时的人数比少于1小时的多占调查总人数的百分之几,再根据已知一个数的百分之几是多少,求这个数,用除法求出调查的总人数,然后根据求一个数的百分之几是多少,用乘法求出每天使用手机在5小时以上的人数。
【详解】(1)1-35%-45%-18%
=65%-45%-18%
=20%-18%
=2%
答:调查的人中,使用手机少于1小时的人数占调查总人数的2%。
(2)128÷(18%-2%)
=128÷16%
=800(人)
800×45%=360(人)
答:调查的人中,每天使用手机超过5小时的有360人。
【分析】此题考查的目的是理解掌握扇形统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题。
12.(1)8;40;
(2)30;5;
(3)见详解
【分析】(1)观察条形统计图可知,参加科技组的有8人,科技组的人数占总人数的20%,用8人除以20%,即可求出六1班的总人数;
(2)把六1班的人数看作单位“1”,是40人,书法组的人数是12人,用12除以40,即可求出书法组的人数占六1班人数的百分之几;用单位“1”分别减去科技组、美术组和书法组占六1班人数的百分率,即可求出围棋组人数占六1班人数的百分之几;
(3)用六1班人数分别乘美术组、围棋组占六1班人数的百分率,分别求出美术组和围棋组的人数,据此完成条形统计图即可。
【详解】(1)8÷20%=40(人)
所以,参加科技组的有8人,六1班共有40人。
(2)12÷40=0.3=30%
1-45%-30%-20%
=55%-30%-20%
=25%-20%
=5%
所以,书法组的人数占六1班人数的30%,围棋组人数占六1班人数的5%。
(3)40×45%=18(人)
40×5%=2(人)
所以,美术组有18人,围棋组有2人;
把条形统计图补充完整,如下:
【分析】熟练掌握从统计表的数据中获取信息的方法,正确绘制统计图,是解答此题的关键。
13.(1)20;
(2)300;
(3)见详解;
(4)40
【分析】(1)把六年级学生人数看作单位“1”,睡眠9~10小时学生人数占总人数的百分率=1-(睡眠少于9小时人数占总人数的百分率+睡眠11小时以上人数占总人数的百分率+睡眠10~11小时人数占总人数的百分率);
(2)把六年级学生人数看作单位“1”,睡眠少于9小时的有24人占总人数的8%,根据量÷对应的百分率=单位“1”求出六年级学生的总人数;
(3)条形统计图中横轴表示睡眠时间,纵轴表示人数,单位长度表示20人,先求出睡眠10~11小时的有多少人,再把条形统计图补充完整,睡眠9~10小时学生人数占六年级学生的20%,据此把扇形统计图补充完整;
(4)睡眠11小时以上的学生人数比睡眠9~10小时的学生人数少的百分率=(睡眠9~10小时的学生人数-睡眠11小时以上的学生人数)÷睡眠9~10小时的学生人数×100%,据此解答。
【详解】(1)1-(8%+12%+60%)
=1-80%
=20%
所以,睡眠9~10小时学生人数占六年级学生的20%。
(2)24÷8%=300(人)
所以,新华小学六年级学生一共有300人。
(3)300-(24+60+36)
=300-120
=180(人)
(4)(60-36)÷60×100%
=24÷60×100%
=0.4×100%
=40%
所以,睡眠11小时以上的学生人数比睡眠9~10小时的学生人数少40%。
【分析】本题主要考查条形统计图和扇形统计图的综合应用以及百分数的计算,能够根据统计图提供的信息解决有关实际问题是解答题目的关键。
14.(1)3920元;
(2)4个月
【分析】(1)观察扇形统计图可知,张叔叔每月工资5600元,30%是储蓄,用5600乘30%即可求出每月储蓄多少元,用总工资减去每月储蓄即可求出各项花费多少元;
(2)用6720除以每月的储蓄即可求出需要几个月的储蓄才能买到。
【详解】(1)5600×30%=1680(元)
5600-1680=3920(元)
答:张叔叔每个月各项花费一共3920元。
(2)6720÷1680=4(个)
答:他需要4个月的储蓄才能买到。
【分析】明确扇形统计图表示的含义,掌握求一个数的百分之几是多少,用乘法,是解题的关键。
15.(1)28%;
(2)第4天;第1天;
(3)260米
【分析】(1)用1减去前3天修的总长度的百分率即可;
(2)将百分数进行比较即可解答;
(3)用总长度乘第2天和第3天的效率之和即可。
【详解】(1)1-20%-25%-27%=28%
答:第4天修的长度占这四天修的总长度的28%。
(2)28%>27%>25%>20%
第4天修的长度最长;第1天修的长度最短;
(3)500×(27%+25%)
=500×0.52
=260(米)
答:第2天和第3天一共修了260米。
【分析】本题主要考查了根据统计图提供的信息解决实际问题的能力。
16.(1)120千克;(2)8.2千克;(3)960吨
【分析】(1)把A小区平均每日收集生活垃圾的重量看作单位“1”,根据百分数除法的意义,用200÷40%即可求出A小区平均每日收集生活垃圾的重量,然后根据百分数乘法的意义,用200÷40%×24%即可求出平均每日可收集其他垃圾多少千克;
(2)把某市人均每日产生生活垃圾的重量看作单位“1”,根据百分数乘法的意义,用0.82×25%即可求出某市人均每日产生可回收垃圾的重量,已知B小区有40人,则一天的可回收总垃圾为(0.82×25%×40)千克;
(3)把生活垃圾的重量看作单位“1”,根据百分数乘法的意义,用生活垃圾的重量×25%即可求出可回收垃圾的重量,然后把可回收垃圾的重量看作单位“1”,用可回收垃圾的重量×40%即可求出废纸的重量;把800千克化为0.8吨,然后根据乘法的意义,用0.8×废纸的重量即可求出可以制造再生纸多少吨。
【详解】(1)200÷40%×24%
=500×24%
=120(千克)
答:平均每日可收集其他垃圾120千克。
(2)0.82×25%×40
=0.205×40
=8.2(千克)
答:该小区一天可收集可回收物8.2千克。
(3)1.2万吨=12000吨
12000×25%×40%
=3000×40%
=1200(吨)
800千克=0.8吨
1200×0.8=960(吨)
答:可以制造再生纸960吨。
【分析】此题考查的目的是理解掌握统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题。
17.(1)购物;其他;17;
(2)420元
(3)2000元
【分析】(1)把12月份的总支出看作单位“1”,减去已知各项支出的百分率,求出赡养老人的百分率;观察扇形统计图即可得出各支出费用占比的多少;
(2)用总支出乘教育支出费用占的百分率即可;
(3)用生活费支出除以对应的百分率10%即可。
【详解】(1)1-36%-10%-9%-28%
=64%-10%-9%-28%
=54%-9%-28%
=45%-28
=17%
36%>28%>17%>10%>9%,即购物支出>教育支出>赡养老人支出>生活费支出>其他支出
彤彤家12月份购物支出费用最多,其他支出费用最少,赡养老人支出费用占总支出的17%。
(2)1500×28%=420(元)
答:彤彤家12月份的教育支出费用是420元。
(3)200÷10%=2000(元)
答:彤彤家12月份总支出费用是2000元。
【分析】本题主要考查了扇形统计图的认识,关键是根据统计图提供的信息解决实际问题。
18.(1)食品;40
(2)1000元
【分析】(1)观察统计图,所占区域最大的项目开支最多,将总开支看作单位“1”,1-水电对应百分率-教育对应百分率-其他对应百分率=食品对应百分率,据此分析。
(2)总支出×教育的开支和水电开支对应百分率的差=教育的开支比水电开支多的钱数,据此列式解答。
【详解】(1)1-10%-35%-15%=40%
飞飞家12月的食品开支最多,占整个生活费的40%。
(2)4000×(35%-10%)
=4000×0.25
=1000(元)
答:飞飞家12月用于教育的开支比水电开支多1000元。
【分析】利用扇形统计图解决问题,就是解决有关不同类型的百分数应用题,按照百分数相关解题思路解答即可。
19.(1)300
(2)见详解
(3)50
【分析】(1)将总人数看作单位“1”,及格人数÷对应百分率=总人数。
(2)1-及格对应百分率-不及格对应百分率-优秀对应百分率=良好对应百分率;总人数×不及格对应百分率=不及格人数,总人数×良好对应百分率=良好人数,据此补充统计图即可。
(3)优秀人数和及格人数差÷及格人数=优秀人数比及格人数多百分之几。
【详解】(1)60÷20%=300(人)
六年级共有300人参加了体能测试。
(2)1-20%-5%-30%=45%
300×5%=15(人)
300×45%=135(人)
(3)(90-60)÷60
=30÷60
=50%
优秀人数比及格人数多50%。
【分析】利用扇形统计图解决问题,就是解决有关不同类型的百分数应用题,按照百分数相关解题思路解答即可。
20.(1)
(2)40份;图见详解
【分析】(1)把所有参赛作品看作单位“1”,用1减去二等奖的人数所占的百分比,减去三等奖的人数所占的百分比,减去优秀奖的人数所占的百分比,即可求出一等奖的人数所占的百分比;
(2)已知一等奖有20人获奖,用20除以一等奖的人数所占的百分比,即可求出一共收到的参赛作品,进而求出二等奖获奖的人数,完成统计图即可。
【详解】(1)1-20%-24%-46%
=80%-24%-46%
=56%-46%
=10%
答:获得一等奖的人数所占的百分比是10%。
(2)20÷10%=200(份)
200×20%=40(人)
统计图如下:
答:在这次比赛中,一共收到40份参赛作品。
【分析】本题主要考查了条形统计图和扇形统计图的认识,关键是根据已知信息解决实际问题。

展开更多......

收起↑

资源预览