资源简介 4.2 整式的加减第3课时【教学目标】1.会进行整式加减的运算,并能说明其中的算理,让学生从实际背景中去体会进行整式的加减的必要性.2.经历探索的整式加减运算的法则的过程,进一步培养学生观察、归纳、类比、概括等能力.【重点难点】重点:熟练进行整式的加减运算.难点:列式表示问题中的数量关系,去掉括号前是负因数的括号.灵活准确的运用整式的加减的步骤进行运算.【教学过程】一、创设情境(一)复习回顾1.计算(1)4x-x= ; (2)-6ab+ab+8ab= . 2.化简下列各式:(1)125x+x= ; (2)3x-x= . 3.化简:(1)6y-(3x+2y);(2)3a2-(3a2+2a).(二)情境导入李亮和张莹到希望小学去看望小同学,李亮买了10支钢笔和5本字典作为礼物;张莹买了6支钢笔、4本字典和2个文具盒作为礼物品.钢笔的售价为每支a元,字典的售价为每本b元,文具盒的售价为每个c元.请你计算:(1)李亮花了 元;张莹花了 元;李亮和张莹共花 元. (2)李亮比张莹多花 元. 想一想:如何进行整式的加减运算 二、探究归纳探究点1:整式的加减【典例评析】例1:教材P100【例6】(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).这是课本例题的处理,学生对如何去括号已经能够很好地掌握,学生完全可以利用以前所学习的知识进行问题的解决,稍有难度的点是合并同类项,因为有多个同类项如何处理需要教师进行点拨指导.教师可以类比有理数的加减运算,进行处理(见课本例题详解);也可以使用添括号方式进行处理,解答过程如下:(1)解:原式=2x-3y+5x+4y=(2x+5x)+(-3y+4y)=7x+y;(2)解:原式=8a-7b-4a+5b=(8a-4a)+(-7b+5b)=4a-2b教师可以对两种情况进行对比,让学生择优选择.【针对性训练】化简(x+3y)-2(x-3y)-(x+3y)+(x-3y)=x+3y-2x+6y-x-y+x-3y=x-2x-x+x+3y+6y-y-3y=-x+y要点归纳:整式的加减运算归结为 、 ,运算结果仍是 . 运算结果,常将多项式的某个字母(如x)降幂(升幂)排列.探究点2:整式的加减的应用例2:教材P100【例7】教师引导:(1)求纸盒用料实际应该求什么 (2)怎样解决这两个问题 展示两个长方体纸盒实物模型,引导学生围绕以上两个问题观察,学生分组讨论、交流,教师倾听学生交流,指导学生探究.或借助多媒体展示长方体各个面的长、宽,引导学生完成列代数式,合并同类项,解决实际问题.师生活动:师:我们利用整式的加减解决实际问题的步骤是什么 整式加减的实质是什么 学生分组讨论、交流后归纳出(学生自己表述).要点归纳:整式加减的运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.【针对性训练】教材P102练习T3例3:教材P101【例8】师生活动:教师板书示范,同时引导学生领会每一步的计算依据.注意引导学生总结整式化简求值的一般步骤.使学生领会整式的求值过程,能自觉地运用“先化简,然后再求值”的这一思路解决问题.同时进一步使学生体会整式的加减在求代数式的值时的便捷.三、检测反馈1.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是 ( )A.-5x-1 B.5x+1C.-13x-1 D.13x+12.长方形的一边长等于3a+2b,另一边比它大a-b,那么这个长方形的周长是 ( )A.14a+6b B.7a+3bC.10a+10b D.12a+8b3.若A是一个二次二项式,B是一个五次五项式,则B-A一定是 ( )A.二次多项式 B.三次多项式C.五次三项式 D.五次多项式4.多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m为 ( )A.2 B.-2C.4 D.-45.已知A=3a2-2a+1,B=5a2-3a+2,则2A-3B= . 6.若mn=m+3,则2mn+3m-5mn+10= . 7.计算:(1)-ab3+2a3b-a2b-ab3-a2b-a3b;(2)(7m2-4mn-n2)-(2m2-mn+2n2);(3)-3(3x+2y)-0.3(6y-5x);(4)-.8.某公司计划砌一个形状如下图(1)的喷水池,后有人建议改为如下图(2)的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需用的材料多(即比较两个图形的周长) 若将三个小圆改为n个小圆,又会得到什么结论 四、本课小结整式的加减五、布置作业基础:教材P102习题T3、4、5.综合:教材P102习题T6,P103习题T11.六、板书设计七、教学反思整式的加减是学生进入第三学段后最先遇到的有关式子的运算,是由具体的数字运算发展到代数式运算的转折点.整式的加减运算是今后学习整式的乘除、分式的化简等涉及(代数)“式”运算的基础.由于整式中的字母可以表示任意有理数,因此整式的加减运算可以类比和应用有理数的运算与加法、乘法的运算律,进一步体会“(有理)数”与“(整)式”运算的相通性. 用字母可以表示数或数量关系,也可以表示特定意义的公式或具有某些规律的数.用整式表示和分析实际问题中的数量关系,能使数量之间的关系更简明,更具有普遍意义.当整式中所含字母的取值确定后,可以求得此时整式的值,通常的做法是,先将整式化简,即先去括号、合并同类项,再将字母的值代入计算,这样可以化繁为简,使运算简便,这也说明,式的运算更具有一般性,数的运算是式的运算的特殊情形. 本课旨在通过探索整式加减运算法则的过程,进一步培养学生观察、归纳、类比、概括等能力,提高有条理的思考及语言表达能力.让学生在探索整式加减运算法则的活动中通过相互间的合作与交流,进一步挖掘学生合作交流的能力和数学表达能力.在解决问题的过程中了解数学的价值,增强“用数学”的信心. 展开更多...... 收起↑ 资源预览