资源简介 中小学教育资源及组卷应用平台中小学教育资源及组卷应用平台中小学教育资源及组卷应用平台自行车里的数学单元分析一、单元核心素养分析 本实践活动主要让学生运用圆、比例等相关数学知识,经历“提出问题——分析问题——建立数学模型——解释并应用”的解决问题的基本过程,获得运用数学知识解决实际问题的思考方法,进一步感悟数学与生活的广泛联系。属于综合与实践的范畴,其核心素养指向推理意识、应用意识。依据课程标准,本活动推理意识主要是指依据现实中自行车设计,推理出“自行车蹬一圈走的距离=车轮周长×(前齿轮的齿数÷后齿轮的齿数)”这一数学解题模型。推理意识有助于养成有条理的思维习惯。应用意识主要是指运用圆、比例等知识,解决自行车中“自行车走多远”的数学问题。应用意识有助于养成理论联系实际的习惯,发展实践能力。二、单元教学目标1.通过观察、实验、推理,理解并掌握自行车“蹬一圈走多远”的计算方法——“自行车蹬一圈走的距离=车轮周长×(前齿轮的齿数÷后齿轮的齿数)”。2.引领学生经历“提出问题——分析问题——建立数学模型——解释并应用”基本过程,获得应用数学解决实际问题的思考方法。3.在自主探究、合作交流的学习过程中获得良好的情感体验,增强学生学好数学、用好数学的意识。三、单元教学整体结构单元板块 主要任务 教师主要问题链 学生主要活动 评价目标板块 自行车里 的数学 前齿轮齿数×1=后齿轮齿数×后齿轮转动圈数 问题1:你都知道哪些种类的自行车? 问题2:自行车蹬一圈能走多远?我们怎么解决这个问题呢? 问题3:看测量视频,你有什么想说的? 活动1:独立完成,学生汇报。 普通自行车、变速自行车 活动2:探究方法:测量、计算 活动3:感受测量的不足,计算的优势。 目标1:感受数学与生活的联系。 目标2:经历提出问题、分析问题的过程,使学生掌握解决问题的方法。 目标3:通过观察,分析测量法的不足,提升学生的分析问题的能力。板块 自行车里 的数学 前齿轮齿数×1=后齿轮齿数×后齿轮转动圈数 问题4:自行车的结构和原理是什么? 问题5:根据你的发现,完成学习单。 自行车走多远学习单 前齿轮齿数( )个后齿轮齿数( )个根据前齿轮齿数×1=后齿轮齿数×后齿轮转动圈数,计算前齿轮转1圈,后齿轮转( )圈测量自行车车轮半径是( )m计算,蹬一圈,自行车大约走多远?(得数保留整数)问题6:变速自行车前后齿轮有多少种组合?选择一种计算,看看你能发现什么。 活动4:看视频,了解原理。 活动5:小组合作,完成学习单。 活动6:探究变速自行车变速的奥秘,发现前后齿轮比值越大,速度越快,越费力。 目标4:观察自行车结构,推理自行车原理,在自主探究、合作交流的学习过程中获得良好的情感体验。 目标5:通过实验,分析问题,建立数学模型。 目标6:应用数学模型,解决实际问题,获得美好体验。自行车里的数学教学目标 1.通过观察、实验、推理,理解并掌握自行车“蹬一圈走多远”的计算方法,探索自行车结构的关系。 2.引领学生经历“提出问题——分析问题——建立数学模型——解释并应用”基本过程,获得应用数学解决实际问题的思考方法。 3.在自主探究、合作交流的学习过程中获得良好的情感体验,增强学生学好数学、用好数学的能力。教学 重难点 1.通过观察、实验、推理,理解并掌握自行车“蹬一圈走多远”的计算方法——“自行车蹬一圈走的距离=车轮周长×(前齿轮的齿数/后齿轮的齿数)”。 2.自行车前后齿轮转动的齿数与圈数之间的关系。教学准备 课件、学习单目标落实 教师活动 学生活动 二次备课感受数学与生活的联系。 经历提出问题、分析问题的过程,使学生掌握解决问题的方法。 一、情境导入 1.同学们,随着人们环保意识的增强,越来越多的人选择绿色的出行方式。自行车就是一种不错的选择。你都知道哪些种类的自行车? (课件出示自行车图片) 其实,自行车里也蕴含了很多数学知识,今天我们就一起来研究自行车里的数学。 (出示课题:自行车里的数学) 2.大家知道,自行车蹬一圈能走多远吗?我们怎么解决这个问题呢? 根据学生回答板书:测量、计算 一、发现问题 1.活动一:学生根据自己的经验,说出自行车的种类。 预设1:普通自行车 预设2:变速自行车 2.活动二:讨论探究方法 预设1:可以测量蹬一圈的距离。 预设2:可以测量车轮的半径,计算出车轮周长,再乘车轮转动的圈数就可以了。通过观察,分析测量法的不足,提升学生分析问题的能力。 观察自行车结构,推理自行车原理,在自主探究、合作交流的学习过程中获得良好的情感体验。 二、引导合作 1.测量 课前,有同学进行了测量,我们一起看一看他们的测量过程和结果。 播放学生测量视频和结果。 小结:测量的方法确实有局限性,不够精确。我们如果能计算就更好了。 2.计算 同学们,要计算自行车能走多远,我们就必须了解自行车的结构和行进原理。你知道自行车是怎样行进的吗? 二、探究问题 1.活动一:观看测量视频,发表看法。 预设1:测量的结果各不相同,有一定差距,这种方法不准确。 预设2:测量时自行车不好控制,所以计算更好一些。 2.活动二:计算方法探究 学生结合自己的经验,说一说自行车是如何行进的。 预设1:踏板转动,齿轮转动,前轮转动。 预设2:蹬踏板,前齿轮转动,链条带动后齿轮转动,后轮推着前轮转动。通过实验,分析问题,建立数学模型。 3.视频演示,小组讨论,建立模型。 谁说的对呢?我们来一起观察视频。 看完视频,你有什么发现? 同学们观察得真仔细!当踏板转动时,带动前齿轮转动,链条和前齿轮的齿一个扣一个,带动了后齿轮转动,后齿轮转动带着后轮转,从而推着前轮运动。(描述过程中,出示图片,依次出示各部分名称和箭头) 前齿轮齿数×1=后齿轮齿数×后齿轮转动圈数 也可以计算后齿轮的转动圈数:后齿轮转动圈数= 小结: 根据大家的发现,我们是不是可以解决刚才的问题了?请大家小组合作试一试,并完成下面的学习单。 自行车走多远学习单 前齿轮齿数( )个后齿轮齿数( )个根据前齿轮齿数×1=后齿轮齿数×后齿轮转动圈数,计算,前齿轮转1圈,后齿轮转( )圈测量自行车车轮半径是( )m计算,蹬一圈,自行车大约走多远?(得数保留整数)指导学生完成学习单,其中测量自行车半径,统一取整厘米数30cm,即0.3m。 前面研究了蹬一圈的情况,接下来我们研究蹬2圈及以上的情况。 想一想:如果前齿轮转2圈、3圈、4圈……你能发现后齿轮的齿数、转动圈数与前齿轮的齿数、转动圈数有什么关系吗? 【教师板书:前齿轮的齿数×前齿轮转动圈数=后齿轮齿数×后齿轮转动圈数】 3.活动三:小组讨论汇报。 预设1:我发现踏板转动一圈,前齿轮也转一圈,但是后齿轮和后轮转了2圈多。 预设2:我发现前齿轮转多少个齿,链条就会往前走几个齿,后齿轮也转几个齿。 预设3:我发现踏板蹬一圈,前齿轮转一圈,后齿轮的齿数乘圈数就等于前齿轮的齿数。 学生每组一辆自行车,实际数一数前后齿轮的齿数,测量车轮半径,合作完成学习单。 预设4:我们小组的学习单结果如下。 自行车走多远学习单 前齿轮齿数(32)个后齿轮齿数(16)个根据前齿轮齿数×1=后齿轮齿数×后齿轮转动圈数,计算前齿轮转1圈,后齿轮转(2)圈测量自行车车轮半径是(0.33)m计算,蹬一圈,自行车大约走多远?(得数保留整数) 2×3.14×0.33×≈4(m)预设5:计算出错。应用数学模型,解决实际问题,获得美好体验。 也可以利用比例的基本性质写成:= 4.联系实际,应用模型。 出示变速自行车图片。 下表是一种变速自行车前、后轮的齿数。算出这种自行车前、后齿轮的齿数比,填在表格中,看看有多少种不同的组合。后齿轮齿数前齿轮齿数4840282420181614(1)仔细观察表格,这辆自行车分别有几个前齿轮和几个后齿轮? (2)算出这种自行车前、后齿轮的齿数比,填到数学书上,有什么发现? (3)假设车轮半径还是0.3m,请选择其中一个组合,算一算蹬一圈,自行车能够走多远。 学生独立完成后集体订正,汇报。 教师总结:选择48∶14虽然跑的最远,但是也是最费力的,其他的组合虽然跑得近一些,但是更省力一些。 小组讨论,学生汇报。 预设6:只要把上面的公式中的“1”改为相应的前齿轮转的圈数即可。 预设7:前齿轮齿数×前齿轮转动圈数=后齿轮齿数×后齿轮转动圈数。 4.活动四:独立完成,小组交流。 预设1:这辆自行车有2个前齿轮,6个后齿轮。 预设2:计算前、后齿轮齿数的最简比。我发现48∶24和40∶20的最简比是一样的。 预设3:通过计算,我发现选择48∶14的组合,蹬一圈,自行车跑的距离最远;而选择40∶28的组合,蹬一圈,自行车跑的距离最近。三、辅导练习 1.基础练习 (1)自行车蹬一圈,车子走的距离=( )×。 (2)自行车行进的距离一定,车轮周长与转动圈数成( )比例关系。 (3)一辆自行车,前齿轮和后齿轮的齿数比是12∶7,如果后齿轮转动24圈,那么前齿轮转了( )圈。 三、解决问题 1.基础练习 预设: (1)车轮周长 (2)反 (3)14 通过练习巩固所学内容,提升学生的实际应用能力。 (4)一辆自行车,前齿轮齿数为48,后齿轮齿数为16。当前齿轮转3圈时,后齿轮转( )圈。 2.变式练习 (1)如图,这辆自行车蹬一圈能行驶多少米?(π取值3) (2)一辆自行车前齿轮有28个齿,后齿轮有14个齿,蹬一圈,自行车前进5m。这辆自行车的车轮直径是多少?(得数保留两位小数) 3.提升练习 一种变速自行车的相关数据如下。 前齿轮齿数:48、38。 后齿轮齿数:28、24、20、18、16、14。 (1)这种自行车有多少种不同的档位? (2)蹬一圈,哪种组合行驶得最远? (4)9 2.变式练习 预设: (1)3×60×=540(cm) 540cm=5.4m (2)5÷3.14÷≈0.80(m) 3.提升练习 预设: (1)2×6=12(种) (2)前齿轮48个齿、后齿轮14个齿的组合蹬一圈行驶得最远。回顾应用数学解决实际问题的思考方法,增强学生学好数学、用好数学的意识。 四、引导反思 同学们,通过今天的实践活动,你有哪些收获? 今天我们一起研究了自行车里的数学,其实自行车发展到今天,是很多科学家像大家一样不断进行研究,不断改进。下面,我们来一起了解一下自行车的演变。 相信,随着科技的进步,自行车还会不断地发展进步,也希望大家能够运用所学,把你的想法变成现实! 四、提升问题 预设1:我原来以为自行车是前轮带着后轮走,现在才知道是后轮推着前轮走。 预设2:我知道了计算自行车走多远的方法。 预设3:我发现了根据前轮、后轮齿数比,找出最省力的组合,很有意思。板书设计 自行车里的数学 蹬一圈:前齿轮齿数×1=后齿轮齿数×后齿轮转动圈数 后齿轮转动圈数 = 前齿轮的齿数×前齿轮转动圈数=后齿轮齿数×后齿轮转动圈数 =21世纪教育网(www.21cnjy.com)21世纪教育网(www.21cnjy.com)21世纪教育网(www.21cnjy.com) 展开更多...... 收起↑ 资源预览