4.1.2等比性质教案2023--2024学年北师大版九年级数学上册

资源下载
  1. 二一教育资源

4.1.2等比性质教案2023--2024学年北师大版九年级数学上册

资源简介

第2课时 等比性质
课时目标
1.理解比例的等比性质;理解并掌握比例的基本性质及其简单应用;发展学生从数学的角度提出问题、分析问题和解决问题的能力.
  2.经历运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识.
  3.通过本节课的教学,培养学生的数学应用意识,体会数学与现实生活的密切联系.
学习重点
  让学生理解并掌握比例的性质及其简单应用.
学习难点
  运用比例的性质解决有关问题.
课时活动设计
  复习回顾
  复习:1.成比例线段的定义;
  2.比例的基本性质;
  3.若3m=2n,你可以得到的值吗 呢
  设计意图:学生思考回顾上节课的内容,更好地进入本节课的学习.
  探究新知
  1.如图,已知==,你能求出与的值吗 它们有怎样的关系 如果=,那么与有怎么样的关系 在求解过程中,你有什么发现
  教师提出问题,学生先独立完成计算,再在小组内交流自己的计算结果及发现,组内达成共识后在班内展示,教师给予正确引导.
  议一议:已知a,b,c,d,e,f六个数.如果=,那么=和=成立吗 为什么
  学生独立完成,教师随机选择学生进行回答.
  2.如图,,,,的值相等吗 的值又是多少 在求解过程中,你有什么发现
  议一议:已知a,b,c,d,e,f六个数.如果==(b+d+f≠0),那么=成立吗 为什么
  学生独立完成,教师随机选择学生进行回答.
  如果==…=(b+d+…+n≠0),那么=吗
  学生尝试总结a,b,…,n之间的关系,教师多媒体展示.
合比性质 如果=,那么=
等比性质 如果==…=(b+d+…+n≠0), 那么=
  注意事项:要强调等比性质中,分母b+d+…+n≠0.
  设计意图:通过由特殊到一般的方法归纳出合比性质与等比性质,加深对成比例线段的理解.
  典例精讲
  1.已知=,求与的值.
  解:∵=,∴=+1=+1=.
  ∵=,∴=-1=-1=-.
  2.在△ABC与△DEF中,若===,且△ABC的周长为18 cm,求△DEF的周长.
  解:∵===,
  ∴==.
  ∴4(AB+BC+CA)=3(DE+EF+FD),即DE+EF+FD=(AB+BC+CA).
  又∵△ABC的周长为18 cm,即AB+BC+CA=18 cm,
  ∴DE+EF+FD=(AB+BC+CA)=×18=24(cm),即△DEF的周长为24 cm.
  设计意图:学到的知识要会应用升华,在这个环节中,让学生灵活运用比例的合比性质及等比性质.解决实际问题.师生互动,主要还是学生的动,要体现教师的主导作用,学生的主体作用.让学生会主动学习,遇到问题,要善于分析思考.
  巩固训练
  1.已知==(b+d≠0),求的值.
  解:=.
  2.若=,则=  .
  3.若=,则的值为  .
  4.已知==.
  (1)求的值; (2)求的值.
  解:(1)∵==,
  ∴=,=.
  ∴=+1+=3.
  (2)设===k,
  ∴a=3k,b=5k,c=7k.
  ∴===-1.
  5.如图,已知每个小方格的边长均为1,求AB,DE,BC,DC,AC,EC的长,并计算△ABC与△EDC的周长比.
  解:由勾股定理,得AB=2,DE=,BC=2,DC=,AC=2,EC=,△ABC的周长=AB+BC+AC=2(++),△EDC的周长=DE+DC+EC=++,所以△ABC与△EDC的周长比等于21.
  设计意图:通过有针对性的练习,加深学生对合比性质与等比性质的理解,进一步巩固本堂课所学知识,提高应用能力.
  课堂小结
  谈谈本节课的收获,与同伴进行交流.
  设计意图:复习比例的基本性质,合比性质,等比性质,巩固本节课所学的内容.
  相关练习.
  1.课本第81页习题4.2第3题.
  2.相关练习.
第2课时 等比性质
   
合比性质 如果=,那么=
等比性质 如果==…=(b+d+…+n≠0), 那么=
教学反思

展开更多......

收起↑

资源预览