第二单元 除数是一位数的除法 单元分析(教学设计)(表格式)2024-2025学年三年级下册数学人教版

资源下载
  1. 二一教育资源

第二单元 除数是一位数的除法 单元分析(教学设计)(表格式)2024-2025学年三年级下册数学人教版

资源简介

中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
第二单元 除数是一位数的除法
单元分析
一、单元核心素养分析
《除数是一位数的除法》这一单元主要包括三部分内容:一是口算除法,掌握“整十、整百、整千数除以一位数”“几百几十除以一位数”(可以转化为表内除法)以及“几十几除以一位数”(每一位都能除尽)的口算方法;二是笔算除法,掌握被除数是两位数、三位数的笔算除法以及有关0的除法的计算方法;三是用估算解决问题,能灵活应用估算策略解决问题。这部分是小学数学中最重要的基础知识和基本技能的内容之一,是需要学生必须理解掌握的,属于数与代数领域的内容。
本单元在学生进一步掌握算法,形成计算技能的同时,培养学生归纳推理能力,其核心素养指向是数感、运算能力和推理意识。
依据课程标准,数感主要是指对于数与数量、数量关系及运算结果的直观感悟。能在简单的真实情境中进行合理估算,作出合理判断。数感是形成抽象能力的经验基础。建立数感有助于理解数的意义和数量关系,初步感受数学表达的简洁与精确,增强好奇心,培养学习数学的兴趣。本单元教学中,从“李叔叔骑行”“用纸箱装菠萝,够不够装”等生活的不同角度,提供了丰富的素材,使学生在解决问题的过程中,培养学生灵活地选择策略解决问题的能力,让学生拥有良好的数感。
运算能力主要是指根据法则和运算律进行正确运算的能力。能够明晰运算的对象和意义,理解算法与算理之间的关系;能够理解运算的问题,选择合理简洁的运算策略解决问题;能够通过运算促进数学推理能力的发展。运算能力有助于形成规范化思考问题的品质,养成一丝不苟、严谨求实的科学态度。本单元教学中,从生活情境引入——口算除法——用除法估算解决问题——笔算除法——灵活选择估算策略解决生活中的实际问题,学生需要运用乘法、减法、加法等知识和方法进行除法计算,进一步提升运算能力。
推理意识主要是指对逻辑推理过程及其意义的初步感悟。通过法则运用,体验数学从一般到特殊的论证过程;对自己及他人的问题解决过程给出合理解释。推理意识有助于养成讲道理、有条理的思维习惯,增强交流能力,是形成推理能力的经验基础。本单元教学中,在学生获得大量计算活动经验的基础上,让学生探究除法的法则,通过不断的思考辨析,培养学生归纳推理的能力。
二、单元教学目标
1.通过探索过程,会口算商是整十、整百、整千数的除法,以及几百几十(或几千几百)、几十几(每一位都能除尽)除以一位数的除法,并能正确笔算多位数除以一位数,掌握估算的一般方法。
2.在探索算法和解决问题的活动中,学会简单的、有条理的思考,能够灵活选择合适的计算方法解决简单的实际问题,培养数感、运算能力和推理意识。
3.体会除法在生活中的作用,积累数学活动经验,培养自觉、主动地应用数学知识解决现实生活中问题的意识。
三、单元教学整体结构
单元板块 教师主要问题链 学生主要活动 评价目标
板块一 口算除法 例1:掌握整十、整百、整千数除以一位数的口算方法,理解算理,进一步提升数感及运算能力。 1.整十数除以一位数“60÷3”该如何口算? 2.整百、整千数除以一位数如何口算? 3.观察各算式之间有什么规律,口算的简便方法是什么? 1.引导学生独立思考,呈现不同解题方法,借助小棒等学具,理解算理,掌握算法。 2.学生利用刚学习的口算知识,自主探索整百、整千数除以一位数的口算方法。 3.学生观察并计算各算式,找到规律,总结简便算法。 1.理解并掌握将整十数除以一位数转化为“几除以几”来计算的一般方法。 2.利用知识迁移,体验转化思想解决问题的普适性,掌握简便算法。 3.理解算理,并掌握简便的算法,提升数感及运算能力。
板块二 口算除法 例2:掌握几百几十(几千几百)除以一位数的口算方法,理解算理。 例3:掌握几十几除以一位数(每一位都能除尽)的算理和算法,为理解笔算除法的算理做铺垫。 1.想一想120÷3应该怎样计算? 2.为什么计算12除以3等于4后,还要在“4”的末尾添上一个“0”呢? 3.想一想66÷3应该怎样口算呢? 4.仔细观察第三种方法,结合刚才摆小棒的过程,你能发现它们之间的联系吗? 1.引导学生独立思考,将新问题转化为表内除法解决问题,借助小棒和直观图理解算理,掌握算法。 2.引导学生明确120是12个十,12个十除以3,得到的是4个十,所以“4”的后面要添上一个“0”。 3.学生基于例1、例2的知识基础,找到知识的增长点,自主探究计算方法。 4.学生借助学具边操作边说思考过程,进一步加深对口算算理、算法的理解和掌握。 1.理解并掌握几百几十除以一位数可以转化为表内除法的口算方法。 2.进一步理解被除数的计数单位个数的计算方法。 3.体会“先分后合——化难为易”,将新知识转化为已经掌握的口算方法解决。 4.渗透转化和迁移类推的数学思想,提升学生运算能力。
板块三 口算除法 例4:用除法估算解决问题,体会估算方法的多样性,关注合理性。 1.“大约”是什么意思? 2.可以用什么方法估算?先独立思考,在练习本上尝试估算,然后再小组内交流想法。 3.大家的解答合理吗?为什么? 4.李叔叔每天骑行的路程比90千米多,还是比90千米少?比80千米呢? 1.学生汇报题目中的信息和问题,找出关键词“估计”“大约”,明确需要用估算解决。 2.学生根据生活经验来解决问题,找到问题的数量关系。 3.引导学生明确,虽然两种结果不同,但是都接近准确值,不影响合理性。 4.学生推理思考精确答案数据的范围。 1.经历收集、分析信息的过程,明确需要用估算策略解决问题。 2.在思考、交流中探究估算方法,发展数学思维,体会估算方法的多样性。 3.培养归纳推理能力,关注用估算解决问题时的合理性。 4.推理得到精确答案的数据范围,体会哪种估算方法更精确。
板块四 笔算除法 例1:掌握两位数除以一位数(首位能除尽)的笔算方法,理解算理。 例2:掌握两位数除以一位数(首位不能除尽)的笔算方法,理解算理,探索验算的方法。 1.观察情境图,你得到哪些数学信息,可以提出什么问题?应该怎样列式? 2.42÷2等于多少?借助小棒分一分,平均分了几次?先分的什么?再分的什么? 3.这个计算过程能否用竖式表示出来呢?说一说每一步计算是什么含义? 4.怎样能把52根小棒平均分成2份呢?余下1个十应该怎么办? 5.课件动态展示分小棒的过程以及竖式计算的过程,并适时提问计算过程中每一个结果的含义。 6.我们怎样判断计算的对不对呢? 7.请大家仔细观察这两个除法竖式,回忆刚才的计算过程,你发现了什么?他们有什么相同之处和不同之处呢? 1.学生活动:观看课件,交流信息和问题。 2.学生活动:学生动手操作分42根小棒,并展示交流。 3.学生活动:观察算式,在练习本上尝试列出竖式,然后展示交流。 4.学生活动:独立思考,先用小棒分一分52÷2该如何计算,然后再写竖式。 5.学生活动:借助分小棒的过程,梳理计算过程,根据教师提问,回答每一个结果的含义。 6.学生活动:引发验算的需求,可以运用多种方法进行验算。 7.引导学生归纳总结算 法,理解除数和余数之间的关系。 1.感受生活中处处有数学,激发问题意识,渗透德育。 2.通过动手操作分小棒的过程,使学生明确算理,渗透数形结合的思想。 3.将分小棒过程和笔算竖式过程结合起来,明确每一步书写的数据以及计算结果的含义。 4.通过动手操作分小棒的过程,体现数形结合,帮助学生理解算理。 5.结合操作说出每一步的计算含义,充分理解算理。 6.重点掌握用商和除数相乘,看计算结果是不是等于被除数。 7.突出重点,突破难点,归纳两位数除以 一位数的笔算方法。
板块五 笔算除法 例3:掌握三位数除以一位数(首位能除尽)的笔算方法,理解算理,提高学生思维的自主性、灵活性和准确性。 例4:掌握三位数除以一位数(首位不能除尽)的笔算方法,理解算理,探索验算的方法,培养推理意识。 1.你能试着用以前学过的方法计算吗?先独立思考,再小组内交流想法。 2.商1为什么要写在百位上? 3.要想知道我们的计算是否正确,怎样验算呢?小组内交流一下你的想法。 4.跟256÷2=对比,你发现148÷6=有什么不同? 5.被除数百位上1个百除以6,商不够1个百,怎么办呢?14个十除以6,商应该写在哪一位的上面? 6.有余数的除法应该怎样验算呢? 7.回顾刚才的计算过程,除数是一位数的竖式除法,我们应该怎样算? 1.学生活动:学生独立在练习本上用竖式计算,小组内交流想法,全班汇报解题过程。 2.教师引导学生结合竖式充分说出每一步计算的含义和竖式书写的位置。 3.学生活动:小组内讨论验算方法,书写验算过程,全班汇报交流。 4.学生可以说出各种发现,让学生自由表达,初步感受两种算式的不同。 5.学生活动:学生独立在练习本上用竖式计算,然后与同桌交流计算方法,明确笔算过程。 6.学生活动:先独立验算,再汇报交流,总结方法。 7.学生活动:小组讨论交流,归纳总结“除数是一位数的除法”的计算法则。 1.运用已有经验,探究竖式计算方法。 2.加强说理训练,帮助学生进一步理解算理,提高学生思维的自主性、灵活性和准确性。 3.突出乘法验算的方法,培养学生验算的习惯。 4.初步感知256÷2的商跟148÷6的商有所不同,激发学生的探究兴趣。 5.引导学生有序思考,辨析每一位商的含义,以及所对应竖式的位置,突破难点。 6.突出验算方法:被除数=除数×商+余数,再将题目回答完整。 7.让学生对计算法则进行归纳总结,进一步掌握算法,形成计算技能,培养学生归纳推理的能力。
板块六 笔算除法 例5:理解“0除以任何不是零的数,都得0”的算理。 例6:掌握商中间有0的除法的计算方法,理解算理。 1.想一想,哪个数和5相乘得0? 2.你能用算式0÷5=0举个生活中的例子吗? 3.那0÷0=多少呢?在小组内交流你的想法。 4.你能用竖式计算出208÷2吗?先在练习本上试一试。 5.哪种计算是正确的?为什么2除到被除数十位上的0时,商的十位上得0呢? 6.大家都认为例6(2)中108是对的,那18错在哪里了?请同学们借助小棒来分一分,看一看。 7.商的十位上为什么是0? 8.同学们比较208÷2和216÷2的计算过程,有什么相同点和不同点? 1.学生活动:学生先独立思考,然后交流解题方法。 2.学生活动:列举生活中的实例,说一说算式0÷5=0的道理,理解0÷5为什么等于0。 3.学生活动:小组讨论0÷0的意义,然后汇报交流。 4.学生活动:学生尝试笔算208÷2,然后集体交流,明确算理、算法。 5.学生活动:学生运用估算判断商的位数,通过验算检验计算结果,小组内交流,全班汇报。 6.学生活动:小组合作,动手分小棒。思考分小棒的过程,对应竖式计算中的哪一步,表示什么意思,从而明确算理。 7.让学生结合自己的操作过程来说明“商的十位上为什么是0?” 8.学生活动:小组内交流相同点和不同点,然后汇报。 1.引导学生用“想乘法做除法”推出0÷5=0。 2.结合生活中的实例,进一步理解被除数为“0”的含义。 3.探究0不能作除数的原因,引导学生完整表达,0除以任何不是零的数,都得0。 4.充分利用学生已有知识经验,放手让学生自主探索计算方法,培养迁移类推的能力。 5.利用学生由认知冲突引发的求知欲,促使其小组合作,探究算理。 6.亲历“用0占位”的过程,从而理解算理,养成严谨缜密的思维习惯,培养数学意识和思维能力。 7.明确在求出商的最高位数以后,除到被除数的某一位不够商1,就在哪一位商0。 8.通过学生观察对比,提升归纳总结的能力。
板块七 笔算除法 例7:理解商末尾有0的除法的算理,掌握计算的方法。 1.解决这个问题,需要用到哪些信息?怎样列式?你能用竖式计算出650÷5吗? 2.哪种计算是正确的?为什么?商个位上的0可以不写吗? 3.先观察一下,245÷8的商是几位数?个位还余5,为什么商的个位写0? 4.我们计算的正确吗?你有什么验算方法? 5.同学们比较650÷5和245÷8的计算过程有什么相同点和不同点? 1.学生活动:学生理解题意,分析题目中的数量关系,提取出有用信息,从而列出算式。 2.学生活动:小组内交流讨论,在比较中理解个位上是0的占位作用。 3.学生活动:学生先估算,再尝试笔算245÷8,然后集体交流,明确算理、算法。 4.学生活动:学生利用“商×除数+余数=被除数”验算。 5.学生活动:小组内交流相同点和不同点,然后汇报。 1.学生在掌握一般方法的基础上,自主探究计算方法,培养迁移类推的能力。 2.通过展示、对比,让学生在对比中理解算理,巩固算法。 3.通过不断的思考辨析,理解算理,体会除法与减法之间的关系。 4.在验算中体会乘法与除法之间的关系,形成计算知识的网络,促进思维发展。 5.通过观察、分析,发现商末尾有0的除法的共性和个性的特点,使学生感受到数学思想方法熏陶的作用。
板块八 笔算除法 例8:能在具体情境中灵活运用估算策略解决实际问题,掌握除数是一位数的除法估算的一般方法。 1.观察情境图,你得到哪些数学信息和问题?“装得下吗”是什么意思? 2.那装得下吗?同学们先自己在纸上写一写,然后在小组内交流想法。 3.这几种方法都能够确定18个纸箱装不下,你觉得哪些方法能快速地解决问题? 4.18个纸箱装不下,多少个纸箱才能装下?请想一想,算一算。 1.学生活动:学生收集、梳理信息和要解决的问题,交流讨论“装得下吗”的意思。 2.学生活动:学生独立完成,小组内交流估算的过程,全班汇报,体会估算策略的多样性。 3.学生活动:学生对比展示的策略,交流讨论,感受估算方法的快捷性。 4.学生活动:通过精确计算找到答案,从而验证估算策略得出结论的正确性。 1.充分理解题意,将现实问题转化为一个数学问题。 2.体会估算策略的多样性,培养学生灵活地选择策略解决问题的能力。 3.通过对比解决问题的策略,突出估算可以快速地解决问题,体会估算的价值。 4.体会解决问题策略的多样性,培养良好的倾听习惯。
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源预览