北师大版数学七上2.2.3 有理数的加减运算(课件+教案+大单元教学设计)

资源下载
  1. 二一教育资源

北师大版数学七上2.2.3 有理数的加减运算(课件+教案+大单元教学设计)

资源简介

中小学教育资源及组卷应用平台
学 科 数学 年 级 七 设计者
教材版本 北师大版 册、章 上册第二章
课标要求 1.理解负数的意义;理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数和绝对值的方法。3.理解乘方的意义。4.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);理解有理数的运算律,能运用运算律简化运算。5.能运用有理数的运算解决简单问题。
内容分析 本章教材是在学生已学过整数和分数的基础上构建的,主要内容是有理数的有关概念及其运算。首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此基础上,介绍有理数的加减乘除运算。有理数的运算是初等数学中的最基本运算,是学好后续内容的基础,这个基础打不好,势必影响到后续内容的学习,实践证明,在有关代数式的进一步求值、 计算、证明以及解方程时变形中出现的问题,大部分是因为有理数运算不熟或出了差错引起的。还有,有理数的运算律,也是代数式运算的依据。因此,使学生正确、迅速地进行有理数的四则运算及其混合运算是本章的重点内容。
学情分析 初一年级学生思维活跃、勇于探索未知的事物,敢于发表自己的观点。具备一定的自主学习意识和质疑问题的能力。师生之间、生生之间已初步形成平等对话、合作交流的氛围。因此,课堂内外可放手让学生去探索与创造。但因为这个年龄的学生心智发育还有待完善,学习方法的掌握应有循序渐进的过程,所以,其学习行为需要教师给予适时矫正与帮助。
单元目标 教学目标1.使学生了解了负数产生的背景,理解正、负数及零的意义,掌握正、负数的表示方法,会用正、负数表示具有相反意义的量。2.理解有理数的意义,能用数轴上的点表示有理数。借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有 理数的大小。3.理解乘方的意义,会进行乘方的运算及简单的混合运算。4.通过实例进一步感受大数, 并能用科学记数法表示。了解近似数与有效数字的概念(二)教学重点、难点教学重点:理解有理数的意义,掌握有理数的运算法则和运算律,会用科学记数法表示较大的数.教学难点:利用有理数的加、减、乘、除、乘方等运算解决简单的实际问题.
单元知识结构框架及课时安排 单元知识结构框架
(二)课时安排课时编号单元主要内容课时数2.1 认识有理数32.2 有理数的加减运算42.3有理数的乘除运算32.4有理数的乘方22.5有理数的混合运算2
达成评价 课题课时目标达成评价评价任务2.1认识有理数1.借助生活中的实例,从扩充运算的角度引进负数,然后使用正负数表示现实生活中具有相反意义的量。2.经历探索、发现过程,理解正、负数及有理数的意义3.借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小.4.通过应用绝对值解决实际问题,体会绝对值的意义和作用.1.会用正负数表示实际生活的量2.掌握正负数的定义3.会用正负数表示现实生活中具有相反意义的量,理解正负数的意义4.理解绝对值的概念,会求一个数的绝对值5.会利用绝对值比较两负数的大小6.能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示活动1:观出示生活情景,用正负数表示,总结正负数的定义活动2:探究相反数的定义,总结一个数的相反数的求法活动:3:探究绝对值的定义,求数的绝对值活动4:探究任何一个有理数都可以用数轴上的一个点来表示。活动5:探究数轴上的两个点的大小关系。2.2有理数的加减运算1.通过学生亲身经历探究有理数加法法则的过程,理解有理数加法的意义,掌握有理数加法的法则,并能进行有理数加法的运算。2.经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的减法运算。3.会把有理数加减混合运算统一成加法运算。4.在进行有理数加减法混合运算时,能灵活运用运算律进行运算。5.利用有理数的加减混合运算解决一些简单实际问题,初步了解类比学习的思想方法。1. 掌握有理数加减法的运算法则2. 能运用法则进行计算3.知道有理数加减法可以相互转化,会把有理数加减混合运算统一成加法运算4.能灵活运用运算率计算活动1:探究互为相反数的两个数相加的和是多少活动2:探究并总结有理数的加减法运算法则活动3:出示例题应用有理数的加减法运算法则活动4:总结有理数的加减混合运算法则活动5:用有理数的加减混合运算法则计算例题活动6:总结加减混合运算时可运用加法交换律和结合律简化运算2.3有理数的乘除1.实际情境,理解有理数乘法的意义,掌握有理数的乘法法则,并运用法则解决实际问题。2.会确定多个因数相乘时积的符号,并会用法则进行多个因数的乘积运算。3.了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算.4.学生理解有理数倒数的意义,能熟练地进行有理数加减乘除混合运算.1.理解乘法的意义,掌握有理数乘法法则2.掌握有理数乘法法则,能利用乘法的三个运算定律进行简化计算3.会确定多个因数相乘时积的符号,并会用法则进行多个因数的乘积运算。4.理解有理数倒数的意义,熟练进行计算活动1:通过实际问题总计有理数乘除法法则活动2:探究有理数的倒数活动3:探究并总结有理数的乘法运算律活动4:例题巩固活动5:探究有理数的除法法则2 活动6:例题应用2.4有理数的乘方1.理解有理数乘方的意义,正确理解乘方、幂、指数、底数等概念,会进行有理数乘方的运算。2.了解科学记数法的意义。3.学会用科学记数法表示大数。4.对用科学记数法表示的数进行简单的运算。1.理解乘方的意义,2.正确理解乘方、幂、指数、底数等概念,会进行有理数乘方的运算3.理解科学记数法的意义4.会用科学记数法表示大数5.会对用科学记数法表示的数进行简单的运算。活动1:思考、讨论乘方的意义活动2:总结乘方的概念活动3:计算例题活动4:探索乘方的符号法则活动5:探究科学计数法的定义活动6:探究科学计数法中a,n的确定方法活动7:探索怎样将用科学记数法表示的数据还原成原来的数2.5有理数的混合运算1.掌握有理数混合运算的法则,并能熟练地进行有理数的混合运算.2.通过玩“24点”游戏开拓思维,更好地掌握有理数的混合运算.3.通过自学提问、探索讨论的方法,使初步了解计算器面板上的按键名称和功能。4.了解计算器的形状、款式、功能不同的基础上,学会计算器的基本操作方法、并能进行简单的四则计算。5.培养运用计算器解决生活中的实际问题的能力,培养运用意识和解决问题的能力。1.掌握有理数混合运算的法则并熟练进行计算2.会用计算器进行计算并解决实际问题活动1:探究有理数怎样进行乘除混合运算活动2:探究怎样进行有理数加减乘除混合运算活动3:探究有理数的混合运算活动4:认识计算器活动5:用计算器进行计算活动6:探究什么是近似数
《有理数及其运算》单元教学设计
活动1:出示生活情景,用正负数表示,总结正负数的定义
2.1.1认识有理数
活动2:列举生活中其他用负数表示的例子,总结可以利用正负数表述具有相反意义的量
活动3:通过例题巩固正负数的表示
活动4:有理数的分类
2.2.3有理数的加减运算
活动3:出示例题,实际应用有理数的减法法则
活动2:计算实例,总结有理数减法的运算法则
活动1:观察全国主要城市天气预报,了解温差的计算方法
活动4:总结运算规律
活动3:出示例题
活动2:探究有理数的加法运算律
活动1:出示生活情景,引入课题
2.2.2有理数的加减运算
2.2.1有理数的加减运算
活动3:出示例题应用有理数的加法运算法则
活动2:探究并总结有理数的加法运算法则
活动1:探究互为相反数的两个数相加的和是多少
2.1.2认识有理数
活动4:探究数轴上的两个点的大小关系
活动3:探究任何一个有理数都可以用数轴上的一个点来表示。
活动2:借助实例,总结数轴的定义、特征及画法
活动1:借助实例,总结数轴的定义及特征
活动3:探究比较负数的大小
2.1.2认识有理数
有理数及其运算
活动1:探究相反数的定义,总结一个数的相反数的求法
活动2:探究绝对值的定义,求数的绝对值
活动1:根据课本上的小游戏理解有理数的混合运算
2.2.4有理数的加减运算
活动2:总结有理数的加减混合运算法则
活动3:用有理数的加减混合运算法则计算例题
活动4:总结加减混合运算时可运用加法交换律和结合律简化运算
活动3:用有理数的加减混合运算法则计算例题
活动2:探究有理数的倒数
活动1:通过实际问题总结有理数乘法法则
2.3.1有理数的乘除运算
有理数及其运算
活动2:探究并总结有理数的乘法运算律
活动1:通过例题总结几个数相乘的符号确定
活动3:例题巩固
2.3.2有理数的乘除运算
活动1:探究有理数的除法法则
2.3.3有理数的乘除运算
活动3:探究有理数的除法法则2
活动2:根据总结的有理数除法法则做例题
活动4:例题应用
活动3:计算例题
活动2:总结乘方的概念
活动1:思考、讨论乘方的意义
2.4.1有理数的乘方
活动4:探索乘方的符号法则
活动1:探究科学计数法的定义
活动2:探究科学计数法中a,n的确定方法
2.4.2有理数的乘方
活动3:探索怎样将用科学记数法表示的数据还原成原来的数
2.5.1有理数的混合运算
有理数及其运算
活动2:探究怎样进行有理数加减乘除混合运算
活动1:探究有理数怎样进行乘除混合运算
活动3:探究有理数的混合运算
活动1:认识计算器
2.5.2有理数的混合运算
活动2:用计算器进行计算
活动3:探究什么是近似数
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)(共22张PPT)
第二章 有理数及其运算
2.2.3 有理数的加减运算
01
教学目标
02
新知导入
03
新知讲解
04
课堂练习
05
课堂小结
06
作业布置
01
教学目标
1.经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则,会将有理数的减法运算转化为加法运算。
2.通过把有理数的减法运算转化为加法运算,渗透转化思想,培养运算能力
3.经历由特例归纳出一般规律的过程,培养抽象概括能力及表达能力。
4.通过减法到加法的转化,初步体会转化、化归的数学思想。
02
新知导入
图是2023年1月1日我国部分城市天气情况。
知道每个城市的高温和低温.
根据这些信息我们可以解决许多问题.
03
新知讲解
北京的最高气温为5℃,最低气温为-7℃,这一天北京的温差为多少?你是怎么算的
5-(-7)=
03
新知讲解
什么数加(-7)等于5呢?
… 10,11,12
12+(-7)=5
5-(-7)=12 5+7=12
相反数
结果相同
减法是加法的逆运算
03
新知讲解
(1)计算下列各式,你是怎么算的
3-19, 3+(-19); 15-6,15+(-6);
(-8)-(-3),(-8)+3; (-12)-0,(-12)+0;
尝试·交流
3-19=-16, 3+(-19)=-16; 15-6=9, 15+(-6)=9
(-8)-(-3)=-5, (-8)+3=-5; (-12)-0=-12, (-12)+0=-12
03
新知讲解
(2)再换一些数试试,你能得出什么结论?与同伴进行交流。
8-(-3)= 8+3=
10-(-3)= 10+3=
11
11
13
13
03
新知讲解
表达式为: a - b = a + (-b)
被减数不变
通过上面的探究可得结论:
有理数减法法则:
减去一个数,等于加上这个数的相反数.
减数变其相反数
减号变加号
减法统一成加法
03
新知讲解
例3 计算
(1) 9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0
解:(1)9-(-5)=9+5=14;
(2)(-3)-1=(-3)+(-1)=-4
(3)0-8=0+(-8)=-8;
(4)(-5)-0=(-5)+0=-5。
03
新知讲解
观察例3中的算式和结果,想一想:一个数减一个正数,结果会怎样变化?如果减一个负数呢?
观察·思考
9-(-5)=14 (2) (-3)-1= -4
(3) 0-8=-8 (4) (-5)-0=-5
一个数减一个正数,结果会变小;
一个数减去一个负数,结果会变大.
03
新知讲解
例4、世界上最高的山峰是珠穆朗玛峰,其海拔大约是8848.86m,吐鲁番盆地最低处的海拔大约是-154.31m。两处海拔相差多少米?
解:8848.86-(-154.31)=8848.86+154.31
=9003.17(m)。
因此,两处海拔相差9003.17m。
每层楼平均高度为3m,
9003.17m约有多少层楼高
04
课堂练习
【知识技能类作业】必做题:
1.填空:
(1)温度4℃比-6℃高________℃ ;
(2)温度-7℃比-2℃低_________℃ ;
(3)海拔高度-13m比-200m高_______m;
(4)从海拔20m到-40m,下降了______m.
10
5
187
60
04
课堂练习
【知识技能类作业】必做题:
2.下面等式正确的是( )
A.a-b=(-a)+ b B.a-(- b)=(-a)+(- b)
C.(-a)-(-b)=(-a)+(-b) D.a-(- b)=a+ b
3.下列说法中下正确的是( )
A.两个数的差一定小于被减数
B.若两个数的差为0,则这两数必相等
C.零减去一个数一定得负数
D.一个负数减去一个负数结果仍是负数
D
B
04
课堂练习
【知识技能类作业】选做题:
(1)(﹣5)﹣(﹣6) (2)(﹣5)﹣(+6)
(3)(﹣11)﹣0 (4)0﹣3
4. 计算:
解:原式=(-5)+(6)
=+(6-5)
=1
解:原式=(-5)+(-6)
= -(5+6)
= -11
解:原式=(-11)+0
= -11
解:原式=0+(-3)
= -3
04
课堂练习
【综合拓展类作业】
5. 已知有理数a<0,b<0,且|a|>|b|,试判定a-b的符号.
解:因为a<0,b<0,所以-b>0.
又因为a-b=a+(-b), 且|a|>|b|,即|a|>|-b|,
所以取a的符号,而a<0,
因此a-b的符号为负号.
05
课堂小结
有理数的减法
有理数的减法法则:
减去一个数,等于加上这个数的相反数
有理数减法的运算步骤:
1.先把减号变为加号;
2.再把减数变为它的相反数:
3.最后按照有理数加法进行计算
06
作业布置
【知识技能类作业】必做题:
1.春季里某一天的气温为-3 ℃~13 ℃,则这一天的温差是(  )
A.3 ℃ B.10 ℃
C.13 ℃ D.16 ℃
D
2.据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有(  )
A.56℃ B.-56℃
C.310℃ D.-310℃
C
06
作业布置
【知识技能类作业】选做题:
3.某次安全知识竞赛中规定:抢答题答对一题得20分,答错一题扣10分,问答对一题与答错一题得分相差多少分?
解:20-(-10)=20+10=30(分)
即答对一题与答错一题相差30分.
06
作业布置
【综合拓展类作业】
4. 某潜艇从海平面以下27m处上升到海平面以下18m处, 此潜艇上升了多少米?
解:(- 18) -(- 27)
=(- 18)+27
= 9(米)
答: 此潜艇上升了9米.
Thanks!
https://www.21cnjy.com/recruitment/home/fine中小学教育资源及组卷应用平台
分课时教学设计
第一课时《2.2.3有理数的加减运算》教学设计
课型 新授课√ 复习课口 试卷讲评课口 其他课口
教学内容分析 有理数的减法是七年级上册第二章第2节第3课时的内容,是在介绍了数轴和绝对值以及有理数的加法运算以后出现的。教材以天气预报中最高温度和最低温度之差引入有理数的减法,并鼓励学生用自己的方法计算温差,再通过一系列的加法和减法运算结果的对比,归纳出有理数减法的法则,最后结合实际问题进行整数减法的运算
学习者分析 小学阶段,学生已经学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,因此,需进一步加强对有理数领域内减法运算的理解。
教学目标 1.经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则,会将有理数的减法运算转化为加法运算。 2.通过把有理数的减法运算转化为加法运算,渗透转化思想,培养运算能力 3.经历由特例归纳出一般规律的过程,培养抽象概括能力及表达能力。 4.通过减法到加法的转化,初步体会转化、化归的数学思想。
教学重点 理解并掌握有理数的减法法则
教学难点 运用有理数的减法法则解决问题
学习活动设计
教师活动学生活动环节一:引入新课教师活动1: 图是2023年1月1日我国部分城市天气情况。 知道每个城市的高温和低温. 根据这些信息我们可以解决许多问题.学生活动1: 学生思考,回答活动意图说明:通过现实中的例子,培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣,这也为新课的学习做好铺垫.环节二:新知探究教师活动2: 北京的最高气温为5℃,最低气温为-7℃,这一天北京的温差为多少?你是怎么算的 5-(-7)= 12+(-7)=5 减法是加法的逆运算 尝试·交流 (1)计算下列各式,你是怎么算的 3-19, 3+(-19); 15-6,15+(-6); (-8)-(-3),(-8)+3; (-12)-0,(-12)+0; 3-19=-16, 3+(-19)=-16; 15-6=9, 15+(-6)=9 (-8)-(-3)=-5, (-8)+3=-5; (-12)-0=-12, (-12)+0=-12 (2)再换一些数试试,你能得出什么结论?与同伴进行交流。 8-(-3)= 8+3= 10-(-3)= 10+3= 通过上面的探究可得结论: 有理数减法法则: 减去一个数,等于加上这个数的相反数. 减法统一成加法学生活动2: 学生积极参与到教学活动当中,认真思考问题,大胆地进行想象,小组成员之间积极发言共同探讨,活动结束后,小组代表踊跃地发言回答问题。 学生思考,解答 活动意图说明:学生通过计算、观察、比较,从而得到有理数减法法则.一方面增强学生的理解和记忆能力.另一方面增强学生的分析和归纳能力.环节三:典例精析教师活动 例3计算 (1) 9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0 解:(1)9-(-5)=9+5=14; (2)(-3)-1=(-3)+(-1)=-4 (3)0-8=0+(-8)=-8; (4)(-5)-0=(-5)+0=-5。 例4、世界上最高的山峰是珠穆朗玛峰,其海拔大约是8848.86m,吐鲁番盆地最低处的海拔大约是-154.31m。两处海拔相差多少米? 解:8848.86-(-154.31)=8848.86+154.31 =9003.17(m)。 因此,两处海拔相差9003.17m。 每层楼平均高度为3m,9003.17m约有多少层楼高 学生活动 学生根据教师所展示的例题认真完成,完成后举手示意教师,并积极的发言分享自己的答题思路。在教师给予评价、分析后,学生做好更正、总结以及反思。活动意图说明:通过例题的学习,使学生掌握有理数减法运算以及感受到在解决问题中的应用。环节四:探究新知教师活动 观察思考 观察例3中的算式和结果,想一想:一个数减一个正数,结果会怎样变化?如果减一个负数呢? (1)9-(-5)=14 (2) (-3)-1= -4 (3) 0-8=-8 (4) (-5)-0=-5 一个数减一个正数,结果会变小; 一个数减去一个负数,结果会变大.学生活动 学生积极参与到教学活动当中,认真思考问题,并踊跃地进行回答。 活动意图说明:引导学生进行观察、独立思考和总结,培养观察能力、善于动脑的能力。
板书设计 有理数的加减运算 加法的交换律:两个有理数相加,交换加数的位置,和不变;用字母表示:a+b=b+a. 加法的结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变;用字母表示:(a+b)+c=a+(b+c).
课堂练习 【知识技能类作业】 必做题: 1.填空: (1)温度4℃比-6℃高________℃ ; (2)温度-7℃比-2℃低_________℃ ; (3)海拔高度-13m比-200m高_______m; (4)从海拔20m到-40m,下降了______m. 2.下面等式正确的是( ) A.a-b=(-a)+ b B.a-(- b)=(-a)+(- b) C.(-a)-(-b)=(-a)+(-b) D.a-(- b)=a+ b 3.下列说法中下正确的是( ) A.两个数的差一定小于被减数 B.若两个数的差为0,则这两数必相等 C.零减去一个数一定得负数 D.一个负数减去一个负数结果仍是负数 选做题: 4. 计算: (1)(﹣5)﹣(﹣6) (2)(﹣5)﹣(+6) (3)(﹣11)﹣0 (4)0﹣3 【综合拓展类作业】 5. 已知有理数a<0,b<0,且|a|>|b|,试判定a-b的符号.
课堂总结
作业设计 【知识技能类作业】 必做题: 1.春季里某一天的气温为-3 ℃~13 ℃,则这一天的温差是(  ) A.3 ℃ B.10 ℃ C.13 ℃ D.16 ℃ 2.据探测,月球表面白天阳光垂直照射的地方温度高达127℃,而夜晚温度可降低到零下183℃.根据以上数据推算,在月球上昼夜温差有(  ) A.56℃ B.-56℃ C.310℃ D.-310℃ 选做题 3.某次安全知识竞赛中规定:抢答题答对一题得20分,答错一题扣10分,问答对一题与答错一题得分相差多少分? 【综合拓展类作业】 4. 某潜艇从海平面以下27m处上升到海平面以下18m处, 此潜艇上升了多少米?
教学反思 本节课难度较小,但在有理数的运算中是个重点。它是加法运算的一种延伸,在教学中应融入转化的思想。授课过程中,应注重让学生总结减法运算的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习进行巩固。
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表