资源简介 2.1.1 有理数的加法第2课时【教学目标】1.能概括出有理数的加法交换律和结合律.2.灵活熟练地运用加法交换律、结合律简化运算.3.在学生已有的知识经验基础上,通过主动探索有理数加法的运算律,培养学生观察、比较、归纳及运算能力.4.经历对有理数的运算过程,领悟解决问题应选择适当的方法.【重点难点】重点:掌握有理数的加法交换律和结合律.难点:灵活运用加法交换律、结合律简化运算.【教学过程】一、创设情境1.叙述有理数加法法则.2.计算:(1)6.18+(-9.18).(2)(+5)+(-12).(3)(-12)+(+5).(4)3.75+2.5+(-2.5).(5)+++.3.有了有理数的加法法则后,还要研究加法运算律,我们以前学过加法交换律、结合律,对于有理数的加法它们还成立吗 这就是我们这节课要研究的内容.二、探究归纳探究点1:加法运算律问题1:观察下面的算式,你们能再举一些数字也符合这样的结论吗 试试看!(1)(-8)+(-9) (-9)+(-8) (2)4+(-7) (-7)+4(3)6+(-2) (-2)+6(4)[2+(-3)]+(-8) 2+[(-3)+(-8)](5)10+[(-10)+(-5)][10+(-10)]+(-5)问题2:通过上面的计算和对比你能发现什么 你能用字母表示出这个规律吗 要点归纳:加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c).【思考】多个有理数相加,可以任意交换加数的位置吗 交换了加数的位置后,能先把其中的几个数相加吗 【归纳总结】根据加法交换律和结合律,多个有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.【典例评析】例1:教材P29【例2】思考:怎样使计算简化 这样做的根据是什么 解:(1)8+(-6)+(-8)=[8+(-8)]+(-6)=0+(-6)=-6.(2)16+(-25)+24+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20.要点归纳:把正数与负数分别相加,从而计算简化,这样做既运用加法交换律又运用加法的结合律.例2:计算:(1)(+66)+(-12)+(+11.3)+(-7.4)+(+8.1)+(-2.5).(2)+++++.(3)++(-6.25)+++.思考:回顾以上例题的解答,将怎样的加数结合在一起,可使运算简便 要点归纳:(1)互为相反数的两个数可先相加.(2)几个数相加得整数时,可先相加.(3)同分母的分数可以先相加,将带分数拆开,计算比较简便.一定要注意不要遗漏括号;相加的若干个数中出现了相反数时,先将相反数结合起来抵消掉,或通过拆数、部分结合凑成相反数抵消掉,计算比较简便.(4)符号相同的数可以先相加.探究点2:有理数加法运算律的应用例3:教材P29【例3】【解题引导】1.求10袋小麦的总重,可以使用什么方法 2.根据相反意义的量,在给定质量标准的情况下,我们如何来表示这10袋小麦的重量 3.计算10袋小麦总计超过或不足多少千克时,使用哪种表示重量的方法更简便,为什么 【解题反思】对比两种解法,哪种方法更简便 解法2中,使用了哪些运算律 解法1中能运用运算律简便计算吗 为什么 三、检测反馈1.P30练习T12.P36T93.计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100).四、本课小结三个以上的有理数相加,可运用加法交换律和结合律任意改变加数的位置,简化运算.常见技巧有:(1)凑零凑整:互为相反数的两个数结合先加;和为整数的加数结合先加.(2)同号集中:按加数的正负分成两类分别结合相加,再求和.(3)同分母结合:把分母相同或容易通分的结合起来.(4)带分数拆开:计算含带分数的加法时,可将带分数的整数部分和分数部分拆开,分别结合相加.注意带分数拆开后的两部分要保持原来分数的符号.五、布置作业P30练习T2,3;P34T2;P35T8六、板书设计七、教学反思1.过去不少人错误地认为,推理训练是几何教学的目的,代数可以不讲理由.其实,计算本身就是推理.计算法则、运算性质都是进行计算的根据.学生要知道每进行一步运算都要有理有据.这样通过运算就能逐步培养学生的逻辑思维能力.运算教学时,要求学生明确每一步变形或计算的依据,鼓励学生提供多种计算方法.2.在课堂教学中,应当把更多的时间交给学生,本节课中有理数运算律的探究、例题的讲解、习题的完成、知识的总结尽可能全部交给学生完成,教师所起的作用是点拨、评价和指导,这样做,可以更好地体现以学生为中心的教学思想,能更好地提高学生的综合能力. 展开更多...... 收起↑ 资源预览