资源简介 一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“整式的乘法与因式分解”.1.课标分析《标准2022》指出初中阶段“数与代数”领域是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.数与代数领域的学习,有助于学生形成抽象能力、推理能力和模型观念,发展运算能力,是感悟用数学语言表达现实世界的重要载体.“数与式”主题是代数的基本语言,初中阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论具有一般性,培养学生抽象能力.本单元的课标要求是会用文字和符号语言表述整数指数幂的基本性质,能根据整数指数幂的基本性质进行幂的运算;理解整式的概念,能进行整式的乘法运算(多项式的乘法仅限于一次式之间和一次式与二次式的乘法);知道平方差公式、完全平方公式的几何背景,并能运用公式进行简单计算和推理;能用提公因式法、公式法(对二次式直接利用平方差公式或完全平方公式)进行因式分解(指数为正整数).整式的乘法运算和因式分解是基本而重要的代数初步知识,这些知识是以后进一步学习分式、根式运算和函数等知识的基础,在后续的数学学习中具有重要的意义.同时,这些知识也是学习物理、化学等学科的基础.在数与式的教学中要把握数与式的整体性,帮助学生进一步感悟数是对数量的抽象;通过代数式与代数运算的教学,让学生进一步理解字母表示数的意义;通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.2.本单元教学内容分析 人教版教材八年级上册第十四章“整式的乘法与因式分解”,本章包括三个小节:14.1整式的乘法;14.2乘法公式;14.3因式分解.首先强调重要数学思想方法的渗透,由于整式中的字母表示数,因此数的运算律和运算性质在整式的运算中仍然成立,强调了“类比”的思想方法的渗透;由数的运算引出式的运算规律,体现了数学知识之间具体与抽象的内在联系和内在统一性.对于整式乘法法则的教学,要渗透“转化”的思想方法.例如,多项式乘多项式的法则,第一步是转化为多项式与单项式相乘,第二步则是转化为单项式与单项式相乘,而单项式与单项式相乘则转化为有理数的乘法与同底数幂的乘法.在整式除法的教学中,也要渗透“转化”的思想方法,多项式与单项式相除的第一步是转化为单项式与单项式相除,第二步是转化为有理数的除法与同底数幂的除法.由上可知,整式的乘、除法教学要循序渐进,打好各项知识的基础,并运用好“转化”的思想方法,这样才能够很好地完成后面的教学内容,取得较好的教学效果.此外,本章教材中强调了代数与几何之间的联系,整式乘法和乘法公式部分体现了数形结合的重要数学思想和方法,借助几何图形对运算法则及公式做了直观解释,体现了代数和几何之间的内在联系和统一,能让学生更好地理解有关知识,培养学生几何直观和抽象能力的数学核心素养.充分体现从具体到抽象再到具体的认知过程,从具体的实际问题出发,归纳出相关的数学概念,或抽象出隐含在具体问题中的数学思想,这是本章的一个突出特点.培养学生用数学眼光观察世界.以第14.1节为例,无论同底数幂相乘、幂的乘方还是积的乘方,都是从具体的问题出发,然后归纳出运算性质,最后再用归纳得出的结果进一步指导比较复杂的实际问题.整式的乘法也是从具体的问题出发,归纳出运算法则,再进一步用于解决实际问题.这种从具体到抽象,再由抽象到具体的编排方式,可以循序渐进地向学生呈现教学内容,有助于学生的理解和掌握,符合现阶段学生的认知水平.根据数学知识的逻辑关系循序渐进地安排教学内容,本章所涉及的数学教学内容之间不仅具有密切的联系,且具有很强的逻辑关系.在整式的乘法中,多项式的乘法要利用分配律转化为单项式的乘法,而单项式的乘法要利用交换律和结合律转化为幂的运算.整式的除法与乘法互为逆运算,乘法公式是具有特殊形式的整式乘法问题,因式分解是与整式乘法方向相反的恒等变形,在这些内容中,幂的运算是基础,单项式的乘法是关键,学好一般整式乘法的运算是进一步学习本章其他知识的前提.教学中要注重培养学生的逻辑思维、知识体系的形成和思想方法的渗透.对选学内容的学习进行分层教学,提升学生的理解能力,教学中除了要关注学生在数学知识和数学能力方面的提高外,还要考虑在传承数学史知识及数学文化修养方面做出努力,以使学生在获得数学知识的同时人文精神也得到陶冶.本章安排了两个“阅读与思考”的选学栏目,这些选学内容是本章有关内容的拓展与延伸.不失时机地安排学生阅读这些材料,可以开阔他们的视野,拓展他们的知识面.“阅读与思考”中的“杨辉三角”,不但可以使学生了解一些二项展开式中各项系数的知识,增强他们的数学修养,还可以潜移默化地培养他们的爱国情怀.“阅读与思考”中的“x2+(p+q)x+pq型式子的因式分解”,可以让学生初步感受分解因式的另一种方法:十字相乘法,这也有利于学生理解必修内容.三、单元学情分析本单元是人教版数学教材八年级上册第十四章“整式的乘法与因式分解”,学生在学习了有理数、代数式、整式的概念的基础上研究了有理数的加减乘除乘方混合运算和整式的加减运算,学生掌握了研究问题的方法,类比数的研究知道要学习整式的乘除运算.根据乘方意义和运算来研究幂的运算,学生有了一定基础学起来便顺理成章.但是和整式加减法相比,整式乘除法无论是次数和项数都在增加,容易出现错误,这是在教学中要重点关注的地方,对学生的运算能力、理解能力、交流归纳能力及对数学方法的掌握能力要求较高.尤其平方差公式和完全平方公式的变形和灵活应用更是难点,因式分解和乘法公式的关系以及正确因式分解也是重点和易错点,对学生来说仍会有困难.四、单元学习目标1.掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,培养学生语言表达能力和抽象概括能力,并能灵活运用这些性质进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的运算法则,并运用它们进行运算,培养学生的运算能力和应用意识.2.经历猜测、推理、验证,会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,培养学生几何直观,能利用公式进行乘法运算,体会公式的简洁性,培养学生的思维能力和运算能力.3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算,体会数学运算的简便性,培养学生的模型观念.4.理解因式分解的意义,并感受因式分解与整式乘法是相反方向的运算,培养学生类比的思想;掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤,培养数据观念和模型观念;能够熟练地运用这些方法进行多项式的因式分解.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.14.1.1 同底数幂的乘法课时目标1.理解同底数幂的乘法法则并运用法则解决一些实际问题,培养学生运算、推理能力,发展应用意识.2.会用数学的思维推导“同底数幂的乘法法则”,使学生初步理解从特殊到一般、从一般到特殊的认知规律,发展学生观察、归纳、类比等能力.3.在小组合作交流中,培养协作精神、探究精神,增强学习信心.学习重点理解并掌握同底数幂的乘法法则.学习难点运用同底数幂的乘法法则进行相关计算.课时活动设计情境引入教师简述我国超级计算机的发展历程,引出课本问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103 s可进行多少次运算 解:103×1015=1018设计意图:通过探究问题激发学生的民族自豪感,也让学生体会生活中存在着大量的较大的数据,激发学生的学习兴趣.探究新知问题1:对于上一教学活动中提出的问题,应如何列式 学生动笔列式,大部分学生可以列出.追问:其中1015中“10”“15”“1015”分别叫做什么 “1015”表示的意义是什么 问题2:1015×103等于多少 学生小组讨论,展示计算过程.1015×103=×(10×10×10)==1018.追问1:根据乘方的意义计算23×22.学生快速计算,展示结果.解:23×22=2×2×2×2×2=25追问2:请同学们观察上面各算式的左右两边底数、指数的关系,猜一猜:am·an的结果(m,n都是正整数)师生根据乘方的意义共同验证结论的正确性.教师把结论板书在黑板上:am·an=am+n(m,n都是正整数).师生活动:教师引导学生试着用文字概括这个性质.同底数幂相乘,底数不变,指数相加.追问3:当三个或三个以上同底数幂相乘时,是否也具有这一性质呢 小组合作,验证结论,并点名展示.am·an·ap=am+n+p(m,n,p都是正整数)设计意图:让学生根据幂的意义,通过计算得到结果.再观察、比较得到等号左右两边底数、指数的关系.通过猜想、验证,抽象概括出同底数幂的乘法运算的本质特征,发展学生观察、归纳、类比能力,体现了从特殊到一般的认知规律.让学生在计算过程中明白算法和算理.适当拓展,为发展学生思维助力.典例精讲例1 计算:(1)x2·x5;(2)a·a6.解:(1)x2·x5=x2+5=x7.(2)a·a6=a1+6=a7.教师总结点拨:不要忽略指数是“1”的因式,如a·a6≠a0+6.例2 计算:(1)(b+2)3(b+2)4(b+2);(2)-x6·(-x)10.解:(1)原式=(b+2)3+4+1=(b+2)8.(2)原式=-x6+10=-x16.小组合作完成,并选小组代表上台板演.教师讲解,并让学生理解:底数是单项式,也可以是多项式,通常把底数看成一个整体来运算.把不同底数幂转化为同底数幂时要注意符号的变化.例3 已知:am=4,am+n=20,求an的值.解:am+n=am·an(逆运算)=4×an=20,所以an=5.师生共同解答,并总结:当幂的指数是和的形式时,可以逆运用同底数幂乘法法则,将幂指数和转化为同底数幂相乘,然后把幂作为一个整体,带入变形后的幂的运算式中求解.设计意图:师生共同完成,教师板书过程并着重让学生说明是不是同底数幂相乘,底数是多少,指数是多少,引导学生用运算法则进行计算.通过计算,让学生积累解题经验的同时,体会从一般到特殊的认知规律,将同底数幂的乘法转化为指数相加运算的思想.巩固训练1.x3·x2的运算结果是( C )A.x2 B.x3 C.x5 D.x62.若an-2·an+1=a11,则n= 6 . 3.计算:(1)xn·xn+1; (2)(x+y)3·(x+y)4.解:(1)原式=xn+n+1=x2n+1.(2)原式=(x+y)3+4=(x+y)7.设计意图:通过巩固训练,进一步巩固所学新知,同时检测学习效果.课堂小结今天我们学了哪些内容:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.am·an=am+n(m,n都是正整数).设计意图:使学生能够对本课时所学知识进行整理,同时明确学习重点.相关练习.1.教材第104页习题14.1第1题(1)(2)和第2题(1).2.相关练习.教学反思 展开更多...... 收起↑ 资源预览 当前文档不提供在线查看服务,请下载使用!