资源简介 14.1.2 幂的乘方课时目标1.理解幂的乘方法则并运用法则解决一些实际问题,发展运算、推理能力和应用意识.2.类比同底数幂的乘法法则学习幂的乘方的法则,发展学生观察、归纳、类比等能力,体验数学的化归思想.3.培养学生合作交流意识和探索精神,让学生体会数学的应用价值.学习重点理解幂的乘方性质.学习难点幂的乘方运算法则及灵活应用.课时活动设计回顾引入问题1:叙述同底数幂的乘法法则,并用字母表示.问题2:请口答下列各题:(1)33×35;(2)y2·y;(3)am·a2.设计意图:通过点名学生回答,复习同底数幂的乘法法则,加深对所学知识的巩固和理解.通过口算,既检验了上节课的学习效果,也为学习本节课知识打下基础.探究新知问题3:请根据乘方的意义及同底数幂的乘法填空.(1)(32)3=32×32×32=3(6).(2)(a2)3=a2·a2·a2=a(6).(3)(am)3=am·am·am=a(3m)(m是正整数).追问1:(am)3底数是 a ,底数是什么形式 追问2:观察计算的结果,你能发现什么规律 根据规律猜想幂的乘法法则.学生口述规律,教师引导学生得到(am)n=amn(m,n都是正整数).即幂的乘方,底数不变,指数相乘.教师讲述:规律的正确性需要严谨的证明,如何把特殊一般化,常用的方法是用字母去表示数.追问3:试着证明你的猜想.设计意图:问题3引导学生根据幂的意义,将幂的乘方转化为同底数幂的乘法.追问1、2让通过观察底数、指数的变化,猜想幂的乘方法则.追问3让学生类比问题3计算,并小组内交流.通过问题推进探索规律,让学生自主构建获得新知,培养学生的语言表达能力和符号意识.典例精讲例1 计算:(1)(103)5; (2)(a2)4; (3)(am)2; (4)-(x4)3.解:(1)原式=103×5=1015.(2)原式=a2×4=a8.(3)原式=am·2=a2m.(4)原式=-x4×3=-x12.例2 计算:(1)[(x+y)2]2; (2)[(-x)4]3.解:(1)原式=(x+y)2×3=(x+y)6.(2)原式=(-x)4×3=(-x)12.设计意图:运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆.在幂的乘方中,底数可以是单项式,也可以是多项式.在运算时,注意把底数看成一个整体,同时注意“负号”.将底数由单项式变式为多项式,在思考过程中实现了知识的迁移,训练了学生的思维,进一步感悟整体思想.巩固训练1.计算:(1)(x4)3·x6;(2)(y4)2+(y2)3·y2.解:(1)原式=x4×3·x6=x12·x6=x18.(2)原式=y4×2+y2×3+2=y8+y8=2y8.教师点拨:与幂的乘方有关的混合运算中,一般先算幂的乘方,再算乘除,最后算加减.2.已知10m=3,10n=2,求下列各式的值.(1)103m;(2)102n;(3)103m+2n.解:(1)原式=(10m)3=33=27.(2)原式=(10n)2=22=4.(3)原式=103m×102n=27×4=108.3.已知2x+5y-3=0,求4x·32y的值.解:∵2x+5y-3=0,∴2x+5y=3.∴4x·32y=(22)x·(25)y=22x·25y=22x+5y=23=8.教师点拨:此类题的关键是逆用幂的乘方及同底数幂的乘法公式,将所求值的式子正确变形,然后代入已知条件求值即可.4.比较3500,4400,5300的大小.解:3500=35×100=(35)100=2431004400=44×100=(44)100=2561005300=53×100=(53)100=125100∵256100>243100>125100,∴4400>3500>5300.教师点拨:比较底数大于1的幂的大小的方法有两种:1.底数相同,指数越大,幂就越大;2.指数相同,底数越大,幂就越大.设计意图:使帮助学生巩固刚刚学习的新知识,在此基础上加深知识的应用,培养学生的逆向思维,增强学生思维的灵活性.课堂小结运算种类 公式 法则中运算 计算结果底数 指数同底数幂乘法 am·an=am+n 乘法 不变 指数相加幂的乘方 (am)n=amn 乘方 不变 指数相乘设计意图:使学生能够对本课时所学知识进行整理,同时明确学习重点.相关练习.1.教材第104页习题14.1第1题(3)(4)(6)第2题(4).2.相关练习.教学反思 展开更多...... 收起↑ 资源预览 当前文档不提供在线查看服务,请下载使用!