资源简介 (共23张PPT)第二章 三角形2.5.5全等三角形的判定--SSS01教学目标02新知导入03新知讲解04典例分析05课堂练习06课堂小结07作业布置08板书设计01教学目标1.理解并记忆SSS(边边边)判定定理。2.熟练掌握运用SSS判定定理来判断两个三角形是否全等的方法,并能准确识别题目中给出的边长相等条件。3.在小组或班级内进行交流讨论,分享彼此的思考和解题过程,促进学生之间的合作学习和共同进步。4.通过生动有趣的教学活动,激发学生对数学学习的兴趣和热情,特别是几何部分的探索欲。02新知导入1.画出两个三角形,当△ABC和△A′B′C′满足什么条件时,这两个三角形全等?根据基本事实:SAS ASA AAS可提出条件2.还有其他判定方法吗?03新知讲解一、全等三角形的判定--SSS如图, 在△ABC 和△A′B′C′中, 如果 AB = A′B′, BC = B′C′, AC=A′C′,那么△ABC 和△A′B′C′全等吗?如果能够说明∠A = ∠A′, 那么就可以由 “边角边”得出△ABC≌△A′B′C′.ABCA’B’C’将△ABC 作平移、 旋转和轴反射等变换, 使BC 的像 B″C″与 B′C′重合, 并使点 A的像 A″与点 A′在 B′C′的两旁, △ABC 在上述变换下的像为△A″B″C″,如图可知△ABC≌△A′B′C′, 则 AB = A″B′= A′B′, AC =A″C′= A′C′. 连接 A′A″.03新知讲解一、全等三角形的判定--SSS∵ A′B′= A″B′, A′C′= A″C′,∴ ∠1 = ∠2, ∠3 = ∠4从而 ∠1 + ∠3 = ∠2 + ∠4,即 ∠B′A′C′= ∠B′A″C′在△A′B′C′和△A″B′C′中,∴ △ A′B′C′≌△ A″B′C′ (SAS).∴ △ ABC ≌△ A′B′C′.ABC03新知讲解一、全等三角形的判定--SSS由此得到判定两个三角形全等的基本事实:三边分别相等的两个三角形全等。通常可简写成 “边边边” 或 “SSS”.03新知讲解二、全等三角形的判定(SSS)的应用例7 已知 : 如图 , AB = CD, BC = DA.求证: ∠B = ∠D证明 在△ABC和△CDA中,∴ △ABC ≌△CDA (SSS).∴ ∠B = ∠D.03新知讲解二、全等三角形的判定(SSS)的应用由 “边边边” 可知, 只要三角形三边的长度确定, 那么这个三角形的形状和大小也就固定了, 三角形的这个性质叫作三角形的稳定性.且在日常生活中有丰富应用,如定位锁人字梁屋顶04典例分析例8. 已知: 如图, AC 与 BD 相交于点 O, 且 AB = DC, AC = DB.求证: ∠A = ∠D证明 连接 BC.在△ABC和△DCB中,∴ △ABC ≌△DCB (SSS).∴ ∠A = ∠D.05课堂练习1.如图,已知AB=CD,AD=CB,则△ABC与△CDA全等的依据是 ( )A.SAS B.ASA C.AAS D.SSS2. 在△ABC中,AB=AC,BE=EC,直接使用“SSS”可判定 ( )A.△ABD≌△ACD B.△ABE≌△EDCC.△ABE≌△ACE D.△BED≌△CEDD【知识技能类作业】必做题:C05课堂练习3. 如图所示的三角形中,与图中的△ABC全等的是 ( )C【知识技能类作业】必做题:05课堂练习4. 工人师傅常用角尺平分一个任意角,做法是:如图所示,在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与点M,N重合,得到∠AOB的平分线OC.做法中用到三角形全等的判定方法是 ( )A.SSS B.SAS C.ASA D.AAS5.如图所示,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了三角形的___________. A稳定性【知识技能类作业】选做题:05课堂练习6. 如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA.证明:在△ADB和△BCA中,∴△ADB≌△BCA(SSS),∴∠ADB=∠BCA.【综合拓展类作业】06课堂小结全等三角形的判定--SSS1.全等三角形的判定--SSS:三边分别相等的两个三角形全等。通常可简写成 “边边边” 或 “SSS”。2.全等三角形的判定(SSS)的应用07作业布置1.在△ABC和△DEF中,AB=3,BC=4,AC=6,DE=3,EF=4,要使△ABC与△DEF全等,则DF的长为( )A.3 B.4 C.6 D.13【知识技能类作业】必做题:C07作业布置2.如图所示,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在 ( )A.A,C两点之间 B.E,G两点之间C.B,F两点之间 D.G,H两点之间【知识技能类作业】必做题:B07作业布置3. 如图,AC,BD相交于点O,AC=BD,AB=CD,写出图中两对相等的角: ___________________________.【知识技能类作业】必做题:∠A=∠D,∠AOB=∠DOC07作业布置4.工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是 ( )A.两点之间线段最短 B.长方形的四个角都是直角C.长方形是轴对称图形 D.三角形具有稳定性【知识技能类作业】选做题:D 07作业布置5. 如图,点E,B,F,C在一条直线上,已知AC=DF,AB=DE,CF=EB.求证:AB∥DE.证明 ∵CF=BE∴CF+BF=BE+BF,即BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SSS),∴∠ABC=∠E,∴AB∥DE.【综合拓展类作业】08板书设计全等三角形的判定--SSS全等三角形的判定--SSS全等三角形的判定(SSS)的应用Thanks!https://www.21cnjy.com/recruitment/home/fine中小学教育资源及组卷应用平台分课时教学设计第一课时《 2.5.5全等三角形的判定--SSS 》教学设计课型 新授课√ 复习课口 试卷讲评课口 其他课口教学内容分析 本节课主要学习全等三角形的判定定理SSS(若两个三角形的三边分别相等,则这两个三角形全等。)以及此基本事实的应用。而全等三角形的判定是初中数学几何部分的重要内容,其中SSS(即边边边)判定方法是全等三角形判定中的基础且重要的一种。这一节内容在学生已经学习了三角形的基本概念、性质以及全等三角形的概念之后进行,旨在让学生掌握全等三角形的判定方法SSS,为后续学习其他全等三角形的判定方法及解决更复杂的几何问题打下基础。学习者分析 八年级的学生已经具备了一定的数学基础,对三角形的相关知识有一定的了解。但是,学生在解决实际几何问题时,往往还不能灵活运用所学知识,尤其是几何推理论证的能力仍有局限性。因此,在教学过程中,教师需要注重引导学生通过动手操作、合作探究等方式加深对SSS判定方法的理解,并逐步提高他们的解题能力。且在教学过程中,教师应结合学生的实际情况,采用合适的教学方法和手段,帮助学生掌握全等三角形的判定方法SSS,提高他们的解题能力和数学素养。教学目标 1.理解并记忆SSS(边边边)判定定理。 2.熟练掌握运用SSS判定定理来判断两个三角形是否全等的方法,并能准确识别题目中给出的边长相等条件。 3.在小组或班级内进行交流讨论,分享彼此的思考和解题过程,促进学生之间的合作学习和共同进步。 4.通过生动有趣的教学活动,激发学生对数学学习的兴趣和热情,特别是几何部分的探索欲。教学重点 全等三角形的判定方法SSS的探索过程及其应用。教学难点 如何灵活运用SSS判定方法解决复杂的几何问题,以及在证明过程中如何准确地找到并应用已知条件。学习活动设计教师活动学生活动环节一:新知导入教师活动1: 1.画出两个三角形,当△ABC和△A′B′C′满足什么条件时,这两个三角形全等? 根据基本事实:SAS ASA AAS可提出条件 2.还有其他判定方法吗?学生活动1: 学生回顾先前所学知识回答问题活动意图说明: 通过回顾相关知识,引出课题《全等三角形的判定--SSS 》,并使学生新旧知识有一定连接。环节二:新知讲解教师活动2: 一、全等三角形的判定--SSS 如果能够说明∠A = ∠A′, 那么就可以由 “边角边”得出△ABC≌△A′B′C′. 将△ABC 作平移、 旋转和轴反射等变换, 使BC 的像 B″C″与 B′C′重合, 并使点 A的像 A″与点 A′在 B′C′的两旁, △ABC 在上述变换下的像为△A″B″C″,如图可知△ABC≌△A′B′C′, 则 AB = A″B′= A′B′, AC = A″C′= A′C′. 连接 A′A″. ∵ A′B′= A″B′, A′C′= A″C′, ∴ ∠1 = ∠2, ∠3 = ∠4 从而 ∠1 + ∠3 = ∠2 + ∠4, 即 ∠B′A′C′= ∠B′A″C′ 在△A′B′C′和△A″B′C′中, ∴ △ A′B′C′≌△ A″B′C′ (SAS). ∴ △ ABC ≌△ A′B′C′. 由此得到判定两个三角形全等的基本事实: 三边分别相等的两个三角形全等。 通常可简写成 “边边边” 或 “SSS”.学生活动2: 组织学生根据问题进行小组讨论,期间教师巡视,给予指导,有小组代表发言,其他小组补充,师生共同归纳基本事实SSS。 活动意图说明: 在本环节通过小组讨论,可提高团队意识,理解团队的重要性,并且通过引导学生自主思考可提高学生独立解决问题的能力。环节三:新知讲解教师活动3: 二、全等三角形的判定(SSS)的应用 由 “边边边” 可知, 只要三角形三边的长度确定, 那么这个三角形的形状和大小也就固定了, 三角形的这个性质叫作三角形的稳定性. 且在日常生活中有丰富应用,如 例7 已知 : 如图 2-51, AB = CD, BC = DA.求证: ∠B = ∠D 证明 在△ABC和△CDA中, ∴ △ABC ≌△CDA (SSS). ∴ ∠B = ∠D. 学生活动3: 学生自主探究回答问题,请学生上台板演 ,教师给出规范证明过程。活动意图说明: 学生通过自主探究可提高独立思考问题的能力。环节四:典例精析教师活动4: 典例分析 例8. 已知: 如图, AC 与 BD 相交于点 O, 且 AB = DC, AC = DB. 求证: ∠A = ∠D 证明 连接 BC. 在△ABC和△DCB中, ∴ △ABC ≌△DCB (SSS). ∴ ∠A = ∠D. 学生活动4: 学生根据本节课知识完成问题活动意图说明: 通过练习加深本节课知识,并能正确运用。板书设计 全等三角形的判定--SSS 全等三角形的判定--SSS课堂练习 【知识技能类作业】 必做题: 1.如图,已知AB=CD,AD=CB,则△ABC与△CDA全等的依据是 ( D ) A.SAS B.ASA C.AAS D.SSS 2. 在△ABC中,AB=AC,BE=EC,直接使用“SSS”可判定 ( C ) A.△ABD≌△ACD B.△ABE≌△EDC C.△ABE≌△ACE D.△BED≌△CED 3. 如图所示的三角形中,与图中的△ABC全等的是 ( C ) 选做题: 4.工人师傅常用角尺平分一个任意角,做法是:如图8所示,在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与点M,N重合,得到∠AOB的平分线OC.做法中用到三角形全等的判定方法是 ( A ) A.SSS B.SAS C.ASA D.AAS 5.如图所示,建高楼常需要用塔吊来吊建筑材料,而塔吊的上部是三角形结构,这是应用了三角形的稳定性. 【综合拓展类作业】 6.如图,已知AD=BC,BD=AC.求证:∠ADB=∠BCA. 证明:在△ADB和△BCA中, ∴△ADB≌△BCA(SSS), ∴∠ADB=∠BCA.作业设计 【知识技能类作业】 必做题: 1.在△ABC和△DEF中,AB=3,BC=4,AC=6,DE=3,EF=4,要使△ABC与△DEF全等,则DF的长为( C ) A.3 B.4 C.6 D.13 2.如图所示,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在 ( B ) A.A,C两点之间 B.E,G两点之间 C.B,F两点之间 D.G,H两点之间 如图,AC,BD相交于点O,AC=BD,AB=CD,写出图中两对相等的角:∠A=∠D,∠AOB=∠DOC. 选做题: 4.工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是 ( D ) A.两点之间线段最短 B.长方形的四个角都是直角 C.长方形是轴对称图形 D.三角形具有稳定性 【综合拓展类作业】 5. 如图,点E,B,F,C在一条直线上,已知AC=DF,AB=DE,CF=EB. 求证:AB∥DE. 证明 ∵CF=BE ∴CF+BF=BE+BF,即BC=EF, 在△ABC和△DEF中, ∴△ABC≌△DEF(SSS), ∴∠ABC=∠E,∴AB∥DE.教学反思 通过课堂练习和课后作业反馈,大部分学生能够准确理解SSS判定定理,并能熟练应用于判断两个三角形是否全等的问题中。但仍有少数学生对定理的理解不够深入,容易出现混淆。在逻辑推理和问题解决能力上有所提升,能够根据已知条件进行逐步推理,得出正确结论。但在面对较复杂问题时,部分学生仍显得较为吃力。因此要加强学生的独立思考和推理能力培养,通过设计更多开放性和探究性的问题,引导学生主动思考和解决问题。21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台学 科 数学 年 级 八年级 设计者教材版本 湘教版 册、章 第二章课标要求 (1)理解三角形及其中线、高线、角平分线等概念,了解三角形的稳定性。(2)探索并证明三角形的内角和定理。掌握它的推论:三角形的外角等于与它不相邻的两个内角的和。(3)证明三角形的任意两边之和大于第三边。(4)理解全等三角形的概念,能识别全等三角形中的对应边、对应角。(5)掌握基本事实:两边及其夹角分别相等的两个三角形全等。(6)掌握基本事实:两角及其夹边分别相等的两个三角形全等。(7)掌握基本事实:三边分别相等的两个三角形全等。(8)证明定理:两角分别相等且其中一组等角的对边相等的两个三角形全等。(9)理解角平分线的概念,探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上。(10)理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上。(11)理解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两个底角相等;底边上的高线、中线及顶角平分线重合。探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。探索等边三角形的性质定理:等边三角形的各角都等于60°。探索等边三角形的判定定理:三个角都相等的三角形(或有一个角是 60°的等腰三角形)是等边三角形。(12)能用尺规作图:已知三边、两边及其夹角、两角及其夹边作三角形;已知底边及底边上的高线作等腰三角形;已知一直角边和斜边作直角三角形。内容分析 第二章内容包括三角形的概念、等腰(边)三角形的性质和判定定理、垂直平分线的性质和判定定理、全等三角形的性质和判定等。本章内容在直观理解和掌握图形与几何基本事实的基础上,经历得到和验证数学结论的过程,感悟具有传递性的数学逻辑,形成几何直观和推理能力;经历尺规作图的过程,增强动手能力,能想象出通过尺规作图的操作所形成的图形,理解尺规作图的基本原理与方法,发展空间观念和空间想象力。学情分析 八年级学生已经学习简单的三角形知识,但几何直观和推理能力还不成熟,因此在接下来教学中需要引导学生理解欧几里得平面几何的基本思想,感悟几何体系的基本框架:通过定义确定论证的对象,通过基本事实确定论证的起点,通过证明确定论证的逻辑,通过命题确定论证的结果。要组织学生经历图形分析与比较的过程,引导学生学会关注事物的共性、分辨事物的差异、形成合适的类,会用准确的语言描述研究对象的概念,提升抽象能力,会用数学的眼光观察现实世界;要通过生活中的或者数学中的现实情境,引导学生感悟基本事实的意义,经历几何命题发现和证明的过程,感悟归纳推理过程和演绎推理过程的传递性,增强推理能力。单元目标 (一)教学目标①理解并掌握三角形性质、三角形外角和、三角形三边关系,并用它们进行有关证明或计算;②掌握垂直平分线的定义、性质及判定定理;③理解全等三角形的概念,能根据基本事实判断三角形是否全等;④会利用尺规作图作三角形,角平分线,垂直平分线等;⑤经历探究三角形有关知识的运用过程,发展学生分析解决问题的能力;⑥培养学生的审美意识,感受数学的美。(二)教学重点、难点重点:能熟练应用三角形知识解决问题难点:经历探究三角形有关知识的运用过程,发展学生分析解决问题的能力单元知识结构框架及课时安排 (一)单元知识结构框架(二)课时安排课时编号单元主要内容课时数2.1 三角形32.2命题与证明32.3等腰三角形22.4线段的垂直平分线22.5全等三角形52.6用尺规作三角形2达成评价 课题课时目标达成评价评价任务2.1三角形1.理解三角形的定义并明确三角形的边、角、顶点等基本概念;2.理解并掌握三角形三边关系的定理,能够运用这一定理判断给定的三条线段是否能构成三角形;3.理解三角形的高、角平分线和中线的定义,能够区分并识别出三角形中的这三种线段; 4.掌握在锐角三角形、直角三角形和钝角三角形中绘制高、角平分线和中线的方法;5.理解并准确表述三角形的内角和为180°的定理;6.能够运用三角形的内角和定理求出第三个角的度数,或者验证三角形的三个内角之和是否为180°;7.理解三角形外角的定义,掌握三角形外角的重要性质。学生理解并掌握三角形的相关知识(定义、三边关系,三线合一,内角和、外角等);会画三角形的三线。活动一:通过例题合作总结三角形角形的相关知识(定义、三边关系,三线合一,内角和、外角等)活动二:通过例题总结三角形高线,角平分线、中线的画法活动三:出示计算题利用三角形计算2.2命题与证明1.理解“命题”是可以判断真假的陈述句,掌握命题的基本结构和特点;2.能够将命题改写成“如果……,那么……”的形式,明确区分命题的条件(题设)和结论;3.理解真命题、假命题、定理、反例等基本概念,明确它们的定义和区别;4.能够准确判断一个命题是真命题还是假命题,掌握判断命题真假的基本方法;5.理解定理的概念,知道定理是经过推理证实的真命题;6.了解证明的基本步骤,包括明确命题、分析条件、推导结论等;7.掌握直接证明法和反证法等常用的证明方法,并能根据题目要求选择合适的证明方法进行解题。学生掌握真假命题的概念并会区分;学生能够利用原命题写出逆命题并判断真假。学生能够掌握证明方法,并能写出规范证明过程。活动一:学生通过例题总结真假命题、逆命题的概念;活动二:通过例题掌握证明方法2.3等腰三角形1.掌握等腰三角形和等边三角形的性质;2.能够运用等腰三角形的性质进行简单的推理和证明,解决相关数学问题;3.理解并掌握等腰(边)三角形的判定定理;4.熟练运用等腰三角形的判定定理进行相关的推理和证明,解决与等腰三角形相关的数学问题;学生掌握等腰(边)三角形的性质和判定定理,并可利用其证明问题活动一:学生通过问题探究三角形的性质和判定定理活动二:学生利用其性质和判定作证明题,解计算题并解决实际问题2.4线段的垂直平分线1.识记并理解线段垂直平分线的性质定理; 2.理解并掌握线段垂直平分线的逆定理;3.理解线段垂直平分线的作法,能正确作图;4.理解过一点作已知直线的垂线的方法,能正确作图;5.能运用作线段的垂直平分线的方法解决实际问题。学生理解线段垂直平分线的概念、性质、判定定理,并利用其概念、性质、判定解决问题。可作图线段的垂直平分线活动一:学生通过问题掌握线段垂直平分线的概念、性质、判定定理;活动二:学生通过例题掌握其利用概念、性质、判定定理解决问题;活动三:出示复杂例题学生掌握综合运用线段垂直平分线的相关知识。2.5全等三角形了解全等图形。掌握全等三角形的概念,能用符号正确表示两个全等三角形;理解全等三角形的性质,能识别全等三角形的对应边、对应角;探究发现和掌握三角形全等的判定定理(SAS,AAS,ASA,SSS)学生通过问题探究掌握全等三角形的概念、性质和判定定理;学生可以利用其概念、性质和判定定理解决问题。活动一:学生通过问题掌握全等三角形的概念、性质、判定定理;活动二:学生通过例题掌握其利用概念、性质、判定定理解决问题;活动三:出示复杂例题学生能够综合利用全等三角形相关知识解决问题。2.6用尺规作三角形1.掌握基础作图作线段、作线段的垂直平分线,掌握已知三边作三角形的作法、已知底边和底边上的高,作等腰三角形的方法、作一个角的平分线的作法;2.掌握用尺规作一个角等于已知角(基础作图),能够用尺规作出已知两边夹角、两角夹边的三角形; 3.规范使用尺规规范地按照作图步骤作图。学生掌握根据各已知条件利用尺规作三角形。活动一:学生合作探究根据各已知条件利用尺规作三角形;活动二:通过例题熟练掌握规范的作图方法。《三角形》单元教学设计活动一:(合作完成)根据问题合作探究三角形的基本概念。2.1.1三角形的相关概念和三边关系活动二:(独立完成)通过例题认识等腰三角形和等边三角形。活动三:(合作完成)通过例题掌握三边关系利用所学知识完成例题活动四:利用所学知识完成例题活动一:(合作完成)根据问题合作探究三角形的高和角平分线。2.1.2三角形的高线、角平分线和中线活动二:(独立完成)通过例题总结归纳三角形的重心及重心。三角形活动三:利用所学知识完成例题活动一:(合作完成)根据问题合作探究三角形的内角和。活动二:(合作完成)通过例题总结归纳三角形的外角。2.1.3三角形的内角和与外角活动三:利用所学知识完成例题活动一:(合作完成)根据问题合作探究“定义”的含义。活动二:(独立完成)根据问题合作探究“命题”的概念。。2.2.1定义与命题活动三:利用所学知识完成例题活动一:(合作完成)根据问题合作探究真假命题概念及判断方法。。活动二:(独立完成)根据问题合作探究证明的依据。2.2.2真假命题与定理活动三:利用所学知识完成例题活动一:(合作完成)根据问题合作探究简单几何命题的证明。活动二:(独立完成)通过例题探究反证法。2.2.3命题的证明活动三:利用所学知识完成例题三角形活动一:(合作完成)根据问题合作探究等腰三角形的性质。活动二:(独立完成)据问题探究等边三角形的性质。2.3.1等腰(边)三角形的性质活动三:利用所学知识完成例题活动一:(合作完成)根据问题合作探究等腰三角形的判定。2.3.2等腰(边)三角形的判定活动二:(独立完成)据问题探究等边三角形的判定。活动三:利用所学知识完成例题活动一:(合作完成)根据问题合作探究线段垂直平分线的概念。2.4.1线段的垂直平分线的性质定理及逆定理活动二:(独立完成)通过例题总结线段垂直平分线的性质和判定定理。活动三:利用所学知识完成例题活动一:(合作完成)通过例题探究线段垂直平分线的作法。2.4.2作线段的垂直平分线活动二:(合作完成)通过问题总结过一点作直线的垂线的方法。活动三:利用所学知识完成例题活动一:(合作完成)通过问题探究全等三角形的概念及表示方法。2.5.1全等三角形的概念和性质活动二:(合作完成)通过问题总结全等三角形的性质。活动三:利用所学知识完成例题活动一:(合作完成)通过例题探究全等三角形的判定定理。三角形2.5.2全等三角形的判定-SAS活动二:(合作完成)通过问题总结全等三角形的判定(SAS)的应用。活动三:利用所学知识完成例题活动一:(合作完成)通过例题探究通过例题探究全等三角形的判定定理。2.5.3全等三角形的判定-ASA活动二:(合作完成)通过问题总结全等三角形的判定(ASA)的应用。活动三:利用所学知识完成例题活动一:(合作完成)通过例题探究通过例题探究全等三角形的判定定理。活动二:(合作完成)通过问题总结全等三角形的判定(AAS)的应用。2.5.4全等三角形的判定-AAS活动三:利用所学知识完成例题活动一:(合作完成)通过例题探究通过例题探究全等三角形的判定定理。活动二:(合作完成)通过问题总结全等三角形的判定(SSS)的应用。2.5.5全等三角形的判定-SSS活动三:利用所学知识完成例题活动一:(合作完成)通过例题探究已知三边作三角形的作法、已知底边和底边上的高,作等腰三角形的方法。三角形2.6.1用尺规作三角形--已知三边作三角形活动二:(合作完成)通过问题总结作一个角的平分线的作法。活动三:利用所学知识完成例题活动一:(合作完成)通过例题探究作一个角等于已知角的作法、已知两边及其夹角作三角形的作法。2.6.2用尺规作三角形--已知角和边作三角形活动二:(合作完成)通过问题总结已知两角及其夹边作三角形的作法。活动三:利用所学知识完成例题HYPERLINK "http://21世纪教育网(www.21cnjy.com)" 21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源列表 2.5.5全等三角形的判定--SSS.docx 2.5.5全等三角形的判定--SSS.pptx 八上第二单元大单元设计.doc