资源简介 课时目标1.经历从现实生活中抽象出数轴的过程,体会数学与现实世界的联系,培养学生的建模能力与抽象意识.2.知道数轴的三要素,会画数轴,培养学生的动手能力.3.能用数轴上的点表示有理数,初步体会数形结合的数学思想方法.学习重点理解数轴的概念和能用数轴上的点表示有理数.学习难点有理数与数轴上的点的对应关系.课时活动设计情境引入某市公交公司在一条东西方向的马路旁设置的部分站点如图所示,相邻两站点之间的距离均为2 km.思考:(1)如果你在实验学校站点处,怎样说明其他站点的位置 (2)以实验学校站为参照点,并用0表示该点,你能用有理数表示其他站点的位置吗 说一说你的想法.(引导学生用不同的方法表示)(3)要用有理数表示直线上点的位置,需要确定哪些条件呢 设计意图:从现实生活中的实例出发,引导学生体会要确定一条马路上站点的位置,需要知道参照点、距离和方向,为数轴三要素的学习作铺垫.通过现实实例建立数学模型(直线及直线上的点)培养学生的建模能力.探究新知探究1 数轴的概念及画法思考:上面实例中的图形,你能抽象成简洁的数学图形吗 请动手画图试一试.学生画图,教师巡视指导.展评学生作品,并作出评价.归纳:为了使表达更清楚,我们规定向东为正用箭头表示,相反的方向为负方向,把实验学校站,即数字为0左右两边的数分别用负数和正数表示,如图.定义:像这样规定了原点、正方向和单位长度的直线叫作数轴,如图所示.思考:在画数轴的过程中需要注意什么呢 学生先独立思考,然后小组讨论总结归纳,教师引导并纠正.画数轴的注意事项:(1)原点、正方向和单位长度三要素缺一不可;(2)直线一般画水平的;(3)正方向用箭头表示,一般取从左到右;(4)取单位长度应结合实际需要,但要做到刻度均匀.探究2 数轴上的点与有理数的对应关系如图,观察数轴上表示有理数的点A,B,C,D,思考问题:问题1:(1)每个点分别在原点的哪一侧 (2)每个点到原点的距离分别是多少 (3)每个点分别表示什么数 学生独立思考后回答问题.解:(1)点A和点B在原点左侧,点C在原点上,点D在原点右侧.(2)点A到原点的距离是4,点B到原点的距离是1,点C到原点的距离是0,点D到原点的距离是3.(3)点A表示-4,点B表示-1,点C表示0,点D表示3.画一条数轴,并在数轴上标出表示下列各数的点:1,-2,-3.5,2.5,0.问题2:(1)正数表示在原点的哪边 负数呢 (2)2.5表示在2的左边还是右边 为什么 -3.5表示在-3的左边还是右边 为什么 学生先独立思考,然后小组讨论,最后由小组发表见解.解:如图所示.(1)正数在原点右边,负数在左边.(2)2.5表示在2的右边,因为2.5距离原点2.5个单位长度,2距离原点2个单位长度,所以2.5距离原点更远;-3.5在-3的左边,同理,-3.5距离原点更远.探究3 数轴上的特殊点思考:数学中的一些特例是很有研究价值的,认真观察数轴,你能发现一些特殊的点吗 师生活动:学生先独立思考,然后小组讨论,最后展评,教师给予指导.问题3:如图在数轴上分别标出了表示4和-4,2.5和-2.5的两对点.观察并回答:(1)每对点在原点的同侧还是异侧 (2)每对点与原点的距离具有什么关系 (3)这样的点你还能找到吗 试一试,说一说这两个数有什么特征.总结:每个有理数都对应数轴上的一个点.表示正有理数的点在原点右侧,表示负有理数的点都在原点左侧,表示0的点就是原点.设计意图:通过探究数轴的三要素和数轴的画法,能用数轴上的点表示有理数,初步体会数形结合的数学思想方法.典例精讲例 请画一条数轴,并在数轴上标出表示下列各数的点:1,-1,2.5,-3,0.解:如图所示.设计意图:通过例题的思考与解答,培养学生的抽象能力与动手操作能力,在画图的过程中引导学生归纳总结数轴的概念,再思考画数轴的注意事项,培养学生的抽象概括能力.巩固训练1.下列数轴画得正确的是(C)A. B.C. D.2.如图,数轴的长度单位为1,如果点A表示的数是-2,那么点B表示的数是(C)A.0 B.1 C.2 D.33.数轴上,在原点左侧且到原点距离为3个单位长度的点表示的数是 -3 . 4.在数轴上表示-3的点与表示2的点之间的距离是 5 . 5.如图,数轴上的点A,B,C,D分别表示什么数 解:观察数轴,可得点A表示的数是-2,点B表示的数是2,点C表示的数是0,点D表示的数是-1.设计意图:通过设置不同层次的练习,不仅能使学生的新知得到及时巩固,也使学生的思维能力得到有效提高,能更好地将知识学以致用.课堂小结本节课我们研究了数轴的概念及画法,请同学们带着以下问题进行总结:(1)数轴三要素是什么 画数轴时需要注意什么 (2)在学习数轴的过程中,你经历了什么 这个过程中用到了哪些数学方法 积累了哪些活动经验 设计意图:学生通过自主反思,可进一步加深对数轴的理解,通过反思数学思想方法与活动经验,培养学生的数学思维品质,让学生学会学习,学会思考,使学生真正深入数学学习过程中,抓住数学思维的内在实质.课堂8分钟.1.教材第11页习题A组第1,2,3题,B组第4,5,6题.教学反思 展开更多...... 收起↑ 资源预览