资源简介 第五章 四边形第26讲 正方形的性质与判定(思维导图+1考点+1命题点21种题型(含3种解题技巧))试卷第1页,共3页01考情透视·目标导航02知识导图·思维引航03考点突破·考法探究考点 正方形04题型精研·考向洞悉命题点 正方形的性质与判定 题型01 利用正方形的性质求角度 题型02 利用正方形的性质求线段长 题型03 利用正方形的性质求周长 题型04 利用正方形的性质求面积 题型05 根据正方形的性质求点的坐标 题型06 利用正方形的性质证明 题型07 正方形的折叠问题 题型08 求正方形重叠部分面积 题型09 添加一个条件使四边形是正方形 题型10 证明四边形是正方形 题型11 根据正方形的性质与判定求角度 题型12 根据正方形的性质与判定求线段长 题型13 根据正方形的性质与判定求面积 题型14 根据正方形的性质与判定解决多结论问题 题型15 与正方形有关的规律探究问题 题型16 正方形有关的新定义问题 题型17 与正方形有关的动点问题 题型18 与正方形有关的最值问题 题型19 正方形与函数综合 题型20 与正方形有关的存在性问题 题型21 与正方形有关的材料阅读类问题01考情透视·目标导航中考考点 考查频率 新课标要求正方形的有关证明与计算 ★★ 理解正方形的概念; 探索并证明菱形的性质定理及其判定定理; 理解矩形、菱形、正方形之间的包含关系.【考情分析】正方形是最特殊的四边形,它具有平行四边形、矩形、菱形的所有性质,对于正方形的考查多数是考查其性质,即在正方形的背景下考查全等三角形、相似三角形、圆等内容,试题形式多样,难度不等. 【命题预测】正方形是特殊平行四边形中比较重要的图形,也是几何图形中难度比较大的几个图形之一,年年都会考查,预计2025年各地中考还将出现. 其中,正方还经常成为综合压轴题的问题背景来考察,而正方其他出题类型还有选择、填空题的压轴题,难度都比较大,需要加以重视. 解答题中考查正方形的性质和判定,45°半角模型,一般和三角形全等、解直角三角形、二次函数、动态问题综合应用的可能性比较大.02知识导图·思维引航03考点突破·考法探究考点一 正方形1.正方形的定义:有一组邻边相等且只有一个角是直角的平行四边形是正方形.2.正方形的性质:1)正方形的四个角都是直角,四条边都相等,对边平行.2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.【补充】1)正方形具有平行四边形、矩形、菱形的所有性质.2)一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°.3)两条对角线把正方形分成四个全等的等腰直角三角形.4)正方形的面积是边长的平方,也可表示为对角线长平方的一半.3.正方形的对称性:1)正方形是轴对称图形,它有四条对称轴,分别是对边中点所在的直线和两条对角线所在的直线.2)正方形是中心对称图形,对角线的交点是对称中心.4.正方形的判定:定义法 平行四边形+一组邻边相等+一个角为直角 有一组邻边相等且有一个角是直角的平行四边形是正方形判定定理 矩形+一组邻边相等 有一组邻边相等的矩形是正方形矩形+对角线互相垂直 对角线互相垂直的矩形是正方形菱形+一个角是直角 有一个角是直角的菱形是正方形菱形+对角线相等 对角线相等的菱形是正方形1.(2021·黑龙江·中考真题)如图,在矩形中,对角线相交于点,在不添加任何辅助线的情况下,请你添加一个条件 ,使矩形是正方形.【答案】AC⊥BD(答案不唯一)【分析】根据正方形的判定定理可直接进行求解.【详解】解:∵四边形是矩形,∴根据“一组邻边相等的矩形是正方形”可添加:或或或,根据“对角线互相垂直的矩形是正方形”可添加:AC⊥BD,故答案为AC⊥BD(答案不唯一).【点睛】本题主要考查正方形的判定定理,熟练掌握正方形的判定是解题的关键.2.(2024·甘肃兰州·中考真题)如图,四边形为正方形,为等边三角形,于点F,若,则 .【答案】2【分析】本题考查正方形的性质,等边三角形的性质,含30度角的直角三角形,根据正方形和等边三角形的性质,得到为含30度角的直角三角形,,根据含30度角的直角三角形的性质求解即可.【详解】解:∵四边形为正方形,为等边三角形,,,∴,∴,∴;故答案为:2.3.(2024·新疆·中考真题)如图,在正方形中,若面积,周长,则 .【答案】40【分析】本题考查了正方形、矩形的性质,完全平方公式等知识,设正方形、的边长分别为a、b,先求出,然后根据求解即可.【详解】解:设正方形、的边长分别为a、b,根据题意,得,∴,∴,故答案为:40.4.(2024·福建·中考真题)如图,正方形的面积为4,点,,,分别为边,,,的中点,则四边形的面积为 . 【答案】2【分析】本题考查正方形性质,线段中点的性质,根据正方形性质和线段中点的性质得到,进而得到,同理可得,最后利用四边形的面积正方形的面积个小三角形面积求解,即可解题.【详解】解:正方形的面积为4,,,点,,,分别为边,,,的中点,,,同理可得,四边形的面积为.故答案为:2.5.(2023·湖南怀化·中考真题)如图,点是正方形的对角线上的一点,于点,.则点到直线的距离为 . 【答案】【分析】过点作于,证明四边形四边形是正方形,即可求解.【详解】解:如图所示,过点作于, ∵点是正方形的对角线上的一点,于点∴四边形是矩形,∴是等腰直角三角形,∴∴四边形是正方形,∴,即点到直线的距离为故答案为:.【点睛】本题考查了正方形的性质与判定,点到直线的距离,熟练掌握正方形的性质与判定是解题的关键.04题型精研·考向洞悉命题点一 正方形的性质与判定 题型01 利用正方形的性质求角度1.(2023·重庆·中考真题)如图,在正方形中,点,分别在,上,连接,,,.若,则一定等于( ) A. B. C. D.【答案】A【分析】利用三角形逆时针旋转后,再证明三角形全等,最后根据性质和三角形内角和定理即可求解.【详解】将绕点逆时针旋转至, ∵四边形是正方形,∴,,由旋转性质可知:,,,∴,∴点三点共线,∵,,,∴,,∵,∴,在和中,∴,∴,∴,∴,∵,∴,故选:. 【点睛】此题考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解题的关键是能正确作出旋转,再证明三角形全等,熟练利用性质求出角度.2.(2021·重庆·中考真题)如图,把含30°的直角三角板PMN放置在正方形ABCD中,,直角顶点P在正方形ABCD的对角线BD上,点M,N分别在AB和CD边上,MN与BD交于点O,且点O为MN的中点,则的度数为( )A.60° B.65° C.75° D.80°【答案】C【分析】根据斜边中线等于斜边一半,求出∠MPO=30°,再求出∠MOB和∠OMB的度数,即可求出的度数.【详解】解:∵四边形ABCD是正方形中,∴∠MBO=∠NDO=45°,∵点O为MN的中点∴OM=ON,∵∠MPN=90°,∴OM=OP,∴∠PMN=∠MPO=30°,∴∠MOB=∠MPO+∠PMN =60°,∴∠BMO=180°-60°-45°=75°,,故选:C.【点睛】本题考查了正方形的性质和直角三角形的性质、等腰三角形的性质,解题关键是熟练运用相关性质,根据角的关系进行计算.3.(2023·山东·中考真题)如图,点E是正方形内的一点,将绕点B按顺时针方向旋转得到.若,则 度. 【答案】80【分析】先求得和的度数,再利用三角形外角的性质求解即可.【详解】解:∵四边形是正方形,∴,∵,∴,∵绕点B按顺时针方向旋转得到∴,,∴,∴ ,故答案为:80.【点睛】本题考查了正方形的性质,等腰三角形的性质,旋转图形的性质和三角形外角的性质,利用旋转图形的性质求解是解题的关键.4.(2024·宁夏·中考真题)如图,在正五边形的内部,以边为边作正方形,连接,则 .【答案】81【分析】本题考查正多边形的内角问题,正方形的性质,等腰三角形的性质等.先根据正多边形内角公式求出,进而求出,最后根据求解.【详解】解:正五边形中, ,,正方形中, ,,,,,,故答案为:81. 题型02 利用正方形的性质求线段长在正方形问题中,一般可以通过证三角形全等来证两条线段相等,也可以利用正方形的角是直角来构造直角三角形,利用勾股定理解题.在正方形中,也常用对角线互相垂直平分证明线段相等.5.(2023·浙江绍兴·中考真题)如图,正方形中,,点E在边上,是的中点,点H在边上,,则的长为( ).A. B. C. D.【答案】C【分析】首先过点作,连接数 、,延长到点,使,连接,根据可得,利用可证,再利用可证,从而可得,利用勾股定理可得,利用梯形中位线定理可以求出,根据可证,根据相似三角形对应边成比例可以求出的值.【详解】解:如下图所示,过点作,连接数、,延长到点,使,连接,四边形是正方形,,,,,,,,,,,,在和中,,,,,,在和中,,,设,则,,在中,,,解得:,,,点是的中点,是梯形的中位线, ,,,,又,,,,解得:.故选:C.【点睛】本题考查了正方形的性质,全等三角形的判定和性质、相似三角形的判定和性质、勾股定理、梯形的中位线定理等知识,掌握相关知识点是解题关键.6.(2024·江苏南通·中考真题)如图,在中,,.正方形的边长为,它的顶点D,E,G分别在的边上,则的长为 .【答案】【分析】过点作,易得为等腰直角三角形,设,得到,证明,得到,进而得到,,在中,利用勾股定理求出的值,根据平行线分线段成比例,求出的长即可.【详解】解:过点作,则:,∴,∵,,∴,∴,∴,设,则:,∵正方形,∴,∴,∴,∵,∴,∴,∴,在中,由勾股定理,得:,∴,解得:,∴,∵,∴,∴,∴;故答案为:.【点睛】本题考查等腰三角形的判定和性质,全等三角形的判定和性质,勾股定理,正方形的性质,平行线分线段成比例,解题的关键是添加辅助线构造特殊图形和全等三角形.7.(2024·内蒙古·中考真题)如图,正方形的面积为50,以为腰作等腰,平分交于点G,交的延长线于点E,连接.若,则 .【答案】【分析】过点作于点,连接,交于点,先根据等腰三角形的性质和勾股定理求出的长,再求出,从而可得,,然后根据等腰三角形的性质求出的长,最后在和中,利用勾股定理求解即可得.【详解】解:如图,过点作于点,连接,交于点,∵正方形的面积为50,∴,,∵,,∴,平分,,∴,∵平分,平分,∴,∴,∴是等腰直角三角形,,∴,∴,又∵,平分,∴垂直平分,∴,,∴,∴,∴,∴,在中,,设,则,在和中,,即,解得,即,则,故答案为:.【点睛】本题考查了正方形的性质、等腰三角形的判定与性质、线段垂直平分线的判定与性质、勾股定理、二次根式的化简等知识,熟练掌握等腰三角形的三线合一是解题关键.8.(2024·吉林·中考真题)如图,正方形的对角线相交于点O,点E是的中点,点F是上一点.连接.若,则的值为 .の【答案】【分析】本题主要考查了相似三角形的性质与判定,正方形的性质,先由正方形的性质得到,,再证明,进而可证明,由相似三角形的性质可得,即.【详解】解:∵正方形的对角线相交于点O,∴,,∵点E是的中点,∴,∵,∴,∴,∴,即,故答案为:. 题型03 利用正方形的性质求周长9.(2024·内蒙古呼伦贝尔·中考真题)如图,边长为2的正方形的对角线与相交于点.是边上一点,是上一点,连接.若与关于直线对称,则的周长是( ) A. B. C. D.【答案】A【分析】本题考查了正方形的性质和折叠的性质,属于基础题型,熟练掌握正方形的性质和折叠的性质是解题的关键.根据正方形的性质可求出,根据轴对称的性质可得,则,再求出,,即可求出答案.【详解】解:正方形的边长为2,∴,∴,∵与关于直线对称,∴,,∴,,∴,∴,∴,∴的周长是,故选:A.10.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是,则图中阴影图形的周长是( ) A. B. C. D.【答案】A【分析】本题考查平移的性质,利用平移的性质将阴影部分的周长转化为边长是的正方形的周长加上边长是的正方形的两条边长再减去,由此解答即可.【详解】解:由图可得:阴影部分的周长为边长是的正方形的周长加上边长是的正方形的两条边长再减去,阴影图形的周长是:,故选:A.11.(2023·山东枣庄·中考真题)如图,在正方形中,对角线与相交于点O,E为上一点,,F为的中点,若的周长为32,则的长为 . 【答案】【分析】利用斜边上的中线等于斜边的一半和的周长,求出的长,进而求出的长,勾股定理求出的长,进而求出的长,利用三角形的中位线定理,即可得解.【详解】解:的周长为32,.为DE的中点,.,,,,.四边形是正方形,,O为BD的中点,是的中位线,.故答案为:.【点睛】本题考查正方形的性质,斜边上的中线,三角形的中位线定理.熟练掌握斜边上的中线等于斜边的一半,是解题的关键.12.(2022·江苏南通·中考真题)如图,点O是正方形的中心,.中,过点D,分别交于点G,M,连接.若,则的周长为 .【答案】【分析】连接BD,则BD过正方形的中心点O,作FH⊥CD于点H,解直角三角形可得BG=,AG=AB,然后证明△ABG≌△HFD(AAS),可得DH=AG=AB=CD,BC=HF,进而可证△BCM≌△FHM(AAS),得到MH=MC=CD,BM=FM,然后根据等腰三角形三线合一求出DF=FM,则BG=DF=FM=BM=,再根据直角三角形斜边中线的性质和三角形中位线定理分别求出OM、EM和OE即可解决问题.【详解】解:如图,连接BD,则BD过正方形的中心点O,作FH⊥CD于点H,∵,,∴∴AG=AB=,∴BG=,∵∠BEF=90°,∠ADC=90°,∴∠EGD+∠EDG=90°,∠EDG+∠HDF=90°,∴∠EGD=∠HDF∵∠AGB=∠EGD,∴∠AGB=∠HDF,在△ABG和△HFD中,,∴△ABG≌△HFD(AAS),∴AG=DH,AB=HF,∵在正方形中,AB=BC=CD=AD,∠C=90°,∴DH=AG=AB=CD,BC=HF,在△BCM和△FHM中,,∴△BCM≌△FHM(AAS),∴MH=MC=CD,BM=FM,∴DH=MH,∵FH⊥CD,∴DF=FM,∴BG=DF=FM=BM=,∴BF=,∵M是BF中点,O是BD中点,△BEF是直角三角形,∴OM=,EM=,∵BD=,△BED是直角三角形,∴EO=,∴的周长=EO+OM+EM=3++,故答案为:.【点睛】本题主要考查了正方形的性质,解直角三角形,勾股定理,全等三角形的判定和性质,等腰三角形的判定和性质,直角三角形斜边中线的性质以及三角形中位线定理,综合性较强,能够作出合适的辅助线,构造出全等三角形是解题的关键. 题型04 利用正方形的性质求面积13.(2023·广东·中考真题)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为 . 【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图, 由题意可知,,∴,∵,∴,∴,∴,∵,∴,∴,∴,∴,∴;故答案为15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.14.(2023·湖南·中考真题)七巧板是我国民间广为流传的一种益智玩具,某同学用边长为的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为 . 【答案】【分析】根据正方形的性质,以及七巧板的特点,求得的长,即可求解.【详解】解:如图所示, 依题意,,∴图中阴影部分的面积为故答案为:.【点睛】本题考查了正方形的性质,勾股定理,七巧板,熟练掌握以上知识是解题的关键.15.(2023·四川内江·中考真题)如图,四边形是边长为4的正方形,是等边三角形,则阴影部分的面积为 . 【答案】/【分析】作于点,于点,首先求出正方形的面积,然后根据等边三角形和正方形的性质求出和,从而求出和的面积,最后作差求解即可.【详解】解:如图所示,作于点,于点, ∵四边形是边长为4的正方形,∴,,,∵是等边三角形,∴,,,∴,∴,∵,,∴,∴在中,,∴,∵,∴,故答案为:.【点睛】本题考查正方和等边三角形的性质,以及角所对的直角边是斜边的一半,掌握图形的基本性质,熟练运用相关性质是解题关键.16.(2023·浙江金华·中考真题)如图,在中,,以其三边为边在的同侧作三个正方形,点在上,与交于点与交于点.若,则的值是( ) A. B. C. D.【答案】B【分析】设,正方形的边长为,证明,先后求得,,,利用三角形面积公式求得,证明,求得,,据此求解即可.【详解】解:∵四边形是正方形,且,设,则,∵四边形是正方形,∴,∴,∴,即,∴,∴,同理,即,∴,同理,∴,,,∵,∴,∴,∴,∵,∴,故选:B.【点睛】本题考查了正方形的性质,相似三角形的判定和性质,三角函数的定义,解题的关键是学会利用参数构建方程解决问题.17.(2022·贵州黔西·中考真题)如图,边长为4的正方形ABCD的对角线交于点O,以OC为半径的扇形的圆心角.则图中阴影部分面积是 .【答案】【分析】证明△OCG≌△OBE,经过观察易得出结论:阴影部分面积=扇形面积-正方形面积的.【详解】∵四边形ABCD为正方形,∴OB=OC,∠BOC=90°,∠OBE=∠OCG=45°,∵扇形的圆心角,∴∠BOC-∠COE=∠FOH-∠COE,即∠BOE=∠COG,在△OCG和△OBE中,∠OBE=∠OCG,∠BOE=∠COG, OB=OC∴△OCG≌△OBE,∵正方形边长为4,∴AC=,∴OC=∵,===故答案为:【点睛】本题主要考查了正方形的性质,三角形的全等以及扇形面积的计算;掌握正方形的性质,熟练地进行三角形全等的判定,将不规则图形的面积转化为常见图形的面积是解题的关键. 题型05 根据正方形的性质求点的坐标18.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形的边在x轴上,点A的坐标为,点E在边上.将沿折叠,点C落在点F处.若点F的坐标为,则点E的坐标为 .【答案】【分析】设正方形的边长为a,与y轴相交于G,先判断四边形是矩形,得出,,,根据折叠的性质得出,,在中,利用勾股定理构建关于a的方程,求出a的值,在中,利用勾股定理构建关于的方程,求出的值,即可求解.【详解】解∶设正方形的边长为a,与y轴相交于G,则四边形是矩形,∴,,,∵折叠,∴,,∵点A的坐标为,点F的坐标为,∴,,∴,在中,,∴,解得,∴,,在中,,∴,解得,∴,∴点E的坐标为,故答案为:.【点睛】本题考查了正方形的性质,坐标与图形,矩形的判定与性质,折叠的性质,勾股定理等知识,利用勾股定理求出正方形的边长是解题的关键.19.(2024·江苏常州·中考真题)如图,在平面直角坐标系中,正方形的对角线相交于原点O.若点A的坐标是,则点C的坐标是 .【答案】【分析】本题考查坐标与图形,根据正方形的对角线互相垂直平分,得到关于原点对称,即可得出结果.【详解】解:∵正方形的对角线相交于原点O,∴,∴关于原点对称,∵点A的坐标是,∴点C的坐标是;故答案为:.20.(2023·甘肃武威·中考真题)如图1,正方形的边长为4,为边的中点.动点从点出发沿匀速运动,运动到点时停止.设点的运动路程为,线段的长为,与的函数图象如图2所示,则点的坐标为( ) A. B. C. D.【答案】C【分析】证明,,,则当P与A,B重合时,最长,此时,而运动路程为0或4,从而可得答案.【详解】解:∵正方形的边长为4,为边的中点,∴,,,当P与A,B重合时,最长,此时,运动路程为0或4,结合函数图象可得,故选C【点睛】本题考查的是从函数图象中获取信息,正方形的性质,勾股定理的应用,理解题意,确定函数图象上横纵坐标的含义是解本题的关键.21.(2022·山东威海·中考真题)正方形ABCD在平面直角坐标系中的位置如图所示,点A的坐标为(2,0),点B的坐标为(0,4).若反比例函数y=(k≠0)的图象经过点C,则k的值为 .【答案】24【分析】过点C作CE⊥y轴,由正方形的性质得出∠CBA=90°,AB=BC,再利用各角之间的关系得出∠CBE=∠BAO,根据全等三角形的判定和性质得出OA=BE=2,OB=CE=4,确定点C的坐标,然后代入函数解析式求解即可.【详解】解:如图所示,过点C作CE⊥y轴,∵点B(0,4),A(2,0),∴OB=4,OA=2,∵四边形ABCD为正方形,∴∠CBA=90°,AB=BC,∴∠CBE+∠ABO=90°,∵∠BAO+∠ABO=90°,∴∠CBE=∠BAO,∵∠CEB=∠BOA=90°,∴,∴OA=BE=2,OB=CE=4,∴OE=OB+BE=6,∴C(4,6),将点C代入反比例函数解析式可得:k=24,故答案为:24.【点睛】题目主要考查正方形的性质,全等三角形的判定和性质,反比例函数解析式的确定等,理解题意,综合运用这些知识点是解题关键.22.(2021·浙江金华·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC及四边形②的边CD都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是 .【答案】【分析】设大正方形的边长为2a,则大等腰直角三角形的腰长为,中等腰直角三角形的腰长为a,小等腰直角三角形的腰长为,小正方形的边长为,平行四边形的长边为a,短边为,用含有a的代数式表示点A的横坐标,表示点F的坐标,确定a值即可.【详解】设大正方形的边长为2a,则大等腰直角三角形的腰长为,中等腰直角三角形的腰长为a,小等腰直角三角形的腰长为,小正方形的边长为,平行四边形的长边为a,短边为,如图,过点F作FG⊥x轴,垂足为G, 点F作FH⊥y轴,垂足为H, 过点A作AQ⊥x轴,垂足为Q,延长大等腰直角三角形的斜边交x轴于点N,交FH于点M,根据题意,得OC==,CD=a,DQ=,∵点A的横坐标为1,∴+a+=1,∴a=;根据题意,得FM=PM=,MH=,∴FH==;∴MT=2a-,BT=2a-,∴TN=-a,∴MN=MT+TN=2a-+-a==,∵点F在第二象限,∴点F的坐标为(-,)故答案为:(-,).【点睛】本题考查了七巧板的意义,合理设出未知数,用未知数表示各个图形的边长,点AA的横坐标,点F的坐标是解题的关键. 题型06 利用正方形的性质证明23.(2024·甘肃临夏·中考真题)如图,对折边长为2的正方形纸片,为折痕,以点为圆心,为半径作弧,分别交,于,两点,则的长度为 (结果保留).【答案】/【分析】本题主要考查了弧长的计算、正方形的性质及翻折变换(折叠问题),解直角三角形,熟知正方形的性质、图形翻折的性质及弧长的计算公式是解题的关键.由对折可知,,过点E作的垂线,进而可求出的度数,则可得出的度数,最后根据弧长公式即可解决问题.【详解】解:∵折叠,且四边形是正方形四边形是矩形,,则,.过点E作于P,则,,在中,,,则,的长度为:,故答案为:24.(2024·江苏徐州·中考真题)已知:如图,四边形为正方形,点E在的延长线上,连接.(1)求证:;(2)若,求证:.【答案】(1)详见解析(2)详见解析【分析】本题主要考查了正方形的性质和全等三角形的判定与性质,解题关键是正确识别图形,理解角与角之间的关系,熟练找出和的全等条件.(1)根据正方形的性质证明,然后根据全等三角形的判定定理进行证明即可;(2)根据正方形的性质和全等三角形的性质,求出和,然后进行证明即可.【详解】(1)证明:∵四边形为正方形,,在和中,,;(2)∵四边形为正方形,,,,,,,.25.(2024·广东广州·中考真题)如图,点,分别在正方形的边,上,,,.求证:.【答案】见解析【分析】本题考查了正方形的性质,相似三角形的判定,掌握相似三角形的判定定理是解题关键.根据正方形的性质,得出,,进而得出,根据两边成比例且夹角相等的两个三角形相似即可证明.【详解】解:,,,四边形是正方形,,,,,又,.26.(2023·湖北黄石·中考真题)如图,正方形中,点,分别在,上,且,与相交于点. (1)求证:≌;(2)求的大小.【答案】(1)见解析(2)【分析】(1)直接利用证明全等即可;(2)根据全等的性质,得出,再由,从而求出.【详解】(1)证明:四边形是正方形,,,,,即,在和中,≌;(2)解:由(1)知≌,,,.【点睛】本题考查正方形的性质,全等三角形的判定和性质,解题的关键是掌握相关图形的性质和判定.27.(2022·贵州贵阳·中考真题)如图,在正方形中,为上一点,连接,的垂直平分线交于点,交于点,垂足为,点在上,且.(1)求证:;(2)若,,求的长.【答案】(1)见详解(2)【分析】(1)先证明四边形ADFM是矩形,得到AD=MF,∠AMF=90°=∠MFD,再利用MN⊥BE证得∠MBO=∠OMF,结合∠A=90°=∠NFM即可证明;(2)利用勾股定理求得BE=10=MN,根据垂直平分线的性质可得BO=OE=5,BM=ME,即有AM=AB-BM=8-ME,在Rt△AME中,,可得,解得:,即有,再在Rt△BMO中利用勾股定理即可求出MO,则NO可求.【详解】(1)在正方形ABCD中,有AD=DC=CB=AB,∠A=∠D=∠C=90°,,,∵,∠A=∠D=90°,,∴四边形ADFM是矩形,∴AD=MF,∠AMF=90°=∠MFD,∴∠BMF=90°=∠NFM,即∠BMO+∠OMF=90°,AB=AD=MF,∵MN是BE的垂直平分线,∴MN⊥BE,∴∠BOM=90°=∠BMO+∠MBO,∴∠MBO=∠OMF,∵,∴△ABE≌△FMN;(2)连接ME,如图,∵AB=8,AE=6,∴在Rt△ABE中,,∴根据(1)中全等的结论可知MN=BE=10,∵MN是BE的垂直平分线,∴BO=OE==5,BM=ME,∴AM=AB-BM=8-ME,∴在Rt△AME中,,∴,解得:,∴,∴在Rt△BMO中,,∴,∴ON=MN-MO=.即NO的长为:.【点睛】本题考查了矩形的判定与性质、正方形的性质、垂直平分线的性质、勾股定理、全等三角形的判定与性质等知识,掌握勾股定理是解答本题的关键. 题型07 正方形的折叠问题28.(2023·湖北·中考真题)如图,将边长为3的正方形沿直线折叠,使点的对应点落在边上(点不与点重合),点落在点处,与交于点,折痕分别与边,交于点,连接. (1)求证:;(2)若,求的长.【答案】(1)证明见解析(2)【分析】(1)由折叠和正方形的性质得到,则,进而证明,再由平行线的性质证明即可证明;(2)如图,延长交于点.证明得到,,设,则,.由,得到.则.由勾股定理建立方程,解方程即可得到.【详解】(1)证明:由翻折和正方形的性质可得,.∴.∴,即,∵四边形是正方形,∴.∴.∴.(2)解:如图,延长交于点.∵,∴.又∵,正方形边长为3,∴∴,∴,,设,则,∴.∵,即,∴.∴.在中,,∴.解得:(舍),.∴. 【点睛】本题主要考查了正方形与折叠问题,相似三角形的性质与判定,等腰三角形的性质与判定,勾股定理等等,正确作出辅助线构造相似三角形是解题的关键.29.(2022·辽宁抚顺·中考真题)如图,正方形的边长为10,点G是边的中点,点E是边上一动点,连接,将沿翻折得到,连接.当最小时,的长是 .【答案】【分析】根据动点最值问题的求解步骤:①分析所求线段端点(谁动谁定);②动点轨迹;③最值模型(比如将军饮马模型);④定线段;⑤求线段长(勾股定理、相似或三角函数),结合题意求解即可得到结论.【详解】解:①分析所求线段端点:是定点、是动点;②动点的轨迹:正方形的边长为10,点E是边上一动点,连接,将沿翻折得到,连接,则,因此动点轨迹是以为圆心,为半径的圆周上,如图所示:③最值模型为点圆模型;④最小值对应的线段为;⑤求线段长,连接,如图所示:在中,,正方形的边长为10,点G是边的中点,则,根据勾股定理可得,当三点共线时,最小为,接下来,求的长:连接,如图所示根据翻折可知,设,则根据等面积法可知,即整理得,解得,故答案为:.【点睛】本题考查动点最值下求线段长,涉及到动点最值问题的求解方法步骤,熟练掌握动点最值问题的相关模型是解决问题的关键.30.(2022·河南·中考真题)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动. (1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.【答案】(1)或或或(2)①15,15;②,理由见解析(3)cm或【分析】(1)根据折叠的性质,得,结合矩形的性质得,进而可得;(2)根据折叠的性质,可证,即可求解;(3)由(2)可得,分两种情况:当点Q在点F的下方时,当点Q在点F的上方时,设分别表示出PD,DQ,PQ,由勾股定理即可求解.【详解】(1)解:,sin∠BME=(2)∵四边形ABCD是正方形∴AB=BC,∠A=∠ABC=∠C=90°由折叠性质得:AB=BM,∠PMB=∠BMQ=∠A=90°∴BM=BC①∴②(3)当点Q在点F的下方时,如图,,DQ=DF+FQ=4+1=5(cm)由(2)可知,设,即解得:∴;当点Q在点F的上方时,如图,cm,DQ =3cm,由(2)可知,设,即解得:∴.【点睛】本题主要考查矩形与折叠,正方形的性质、勾股定理、三角形的全等,掌握相关知识并灵活应用是解题的关键. 题型08 求正方形重叠部分面积31.(2023·山东菏泽·一模)如图,两个边长为4的正方形重叠在一起,点是其中一个正方形的中心,则图中阴影部分的面积为 .【答案】【分析】连接、,证明,得到,再由,代值求解即可得到答案.【详解】解:连接、,如图所示:,,是正方形,为正方形的中心,,,在和中,,,,,故答案是:4.【点睛】本题考查全等三角形的判定与性质、正方形的性质,构造全等三角形得到阴影部分的面积等于的面积是解决问题的关键.32.(2021·辽宁抚顺·三模)如图,正方形的对角线、相交于点,点又是正方形的一个顶点,而且这两个正方形的边长相等.设两个正方形重合部分的面积为,正方形的面积为,通过探索,我们发现:无论正方形绕点怎样转动,始终有 .【答案】【分析】由正方形性质可证△AOE≌△BOF(ASA)由S四边形EOFB=S△EOB+S△BOF= S△EOB+S△AOE=S△AOB即可.【详解】解:∵正方形的对角线、相交于点,∴OA=OB,∠AOB=90°,∠OAB=∠OBC=45°,又∵点又是正方形的一个顶点,∴∠A1OC1=90°,∴∠AOE+∠EOB=∠EOB+∠BOF=90°,∴∠AOE =∠FOB,在△AOE和△BOF中,,∴△AOE≌△BOF(ASA),∴S1=S四边形EOFB=S△EOB+S△BOF= S△EOB+S△AOE=S△AOB=.故答案为.【点睛】本题考查正方形的性质,三角形全等判定,四边形面积转化为三角形面积,掌握正方形的性质,三角形全等判定,四边形面积转化为三角形面积是解题关键.33.(2020·河北·二模)在平面上,边长为的正方形和短边长为的矩形几何中心重合,如图①,当正方形和矩形都水平放置时,容易求出重叠面积.甲、乙、丙三位同学分别给出了两个图形不同的重叠方式;甲:矩形绕着几何中心旋转,从图②到图③的过程中,重叠面积大小不变.乙:如图④,矩形绕着几何中心继续旋转,矩形的两条长边与正方形的对角线平行时,此时的重叠面积大于图③的重叠面积.丙:如图⑤,将图④中的矩形向左上方平移,使矩形的一条长边恰好经过正方形的对角线,此时的重叠面积是个图形中最小的.下列说法正确的是( )A.甲、乙、丙都对 B.只有乙对 C.只有甲不对 D.甲、乙、丙都不对【答案】C【分析】本题重叠部分面积需要结合图形特点,利用对称性质,通过假设未知数表示未知线段,利用面积公式求解,并根据线段范围判别面积大小.【详解】如图一所示,设AI=x,BJ=y,则有x+y=AB-IJ=2-1=1,重叠部分四边形JILK面积为2.如图二所示,设AI=x,BJ=y,因为JM=HE=1,△JIM为直角三角形,斜边JI大于直角边JM,故有:x+y<1,重叠部分平行四边形JILK面积为.如图三所示,设AI=x(0<x<1),BJ=y=0,重叠部分四边形JIDK面积为.在由图一到图三的转变过程中,x+y的取值逐渐减小,则重叠部分面积逐渐增大,故甲同学说法错误.如图四所示,设AI=AN=x(1<x<2),重叠部分多边形BINDKM面积为.当0<x<2时, ,所以图四重叠部分的面积大于图三重叠部分面积,乙同学说法正确.如图五所示,设AI=AN=x,所以重叠部分四边形INDB面积为,因为,所以重叠部分面积小于2,即小于图一重叠面积.综上,图一到图四重叠部分面积逐渐增大,图五面积小于图一,故图五面积最小,丙同学说法正确.故答案为C选项.【点睛】本题考查正方形以及矩形性质,并在此基础进行知识延伸,需要假设未知数并结合对称性质化抽象问题为形象问题,利用未知量取值范围求解本题.34.(2020·浙江·中考真题)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖的面积为a,小正方形地砖的面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为 (用含a,b的代数式表示).【答案】【分析】如图,连接AE、AF,先证明△GAE≌△HAF,由此可证得,进而同理可得,根据正方形ABCD的面积等于四个相同四边形的面积之和及小正方形的面积即可求得答案.【详解】解:如图,连接AE、AF,∵点A为大正方形的中心,∴AE=AF,∠EAF=90°,∴∠AEF=∠AFE=45°,∵∠GEF=90°,∴∠AEG=∠GEF-∠AEF=45°,∴∠AEG=∠AFE,∵四边形ABCD为正方形,∴∠DAB=∠EAF=90°,∴∠GAE=∠HAF,在△GAE与△HAF 中,∴△GAE≌△HAF(ASA),∴,∴,即,∵,∴,∴同理可得:,即,故答案为:.【点睛】本题考查了正方形的性质和全等三角形的判定及性质,熟练掌握正方形的性质并能作出正确的辅助线是解决本题的关键. 题型09 添加一个条件使四边形是正方形35.(2020·湖北襄阳·中考真题)已知四边形是平行四边形,,相交于点O,下列结论错误的是( )A.,B.当时,四边形是菱形C.当时,四边形是矩形D.当且时,四边形是正方形【答案】B【分析】根据平行四边形的性质,菱形,矩形,正方形的判定逐一判断即可.【详解】解:四边形是平行四边形,,故A正确,四边形是平行四边形,,不能推出四边形是菱形,故错误,四边形是平行四边形,,四边形是矩形,故C正确,四边形是平行四边形,,,四边形是正方形.故D正确.故选B.【点睛】本题考查的是平行四边形的性质,矩形,菱形,正方形的判定,掌握以上知识是解题的关键.36.(2023·辽宁鞍山·一模)如图中,阴影部分表示的四边形是 .【答案】正方形【分析】本题考查四边形的性质,熟练掌握正方形的性质是解题的关键;根据题意可知,阴影部分既要满足矩形的性质,又满足菱形的性质,从而得解;【详解】解:当矩形的邻边相等时,矩形可称为是正方形;当菱形的邻边互相垂直时,所给菱形可称为正方形;故正方形即是特殊的矩形,也是特殊的菱形,所以阴影部分表示的四边形是正方形;故答案为:正方形37.(2023·陕西宝鸡·模拟预测)在下列条件中,能够判定矩形为正方形的是( )A. B. C. D.【答案】B【分析】本题考查了正方形的判定,根据对角线垂直的矩形为正方形即可得出答案.【详解】解:∵是矩形,∴当时,矩形为正方形故选:B.38.(2024·河北秦皇岛·一模)数学课上,嘉嘉作线段的垂直平分线时,是这样操作的:分别以点,为圆心,大于长为半径画弧,两弧相交于点,,则直线即为所求.作完图之后,嘉嘉经过测量发现,,根据他的作图方法和测量可知四边形是正方形,嘉嘉的理由是( )A.两组对边分别平行的菱形是正方形 B.四条边相等的菱形是正方形C.对角线相等的菱形是正方形 D.有一个角是直角的菱形是正方形【答案】C【分析】此题主要考查了线段垂直平分线的性质以及正方形的判定,得出四边形四边关系是解决问题的关键.根据正方形的判定方法对角线相等的菱形是正方形即可证明;【详解】解:根据题意可知,可以判定四边形是菱形又因为,所以四边形是正方形故选:C39.(2024·山东东营·中考真题)如图,四边形是平行四边形,从①,②,③,这三个条件中任意选取两个,能使是正方形的概率为( )A. B. C. D.【答案】A【分析】本题考查了正方形的判定,用概率公式求概率,掌握正方形的判定方法和概率公式是解题的关键.根据从①,②,③,这三个条件中任意选取两个,共有①②、①③、②③,3种方法,由正方形的判定方法,可得①②、①③共有2种可判定平行四边形是正方形.再根据概率公式求解即可.【详解】解:从①,②,③,这三个条件中任意选取两个,共有①②、①③、②③,3种方法,由正方形的判定方法,可得①②、①③共有2种可判定平行四边形是正方形.∴,从①,②,③,这三个条件中任意选取两个,能使是正方形的概率为.故选:A.40.(2024·黑龙江大兴安岭地·中考真题)已知菱形中对角线相交于点O,添加条件 可使菱形成为正方形.【答案】或【分析】本题主要考查的是菱形和正方形的判定,熟练掌握菱形的判定定理是解题的关键,依据正方形的判定定理进行判断即可.【详解】解:根据对角线相等的菱形是正方形,可添加:;根据有一个角是直角的菱形是正方形,可添加的:;故添加的条件为:或.41.(2021·广西玉林·中考真题)一个四边形顺次添加下列中的三个条件便得到正方形:a.两组对边分别相等 b.一组对边平行且相等c.一组邻边相等 d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是:( )A.仅① B.仅③ C.①② D.②③【答案】C【分析】根据题意及正方形的判定定理可直接进行排除选项.【详解】解:①由两组对边分别相等可得该四边形是平行四边形,添加一组邻边相等可得该四边形是菱形,再添加一个角是直角则可得该四边形是正方形;正确,故符合题意;②由一组对边平行且相等可得该四边形是平行四边形,添加一个角是直角可得该四边形是矩形,再添加一组邻边相等则可得该四边形是正方形;正确,故符合题意;③a、b都为平行四边形的判定定理,故不能判定该四边形是正方形,故错误,不符合题意;∴正确的有①②;故选C.【点睛】本题主要考查正方形的判定,熟练掌握正方形的判定定理是解题的关键. 题型10 证明四边形是正方形判定一个四边形是正方形通常先证明它是矩形,再证明它有一组邻边相等或对角线互相垂直;或者先证明它是菱形,再证明它有一个角是直角或对角线相等;还可以先判定四边形是平行四边形,再证明它有一个角为直角和一组邻边相等.42.(2023·湖北十堰·中考真题)如图,的对角线交于点,分别以点为圆心,长为半径画弧,两弧交于点,连接. (1)试判断四边形的形状,并说明理由;(2)请说明当的对角线满足什么条件时,四边形是正方形?【答案】(1)平行四边形,见解析(2)且【分析】(1)根据平行四边形的性质,得到,根据两组对边分别相等的四边形是平行四边形判定即可.(2)根据对角线相等、平分且垂直的四边形是正方形判定即可.【详解】(1)四边形是平行四边形.理由如下:∵的对角线交于点,∴,∵以点为圆心,长为半径画弧,两弧交于点,∴∴四边形是平行四边形.(2)∵对角线相等、平分且垂直的四边形是正方形,∴且时,四边形是正方形.【点睛】本题考查了平行四边形的判定和性质,正方形的判定和性质,熟练掌握判定和性质是解题的关键.43.(2024·内蒙古·中考真题)如图,,平分,.(1)求证:四边形是平行四边形;(2)过点B作于点G,若,请直接写出四边形的形状.【答案】(1)证明见详解(2)四边形为正方形【分析】(1)由角平分线的定义可得出,由平行线的性质可得出,等量代换可得出,利用证明 ,由全等三角形的性质得出,结合已知条件可得出四边形是平行四边形.(2)由已知条件可得出,由平行四边形的性质可得出,,根据平行线的性质可得出,,由全等三角形的性质可得出,等量代换可得出, 即可得出四边形为正方形.【详解】(1)证明:∵平分,∴,∵,∴,∴,在和中,,∴,∴,由∵,∴四边形是平行四边形.(2)四边形是正方形.过点B作于点G,∴,∵四边形是平行四边形.∴,,∴,,∴,,由(1),∴,∵,∴,∴,∴四边形是正方形.【点睛】本题主要考查了全等三角形的判定以及性质,平行四边形的性质和判定,正方形的判定,以及平行线的性质,掌握全等三角形的判定以及性质,平行四边形的性质和判定,正方形的判定定理是解题的关键.44.(2021·内蒙古呼伦贝尔·中考真题)如图,是的角平分线,,,垂足分别是E、F,连接,与相交千点H.(1)求证:;(2)满足什么条件时,四边形是正方形?说明理由.【答案】(1)见解析;(2)满足∠BAC=90°时,四边形是正方形,理由见解析【分析】(1)根据角平分线的性质定理证得DE=DF,再根据HL定理证明△AED≌△AFD,则有AE=AF,利用等腰三角形的三线合一性质即可证得结论;(2)只需证得四边形AEDF是矩形即可,【详解】解:(1)∵是的角平分线,,,∴DE=DF,∠AED=∠AFD=90°,又∵AD=AD,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,又是的角平分线,∴AD⊥EF;(2)满足∠BAC=90°时,四边形是正方形,理由:∵∠AED=∠AFD=90°,∠BAC=90°,∴四边形AEDF是矩形,又∵AE=AF,∴四边形AEDF是正方形.【点睛】本题考查角平分线的性质、全等三角形的判定与性质、等腰三角形的三线合一性质、矩形的判定、正方形的判定,熟练掌握相关知识间的联系和运用是解答的关键.45.(2024·湖北武汉·模拟预测)如图,在平行四边形中,对角线与相交于点E,,点G为的中点,连接的延长线交的延长线于点F,连接.(1)求证:;(2)请增加一个条件,使得四边形为正方形.(不需要说明理由)【答案】(1)见解析(2)【分析】此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质、正方形的判定方法.(1)利用平行四边形的性质以及全等三角形的性质解决问题即可;(2)证明四边形是平行四边形,进而证得,根据正方形的判定即可得到结论.【详解】(1)证明:四边形是平行四边形,,,,点是的中点,,在和中,,,,;(2)解:当时,四边形是正方形.证明:由(1)知,,又 ,,四边形是平行四边形,由(1)知,,,,四边形是菱形,,,四边形是正方形.故答案为:.46.(2023·山东青岛·一模)如图,在中,为边的中点,连接并延长,交的延长线于点,延长至点,使,分别连接,,. (1)求证:;(2)若平分,已知______(从以下两个条件中选择一个作为已知条件并补写相应内容,填写序号),四边形为正方形?请证明.①平行四边形的边满足______时②平行四边形的角满足______时【答案】(1)答案见解析(2)选择①平行四边形的边满足时,四边形为正方形【分析】(1)由,得,由为边的中点,,而,即可证明;(2)由,得,,而,则,因为,所以四边形是平行四边形,再证明,则,因为,所以,则,所以四边形是矩形,进而得到四边形是正方形.【详解】(1)证明:四边形是平行四边形,,,为边的中点,,在和中,,.(2)解:选择①平行四边形的边满足时,四边形为正方形;,,,,,,四边形是平行四边形,平分,,,,,,,,,,,四边形是矩形,,四边形是正方形.【点睛】本题主要考查平行四边形的性质、全等三角形的判定与性质、等腰三角形的判定、矩形的判定,正方形的判定,证明是解第(2)题的关键. 题型11 根据正方形的性质与判定求角度47.(2021·湖南株洲·中考真题)《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,共十三只(图①中的“様”和“隻”为“样”和“只”).图②为某蝶几设计图,其中和为“大三斜”组件(“一様二隻”的大三斜组件为两个全等的等腰直角三角形),已知某人位于点处,点与点关于直线对称,连接、.若,则 度.【答案】21【分析】由题意易得四边形ABCD是正方形,进而根据轴对称的性质可得AD=DP,,则有CD=DP,然后可得,最后根据等腰三角形的性质可求解.【详解】解:∵,且都为等腰直角三角形,∴四边形ABCD是正方形,∴,∵点与点关于直线对称,,∴,AD=DP,∴CD=DP,,∴,∴,故答案为21.【点睛】本题主要考查正方形的判定与性质、轴对称的性质及等腰三角形的性质,熟练掌握正方形的判定与性质、轴对称的性质及等腰三角形的性质是解题的关键.48.(2023·四川·中考真题)如图,半径为的扇形中,,是上一点,,,垂足分别为,,若,则图中阴影部分面积为( ) A. B. C. D.【答案】B【分析】连接,证明四边形是正方形,进而得出,,然后根据扇形面积公式即可求解.【详解】解:如图所示,连接, ∵,,,∴四边形是矩形,∵,∴四边形是正方形,∴,,∴图中阴影部分面积,故选:B.【点睛】本题考查了正方形的性质与判定,求扇形面积,证明四边形是正方形是解题的关键.49.(2023·福建宁德·一模)如图,将矩形沿折叠,使顶点B落在上点处;再将矩形展平,沿折叠,使顶点B落在上点G处,连接. 小明发现可以由绕某一点顺时针旋转得到,则 °.【答案】【分析】根据旋转角等于对应边所在直线的夹角求直线与的夹角即可.【详解】延长与交于点,∵可以由绕某一点顺时针旋转得到,∴,∵将矩形沿折叠,使顶点B落在上点处,∴四边形是正方形,∴,∴,故答案为:【点睛】本题考查矩形的折叠,旋转的性质,正方形的判定,解题的关键是理解旋转角等于对应边所在直线的夹角.50.(2020·黑龙江哈尔滨·二模)正方形中,点为对角线上的一个动点,连接,并延长交射线于点,连接,若为等腰三角形,则 .【答案】或【分析】分类讨论:当点E在BC的延长线上时,首先利用等腰三角形的性质得出CP=CE,易得,由正方形的性质得出,再证明,得出,进一步得出的度数;当点E在BC上时,同理得出结论.【详解】解:当点E在BC的延长线上时,如下图:为等腰三角形,则CP=CE,∴∵四边形ABCD是正方形∴∵∴∴∴∴;当点E在BC上时,如下图,为等腰三角形,则PE=CE,∴∵四边形ABCD是正方形∴∵∴∴∵∴∴∴.故答案为:或.【点睛】本题考查了正方形的性质、全等三角形的判定及性质,数形结合,利用方程思想和分类讨论是解答此题的关键. 题型12 根据正方形的性质与判定求线段长51.(2024·江苏无锡·中考真题)如图,在中,.(1)尺规作图:作的角平分线,在角平分线上确定点,使得;(不写作法,保留痕迹)(2)在(1)的条件下,若,,,则的长是多少?(请直接写出的值)【答案】(1)见详解(2)【分析】(1)作的角平分线和线段的垂直平分线相交于点D,即为所求.(2)过点D作交与点E,过点D作交与点F,先利用角平分线的性质定理证明四边形为正方形,设,则,,以为等量关系利用勾股定理解出x,在利用勾股定理即可求出.【详解】(1)解:如下图:即为所求.(2)过点D作交与点E,过点D作交与点F,则,又∵∴四边形为矩形,∵是的平分线,∴,∴四边形为正方形,∴,设,∴,,在中,,在中,,∵∴∴解得:,∴.【点睛】本题主要考查了作角平分线以及垂直平分线,角平分线的性质定理,正方形的判定以及勾股定理的应用,作出图形以及辅助线是解题的关键.52.(2024·四川广安·中考真题)如图,直线与轴、轴分别相交于点,,将绕点逆时针方向旋转得到,则点的坐标为 .【答案】【分析】本题考查一次函数图象与坐标轴的交点,旋转的性质,正方形的判定和性质等,延长交y轴于点E,先求出点A和点B的坐标,再根据旋转的性质证明四边形是正方形,进而求出和的长度即可求解.【详解】解:如图,延长交y轴于点E,中,令,则,令,解得,,,,,绕点逆时针方向旋转得到,,,,四边形是正方形.,,点的坐标为.故答案为:.53.(2024·四川南充·中考真题)如图,在矩形中,为边上一点,,将沿折叠得,连接,,若平分,,则的长为 . 【答案】【分析】过作于点,于点,,由四边形是矩形,得,,证明四边形是矩形,通过角平分线的性质证得四边形是正方形,最后根据折叠的性质和勾股定理即可求解.【详解】如图,过作于点,于点, ∴,∵四边形是矩形,∴,,∴四边形是矩形,∵平分,∴,,∴四边形是正方形,由折叠性质可知:,,∴,∴,,在中,由勾股定理得,故答案为:.【点睛】本题考查了矩形的性质和判定,折叠的性质,勾股定理,所对直角边是斜边的一半,角平分线的性质,正方形的判定与性质,熟练掌握知识点的应用是解题的关键. 题型13 根据正方形的性质与判定求面积54.(2023·青海西宁·中考真题)如图,边长为的正方形内接于,分别过点A,D作⊙O的切线,两条切线交于点P,则图中阴影部分的面积是 . 【答案】【分析】连接,,证明四边形是正方形,由勾股定理求得,根据阴影部分面积 求解即可.【详解】解:如图所示,连接,, ∵、是的切线,∴,,∵四边形是正方形,∴,,∴,∴四边形是正方形,∵,∴,∴,∴阴影部分面积故答案为:.【点睛】本题考查切线的性质,正方形的判定与性质,扇形的面积,勾股定理等知识,熟练掌握切线的性质、正方形的判定得出圆的半径是解题的关键.55.(2021·内蒙古呼伦贝尔·中考真题)如图,两个半径长均为的直角扇形的圆心分别在对方的圆弧上,扇形的圆心C是的中点,且扇形绕着点C旋转,半径,交于点G,半径,交于点H,则图中阴影面积等于( )A. B. C. D.【答案】D【分析】先根据扇形面积公式求出两扇形面积,再过C分别作CM⊥AE于M,CN⊥BE于N,连接EC,再证明△CMG≌△CNH,可证得白色部分的面积等于对角线为的正方形CMEN得面积,进而可求得阴影部分的面积.【详解】解:∵两个直角扇形的半径长均为,∴两个扇形面积和为,过C分别作CM⊥AE于M,CN⊥BE于N,连接EC,则四边形CMEN是矩形,∵C是的中点,∴∠AEC=∠BEC,即EC平分∠AEB,∴CM=CN,∴四边形CMEN是正方形,∴∠CMG=∠MCN=∠CNH,∴∠MCG+∠GCN=∠NCH+∠GCN=90°,∴∠MCG=∠NCH,∴△CMG≌△CNH(ASA),∴白色部分的面积等于对角线为的正方形CMEN的面积,∴空白部分面积为,∴阴影部分面积为,故选:D.【点睛】本题考查扇形面积公式、圆的有关性质、角平分线的性质、正方形的判定与性质、全等三角形的判定与性质,熟记扇形面积公式,熟练掌握角平分线的性质定理和全等三角形的判定与性质,求出空白部分面积是解答的关键.56.(2021·江苏扬州·中考真题)如图,在中,的角平分线交于点D,.(1)试判断四边形的形状,并说明理由;(2)若,且,求四边形的面积.【答案】(1)菱形,理由见解析;(2)4【分析】(1)根据DE∥AB,DF∥AC判定四边形AFDE是平行四边形,再根据平行线的性质和角平分线的定义得到∠EDA=∠EAD,可得AE=DE,即可证明;(2)根据∠BAC=90°得到菱形AFDE是正方形,根据对角线AD求出边长,再根据面积公式计算即可.【详解】解:(1)四边形AFDE是菱形,理由是:∵DE∥AB,DF∥AC,∴四边形AFDE是平行四边形,∵AD平分∠BAC,∴∠FAD=∠EAD,∵DE∥AB,∴∠EDA=∠FAD,∴∠EDA=∠EAD,∴AE=DE,∴平行四边形AFDE是菱形;(2)∵∠BAC=90°,∴四边形AFDE是正方形,∵AD=,∴AF=DF=DE=AE==2,∴四边形AFDE的面积为2×2=4.【点睛】本题考查了菱形的判定,正方形的判定和性质,平行线的性质,角平分线的定义,解题的关键是掌握特殊四边形的判定方法.57.(2020·江苏苏州·中考真题)如图,在扇形中,已知,,过的中点作,,垂足分别为、,则图中阴影部分的面积为( )A. B. C. D.【答案】B【分析】连接OC,易证,进一步可得出四边形CDOE为正方形,再根据正方形的性质求出边长即可求得正方形的面积,根据扇形面积公式得出扇形AOB的面积,最后根据阴影部分的面积等于扇形AOB的面积剪去正方形CDOE的面积就可得出答案.【详解】连接OC点为的中点在和中又四边形CDOE为正方形由扇形面积公式得故选B.【点睛】本题考查了扇形面积的计算、正方形的判定及性质,熟练掌握扇形面积公式是解题的关键. 题型14 根据正方形的性质与判定解决多结论问题58.(2024·山东东营·中考真题)如图,在正方形中,与交于点O,H为延长线上的一点,且,连接,分别交,BC于点E,F,连接,则下列结论:①;②;③平分;④.其中正确结论的个数是( )A.1个 B.2个 C.3个 D.4个【答案】B【分析】根据正方形的性质结合勾股定理可知,,,,与互相垂直且平分,进而可求得,根据正切值定义即可判断②;由,可知,由相似三角形的性质即可判断①;由,可求得,再结合与互相垂直且平分,得,可知,进而可判断③;再证,即可判断④.【详解】解:在正方形中,,,,,与互相垂直且平分,则,∵,则,∴,故②不正确;∵,则,,∴,∴,故①不正确;∵,∴,∵,∴,又∵与互相垂直且平分,∴,∴,则,∴,∴平分,故③正确;由上可知,,∴,∴,则,又∵,∴,故④正确;综上,正确的有③④,共2个,故选:B.【点睛】本题考查正方形的性质,相似三角形的判定及性质,勾股定理,解直角三角形等知识,熟练掌握相关图形的性质是解决问题的关键.59.(2024·四川遂宁·中考真题)如图,在正方形纸片中,是边的中点,将正方形纸片沿折叠,点落在点处,延长交于点,连结并延长交于点.给出以下结论:①为等腰三角形;②为的中点;③;④.其中正确结论是 .(填序号)【答案】①②③【分析】设正方形的边长为,,根据折叠的性质得出,根据中点的性质得出,即可判断①,证明四边形是平行四边形,即可判断②,求得,设,则,勾股定理得出,进而判断③,进而求得,,勾股定理求得,进而根据余弦的定义,即可判断④,即可求解.【详解】解:如图所示,∵为的中点,∴设正方形的边长为,则∵折叠,∴,∴∴是等腰三角形,故①正确;设,∴∴∴∴又∵∴四边形是平行四边形,∴,∴ ,即是的中点,故②正确;∵,∴在中,,∵∴设,则,∴∴∴,,∴,故③正确;连接,如图所示,∵,,又∴∴又∵∴∴又∵∴∵∴∴∴在中,∴,故④不正确故答案为:①②③.【点睛】本题考查了正方形与折叠问题,解直角三角形,全等三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.60.(2023·黑龙江·中考真题)如图,在正方形中,点分别是上的动点,且,垂足为G,将沿翻折,得到交于点P,对角线交于点H,连接,下列结论正确的是:①;②;③若,则四边形是菱形;④当点E运动到的中点,;⑤.( ) A.①②③④⑤ B.①②③⑤ C.①②③ D.①②⑤【答案】B【分析】根据正方形的性质可得,从而证明,即可判断①;由折叠的性质可得,再由平行线的判定即可判断②;由可得在同一直线上,从而可得,再根据折叠的性质可得,,再根据菱形的判定即可判断③;设正方形的边长为,则,利用勾股定理求得,证明,可得,从而证得,可得,,即可判断④;证明,可得,从而证明,可得,再证明,可得,进而可得,即可判断⑤.【详解】解:四边形是正方形,,,,,,,,,故①正确,∵将沿翻折,得到,,∵,,故②正确,当时,,,,即在同一直线上,,,通过翻折的性质可得,,∴,,,∴四边形是平行四边形,,∴平行四边形是菱形,故③正确,当点E运动到的中点,如图, 设正方形的边长为,则,在中,,,,,,,,,,,,,,在中,,故④错误,由折叠的性质可得,,∴,在和中,,∴,∴,∴,∵,∴,∴,∵,∴,∵,,∴,∴,∴,∴,∴,,故⑤正确;综上分析可知,正确的是①②③⑤.故选:B.【点睛】本题考查了正方形的性质,翻折的性质,相似三角形的判定和性质,正切的概念,熟练按照要求做出图形,利用寻找相似三角形是解题的关键.61.(2021·四川攀枝花·中考真题)如图,在正方形ABCD中,点M、N分别为边CD、BC上的点,且DM=CN,AM与DN交于点P,连接AN,点Q为AN的中点,连接PQ,BQ,若AB=8,DM=2,给出以下结论:①AM⊥DN;②∠MAN=∠BAN;③PQN≌BQN;④PQ=5.其中正确的结论有 (填上所有正确结论的序号)【答案】①④【分析】①正确,证明△ADM≌△DCN(SAS),可得结论.②③错误,利用反证法证明即可.④正确,利用勾股定理求出AN,再利用直角三角形斜边中线的性质求出PQ,可得结论.【详解】解:∵四边形ABCD是正方形,∴AD=DC,∠ADM=∠DCN=90°,在△ADM和△DCN,,∴△ADM≌△DCN(SAS),∴∠DAM=∠CDN,∵∠CDN+∠ADP=90°,∴∠ADP+∠DAM=90°,∴∠APD=90°,∴AM⊥DN,故①正确,不妨假设∠MAN=∠BAN,在△APN和△ABN中,,∴△PAN≌△ABN(AAS),∴AB=AP,∵这个与AP<AD,AB=AD,矛盾,∴假设不成立,故②错误,不妨假设△PQN≌△BQN,则∠ANP=∠ANB,同法可证△APN≌△ABN,∴AP=AB,∵这个与AP<AD,AB=AD,矛盾,∴假设不成立,故③错误,∵DM=CN=2,AB=BC=8,∴BN=6,∵∠ABN=90°,∴AN10,∵∠APN=90°,AQ=QN,∴PQAN=5.故④正确,故答案为:①④.【点睛】本题考查正方形的性质,全等三角形的判定和性质,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是学会用反证法解决问题,属于中考填空题中的压轴题. 题型15 与正方形有关的规律探究问题62.(2023·山东青岛·中考真题)如图①,正方形的面积为1. (1)如图②,延长到,使,延长到,使,则四边形的面积为______;(2)如图③,延长到,使,延长到,使,则四边形的面积为______;(3)延长到,使,延长到,使,则四边形的面积为______.【答案】(1)(2)5(3)【分析】(1)由正方形的面积为1则边长,根据已知,所以,根据,因为,,列式计算即可;(2)与(1)相似,由正方形的面积为1,则边长,根据已知,所以,根据,因为,,列式计算即可;(3)由正方形的面积为1,则边长,根据已知,所以,根据,因为,,列式计算即可.【详解】(1)解:∵正方形的面积为1,∴,∵,,∴,,∵,∴,∵,∴,∵,∴;故答案为:;(2)∵正方形的面积为1,∴,∵,,∴,,∵,∴,∵,∴,∵,∴,故答案为:5;(3)∵正方形的面积为1,∴,∵,,∴,,∵,∴,∵,∴,∵,∴,故答案为:.【点睛】本题考查了列代数式及代数式的求值,组合图形面积的计算,三角形的面积公式,梯形的面积公式,掌握相关知识是解决问题的关键.63.(2022·山东烟台·中考真题)如图,正方形ABCD边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为( ) A.(2)5 B.(2)6 C.()5 D.()6【答案】C【分析】根据勾股定理得出正方形的对角线是边长的,第1个正方形的边长为1,其对角线长为;第2个正方形的边长为,其对角线长为;第3个正方形的边长为,其对角线长为; ;第n个正方形的边长为.所以,第6个正方形的边长.【详解】解:由题知,第1个正方形的边长,根据勾股定理得,第2个正方形的边长,根据勾股定理得,第3个正方形的边长,根据勾股定理得,第4个正方形的边长,根据勾股定理得,第5个正方形的边长,根据勾股定理得,第6个正方形的边长.故选:C.【点睛】本题主要考查勾股定理,根据勾股定理找到正方形边长之间的倍关系是解题的关键.64.(2021·内蒙古呼伦贝尔·中考真题)如图,点在直线上,点的横坐标为1,过点作轴,垂足为,以为边向右作正方形,延长交直线l于点;以为边向右作正方形,延长交直线l于点;……;按照这个规律进行下去,点的坐标为 .【答案】【分析】由题意分别求出A1、A2、A3、A4……An、B1、B2、B3、B4……Bn、的坐标,根据规律进而可求解.【详解】解:∵点在直线上,点的横坐标为1,过点作轴,垂足为,∴,,∴A1B1=,根据题意,OA2=1+=,∴,,同理,,,,……由此规律,可得:,,∴即,故答案为:.【点睛】本题考查一次函数的应用、正方形的性质、点的坐标规律,理解题意,结合图象和正方形的性质,探索点的坐标规律是解答的关键.65.(2020·辽宁·中考真题)如图,,正方形,正方形,正方形,正方形,…,的顶点,在射线上,顶点,在射线上,连接交于点,连接交于点,连接交于点,…,连接交于点,连接交于点,…,按照这个规律进行下去,设与的面积之和为与的面积之和为与的面积之和为,…,若,则等于 .(用含有正整数的式子表示)【答案】【分析】先证得△ADC△,推出CD=,,同理得到,,由△△,推出△ED边D上的高为,计算出,同理计算得出,,找到规律,即可求解【详解】∵正方形,正方形,且,∴△和△都是等腰直角三角形,∴,∴,同理,∵正方形,正方形,边长分别为2,4,∴AC∥,∥,∴,∴,∴,,同理:,,∵∥,∴△△,设△和△的边和上的高分别为和,∴,∵,∴,,∴;同理求得:;;.故答案为:.【点睛】本题考查了正方形的性质,等腰直角三角形的判定和性质,相似三角形的判定与性质在规律型问题中的应用,数形结合并善于发现规律是解题的关键.66.(2021·山东东营·中考真题)如图,正方形中,,AB与直线l所夹锐角为,延长交直线l于点,作正方形,延长交直线l于点,作正方形,延长交直线l于点,作正方形,…,依此规律,则线段 .【答案】【分析】利用tan30°计算出30°角所对直角边,乘以2得到斜边,计算3次,找出其中的规律即可.【详解】∵AB与直线l所夹锐角为,正方形中,,∴∠=30°,∴=tan30°==1,∴;∵=1,∠=30°,∴=tan30°=,∴;∴线段 ,故答案为:.【点睛】本题考查了正方形的性质,特殊角三角函数值,含30°角的直角三角形的性质,规律思考,熟练进行计算,抓住指数的变化这个突破口求解是解题的关键.67.(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,正方形顶点M的坐标为,是等边三角形,点B坐标是,在正方形内部紧靠正方形的边(方向为)做无滑动滚动,第一次滚动后,点A的对应点记为,的坐标是;第二次滚动后,的对应点记为,的坐标是;第三次滚动后,的对应点记为,的坐标是;如此下去,……,则的坐标是 .【答案】【分析】本题考查了点的坐标变化规律,正方形性质,等边三角形性质,根据三角形的运动方式,依次求出点A的对应点,,,的坐标,发现规律即可解决问题.【详解】解:正方形顶点M的坐标为,,是等边三角形,点B坐标是,等边三角形高为,由题知,的坐标是;的坐标是;的坐标是;继续滚动有,的坐标是;的坐标是;的坐标是;的坐标是;的坐标是;的坐标是;的坐标是;的坐标是;的坐标是;的坐标是;不断循环,循环规律为以,,,,12个为一组,,的坐标与的坐标一样为,故答案为:. 题型16 正方形有关的新定义问题68.(2023·江苏·中考真题)综合与实践定义:将宽与长的比值为(为正整数)的矩形称为阶奇妙矩形.(1)概念理解:当时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽()与长的比值是_________.(2)操作验证:用正方形纸片进行如下操作(如图(2)):第一步:对折正方形纸片,展开,折痕为,连接;第二步:折叠纸片使落在上,点的对应点为点,展开,折痕为;第三步:过点折叠纸片,使得点分别落在边上,展开,折痕为.试说明:矩形是1阶奇妙矩形. (3)方法迁移:用正方形纸片折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.(4)探究发现:小明操作发现任一个阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点为正方形边上(不与端点重合)任意一点,连接,继续(2)中操作的第二步、第三步,四边形的周长与矩形的周长比值总是定值.请写出这个定值,并说明理由.【答案】(1);(2)见解析;(3),理由见解析【分析】(1)将代入,即可求解.(2)设正方形的边长为,根据折叠的性质,可得,设,则,在中,勾股定理建立方程,解方程,即可求解;(3)仿照(2)的方法得出2阶奇妙矩形.(4)根据(2)的方法,分别求得四边形的周长与矩形的周长,即可求解.【详解】解:(1)当时,,故答案为:.(2)如图(2),连接, 设正方形的边长为,根据折叠的性质,可得设,则根据折叠,可得,,在中,,∴,在中,∴解得:∴∴矩形是1阶奇妙矩形.(3)用正方形纸片进行如下操作(如图):第一步:对折正方形纸片,展开,折痕为,再对折,折痕为,连接;第二步:折叠纸片使落在上,点的对应点为点,展开,折痕为;第三步:过点折叠纸片,使得点分别落在边上,展开,折痕为.矩形是2阶奇妙矩形, 理由如下,连接,设正方形的边长为,根据折叠可得,则, 设,则根据折叠,可得,,在中,,∴,在中,∴解得:∴当时,∴矩形是2阶奇妙矩形.(4)如图(4),连接诶,设正方形的边长为1,设,则, 设,则根据折叠,可得,,在中,,∴,在中,∴整理得,∴四边形的边长为矩形的周长为,∴四边形的周长与矩形的周长比值总是定值【点睛】本题考查了正方形的折叠问题,勾股定理,熟练掌握折叠的性质是解题的关键.69.(2021·上海·中考真题)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为 .【答案】【分析】先确定正方形的中心O与各边的所有点的连线中的最大值与最小值,然后结合旋转的条件即可求解.【详解】解:如图1,设的中点为E,连接OA,OE,则AE=OE=1,∠AEO=90°,.∴点O与正方形边上的所有点的连线中,最小,等于1,最大,等于.∵,∴点P与正方形边上的所有点的连线中,如图2所示,当点E落在上时,最大值PE=PO-EO=2-1=1;如图3所示,当点A落在上时,最小值.∴当正方形ABCD绕中心O旋转时,点P到正方形的距离d的取值范围是.故答案为:【点睛】本题考查了新定义、正方形的性质、勾股定理等知识点,准确理解新定义的含义和熟知正方形的性质是解题的关键.70.(2020·湖南益阳·中考真题)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形,根据以上定义,解决下列问题:(1)如图1,正方形中,是上的点,将绕点旋转,使与重合,此时点的对应点在的延长线上,则四边形为“直等补”四边形,为什么?(2)如图2,已知四边形是“直等补”四边形,,,,点到直线的距离为.①求的长.②若、分别是、边上的动点,求周长的最小值.【答案】(1)见解析;(2)①BE=4;②周长的最小值为【分析】(1)由旋转性质证得∠F+∠BED=∠BEC+∠BED=180°,∠FBE=∠ABF+∠ABE=∠CBE+∠ABE=90°,BF=BE,进而可证得四边形为“直等补”四边形;(2)如图2,将△ABE绕点B顺时针旋转90°得到△CBF,可证得四边形EBFD是正方形,则有BE=FD,设BE=x,则FC=x-1,由勾股定理列方程解之即可;(3)如图3,延长CD到P,使DP=CD=1,延长CB到T,使TB=BC=5,则NP=NC,MT=MC,由△MNC的周长=MC+MN+NC=MT+MN+NP≥PT知,当T、M、N、P共线时,△MNC的周长取得最小值PT,过P作PH⊥BC交BC延长线于H,易证△BFC∽△PHC,求得CH、PH,进而求得TH,在Rt△PHT中,由勾股定理求得PT,即可求得周长的最小值.【详解】(1)如图1由旋转的性质得:∠F=∠BEC,∠ABF=∠CBE,BF=BE∵∠BEC+∠BED=180°,∠CBE+∠ABE=90°,∴∠F+∠BED=180°,∠ABF+∠ABE=90°即∠FBE=90°,故满足“直等补”四边形的定义,∴四边形为“直等补”四边形;(2)∵四边形是“直等补”四边形,AB=BC,∴∠A+∠BCD=180°,∠ABC=∠D=90°,如图2,将△ABE绕点B顺时针旋转90°得到△CBF,则∠F=∠AEB=90°,∠BCF+∠BCD=180°,BF=BE∴D、C、F共线,∴四边形EBFD是正方形,∴BE=FD,设BE=x,则CF=x-1,在Rt△BFC中,BC=5,由勾股定理得:,即,解得:x=4或x=﹣3(舍去),∴BE=4(3)如图3,延长CD到P,使DP=CD=1,延长CB到T,使TB=BC=5,则NP=NC,MT=MC,∴△MNC的周长=MC+MN+NC=MT+MN+NP≥PT当T、M、N、P共线时,△MNC的周长取得最小值PT,过P作PH⊥BC,交BC延长线于H,∵∠F=∠PHC=90°,∠BCF=∠PCH,∴△BCF∽△PCH,∴,即,解得:,在Rt△PHT中,TH=,,∴周长的最小值为.【点睛】本题是一道四边形的综合题,涉及旋转的性质、正方形的判定与性质、勾股定理、解一元二次方程、相似三角形的判定与性质、垂直平分线性质、动点的最值问题等知识,解答的关键是认真审题,分析图形,寻找相关信息的联系点,借用类比等解题方法确定解题思路,进而进行推理、探究、发现和计算.71.(2024·江苏常州·模拟预测)在学习了“中心对称图形…平行四边形”这一章后,同学小明对特殊四边形的探究产生了浓厚的兴趣,他发现除了已经学过的特殊四边形外,还有很多比较特殊的四边形,勇于创新的他大胆地作出这样的定义:有一个内角是直角,且对角线互相垂直的四边形称为“双直四边形”.请你根据以上定义,回答下列问题:(1)下列关于“双直四边形”的说法,正确的有 (把所有正确的序号都填上);①双直四边形”的对角线不可能相等:②“双直四边形”的面积等于对角线乘积的一半;③若一个“双直四边形”是中心对称图形,则其一定是正方形.(2)如图①,正方形中,点、分别在边、上,连接,,,,若,证明:四边形为“双直四边形”;(3)如图②,在平面直角坐标系中,已知点,,点在线段上且,是否存在点在第一象限,使得四边形为“双直四边形”,若存在;求出所有点的坐标,若不存在,请说明理由.【答案】(1)②③(2)证明见详解;(3)或【分析】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,一次函数的应用等知识,灵活运用这些性质解决问题是解题的关键.(1)由“双直四边形”的定义依次判断即可;(2)证明,得到,由余角的性质可证,可得结论;(3)根据“双直四边形”的定义分当时,当时,当时三种情况讨论,分别求出点的坐标即可.【详解】(1)解:∵正方形是“双直四边形”,正方形的对角线相等.故①不正确.∵“双直四边形”的对角线互相垂直,∴“双直四边形”的面积等于对角线乘积的一半.故②正确.中心对称的四边形是平行四边形,再根据“双直四边形”的定义得到四边形是正方形.故③正确;故答案为:②③;(2)证明:设与交于点,正方形,,,,,,,,,,,,四边形为“双直四边形”.(3)解:设如图②,设与交于点,点,,,,,,,,,点,四边形是“双直四边形”,,,,即点是的中点,点,,点,设直线的表达式为,,解得:,直线的表示为:,当,点的横坐标为,,点,当时,,,是的垂直平分线,,,,,点,当时,如图③,过点作于点,于点,是的垂直平分线,,平分,,,,设,则,,即点坐标为,代入,得,为,综上所述,点的坐标或72.(2024·辽宁大连·模拟预测)点M在四边形内,点M和四边形的一组对边组成两个三角形,如果这两个三角形都是以对边为斜边的等腰直角三角形,那么定义该四边形 为蝴蝶四边形.例如,如图1,在四边形中, , ,,则四边形 为蝴蝶四边形.【概念理解】如图2,正方形 中,对角线 ,相交于点 M.判断正方形 是否为蝴蝶四边形,说明理由.【性质探究】如图3,在蝴蝶四边形中,.求证:.【拓展应用】在蝴蝶四边形中, °,,当 是等腰三角形时,求此时的值.【答案】【概念理解】正方形为蝴蝶四边形,理由见解析;【性质探究】见解析;【拓展应用】的值为5或【分析】概念理解:证明和都是等腰直角三角形,正方形的对边、分别为斜边,即可得正方形为蝴蝶四边形;性质探究:证明根据全等三角形的性质即可得;拓展应用:延长交于,证明, 根据全等三角形的性质得根据等腰三角形的性质得求出 利用勾股定理求出,即可得以为边的正方形的面积.【详解】概念理解:解:正方形为蝴蝶四边形,理由如下:∵四边形是正方形,∴,,,.∴,,.∴和都是等腰直角三角形,正方形的对边、分别为斜边.∴正方形为蝴蝶四边形.性质探究:证明:∵四边形是蝴蝶四边形,,∴和都是等腰直角三角形,,,.∴.∴.∴.拓展应用:解:①当时,如图3,延长交于N,∵,,∵,∴,∴,,∵,∴,,∴,∴,∴,∴,∴.②当时,如图4,过点A作,过点A作于点H.∴四边形是矩形,∴,,∵,,∵.∴.∴.∵,∵. ③当时,不符合题意,舍去. 综上,的值为5或.【点睛】本题考查了正方形的性质,等腰三角形的判定与性质,勾股定理,全等三角形的判定与性质.熟练掌握正方形的性质,等腰三角形的判定与性质,勾股定理,全等三角形的判定与性质是解题的关键. 题型17 与正方形有关的动点问题73.(2024·甘肃临夏·中考真题)如图1,在矩形中,点为边上不与端点重合的一动点,点是对角线上一点,连接,交于点,且.【模型建立】(1)求证:;【模型应用】(2)若,,,求的长;【模型迁移】(3)如图2,若矩形是正方形,,求的值.【答案】(1)见解析;(2);(3)【分析】本题考查矩形的性质,正方形的性质,勾股定理,相似三角形的判定和性质,熟练掌握相关知识点,构造相似三角形,是解题的关键:(1)根据矩形的性质,结合同角的余角,求出,即可得证;(2)延长交于点,证明,得到,再证明,求出的长,进而求出的长;(3)设正方形的边长为,延长交于点,证明,得到,进而得到,勾股定理求出,进而求出的长,即可得出结果.【详解】解:(1)∵矩形,∴,∴,∵,∴,∴,∴;(2)延长交于点,∵矩形,∴,∴,∴,∴,∵,,∴,∴,∴,∴;(3)设正方形的边长为,则:,延长交于点,∵正方形,∴,∴,∴,∴,∴,∵,∴,∴.74.(2023·海南·中考真题)如图,在正方形中,,点E在边上,且,点P为边上的动点,连接,过点E作,交射线于点F,则 .若点M是线段的中点,则当点P从点A运动到点B时,点M运动的路径长为 . 【答案】【分析】过作交延长线于点,证明,得到即可求解;过作交于点,交于点,证明,得到,故点的运动轨迹是一条平行于的线段,当点与重合时,,当点与重合时,由得到,即,从而求解.【详解】解:过作交延长线于点 则四边形为矩形,∴由题意可得:∵∴又∵∴∴∴过作交于点,交于点,如下图 ∵,∴在和中∴∴,故点的运动轨迹是一条平行于的线段,当点与重合时,当点与重合时,,∴∵∴∴,即解得∵、分别为、的中点∴是的中位线∴,即点运动的路径长为故答案为:,【点睛】本题考查了正方形的性质,点的轨迹,全等三角形的判定与性质,相似三角形的判定与性质,解题的关键是掌握相关基础性质,确定出点的轨迹,正确求出线段.75.(2022·辽宁丹东·中考真题)已知矩形,点E为直线上的一个动点(点E不与点B重合),连接,以为一边构造矩形(A,E,F,G按逆时针方向排列),连接.(1)如图1,当时,请直接写出线段与线段的数量关系与位置关系;(2)如图2,当时,请猜想线段与线段的数量关系与位置关系,并说明理由;(3)如图3,在(2)的条件下,连接,,分别取线段,的中点M,N,连接,,,若,,请直接写出的面积.【答案】(1),(2),,理由见解析(3)或【分析】(1)证明,进一步得出结论;(2)证明,进一步得出结论;(3)当点在线段上时,解斜三角形,求得,根据(2)可得,从而得出三角形的面积,可证得,与的面积比等于,进而求得结果;同理可得点在的延长线时的情形.【详解】(1),理由如下:由题意得:四边形和四边形是正方形,,,,,,,,,,,;(2),,理由如下:由(1)得:,,,,,,,;(3)如图,当在线段上时,作于,,设,,在中,,,,在中,,,,,,,由(2)得:,,,,在和中,点是的中点,点是的中点,,,,是的中位线,,,,,如图,同上可得:,,,,综上所述:的面积是或.【点睛】本题主要考查了正方形,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解决问题的关键是类比的方法.76.(2022·浙江绍兴·中考真题)如图,在平行四边形中,,,,是对角线上的动点,且,,分别是边,边上的动点.下列四种说法:①存在无数个平行四边形;②存在无数个矩形;③存在无数个菱形;④存在无数个正方形.其中正确的个数是( )A.1 B.2 C.3 D.4【答案】C【分析】根据题意作出合适的辅助线,然后逐一分析即可.【详解】如图,连接AC、与BD交于点O,连接ME,MF,NF,EN,MN,∵四边形ABCD是平行四边形∴OA=OC,OB=OD∵BE=DF∴OE=OF∵点E、F时BD上的点,∴只要M,N过点O,那么四边形MENF就是平行四边形∴存在无数个平行四边形MENF,故①正确;只要MN=EF,MN过点O,则四边形MENF是矩形,∵点E、F是BD上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,MN过点O,则四边形MENF是菱形;∵点E、F是BD上的动点,∴存在无数个菱形MENF,故③正确;只要MN=EF,MN⊥EF,MN过点O,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误;故选:C【点睛】本题考查正方形的判定、菱形的判定、矩形的判定、平行四边形的判定、解答本题的关键时明确题意,作出合适的辅助线. 题型18 与正方形有关的最值问题77.(2024·江西·中考真题)综合与实践如图,在中,点D是斜边上的动点(点D与点A不重合),连接,以为直角边在的右侧构造,,连接,.特例感知(1)如图1,当时,与之间的位置关系是______,数量关系是______;类比迁移(2)如图2,当时,猜想与之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F与点C关于对称,连接,,,如图3.已知,设,四边形的面积为y.①求y与x的函数表达式,并求出y的最小值;②当时,请直接写出的长度.【答案】(1),(2)与之间的位置关系是,数量关系是;(3)①y与x的函数表达式,当时,的最小值为;②当时,为或.【分析】(1)先证明,,,可得;再结合全等三角形的性质可得结论;(2)先证明,,结合,可得;再结合相似三角形的性质可得结论;(3)①先证明四边形为正方形,如图,过作于,可得,,再分情况结合勾股定理可得函数解析式,结合函数性质可得最小值;②如图,连接,,,证明,可得在上,且为直径,则,过作于,过作于,求解正方形面积为,结合,再解方程可得答案.【详解】解:(1)∵,∴,,∵,∴,,∴;∴,,∴,∴,∴与之间的位置关系是,数量关系是;(2)与之间的位置关系是,数量关系是;理由如下:∵,∴,,∵,∴;∴,,∴,∴,∴与之间的位置关系是,数量关系是;(3)由(1)得:,,,∴,都为等腰直角三角形;∵点F与点C关于对称,∴为等腰直角三角形;,∴四边形为正方形,如图,过作于,∵,,∴,,当时,∴,∴,如图,当时,此时,同理可得:,∴y与x的函数表达式为,当时,的最小值为;②如图,∵,正方形,记正方形的中心为,∴,连接,,,∴,∴在上,且为直径,∴,过作于,过作于,∴,,∴,∴,∴正方形面积为,∴,解得:,,经检验都符合题意,如图,综上:当时,为或.【点睛】本题考查的是全等三角形的判定与性质,正方形的判定与性质,勾股定理的应用,相似三角形的判定与性质,直角三角形斜边上的中线的性质,二次函数的性质,圆的确定及圆周角定理的应用,本题难度大,作出合适的辅助线是解本题的关键.78.(2024·四川泸州·中考真题)如图,在边长为6的正方形中,点E,F分别是边上的动点,且满足,与交于点O,点M是的中点,G是边上的点,,则的最小值是( ) A.4 B.5 C.8 D.10【答案】B【分析】本题主要考查了正方形的性质,全等三角形的性质与判定,直角三角形的性质,勾股定理等等,先证明得到,进而得到,则由直角三角形的性质可得,如图所示,在延长线上截取,连接,易证明,则,可得当H、D、F三点共线时,有最小值,即此时有最小值,最小值即为的长的一半,求出,在中,由勾股定理得,责任的最小值为5.【详解】解:∵四边形是正方形,∴,又∵,∴,∴,∴,∵点M是的中点,∴;如图所示,在延长线上截取,连接, ∵,∴,∴,∴,∴当H、D、F三点共线时,有最小值,即此时有最小值,最小值即为的长的一半,∵,,∴,∴,第五章 四边形第26讲 正方形的性质与判定(思维导图+1考点+1命题点21种题型(含3种解题技巧))试卷第1页,共3页01考情透视·目标导航02知识导图·思维引航03考点突破·考法探究考点 正方形04题型精研·考向洞悉命题点 正方形的性质与判定 题型01 利用正方形的性质求角度 题型02 利用正方形的性质求线段长 题型03 利用正方形的性质求周长 题型04 利用正方形的性质求面积 题型05 根据正方形的性质求点的坐标 题型06 利用正方形的性质证明 题型07 正方形的折叠问题 题型08 求正方形重叠部分面积 题型09 添加一个条件使四边形是正方形 题型10 证明四边形是正方形 题型11 根据正方形的性质与判定求角度 题型12 根据正方形的性质与判定求线段长 题型13 根据正方形的性质与判定求面积 题型14 根据正方形的性质与判定解决多结论问题 题型15 与正方形有关的规律探究问题 题型16 正方形有关的新定义问题 题型17 与正方形有关的动点问题 题型18 与正方形有关的最值问题 题型19 正方形与函数综合 题型20 与正方形有关的存在性问题 题型21 与正方形有关的材料阅读类问题01考情透视·目标导航中考考点 考查频率 新课标要求正方形的有关证明与计算 ★★ 理解正方形的概念; 探索并证明菱形的性质定理及其判定定理; 理解矩形、菱形、正方形之间的包含关系.【考情分析】正方形是最特殊的四边形,它具有平行四边形、矩形、菱形的所有性质,对于正方形的考查多数是考查其性质,即在正方形的背景下考查全等三角形、相似三角形、圆等内容,试题形式多样,难度不等. 【命题预测】正方形是特殊平行四边形中比较重要的图形,也是几何图形中难度比较大的几个图形之一,年年都会考查,预计2025年各地中考还将出现. 其中,正方还经常成为综合压轴题的问题背景来考察,而正方其他出题类型还有选择、填空题的压轴题,难度都比较大,需要加以重视. 解答题中考查正方形的性质和判定,45°半角模型,一般和三角形全等、解直角三角形、二次函数、动态问题综合应用的可能性比较大.02知识导图·思维引航03考点突破·考法探究考点一 正方形1.正方形的定义:有一组邻边相等且只有一个角是直角的平行四边形是正方形.2.正方形的性质:1)正方形的四个角都是直角,四条边都相等,对边平行.2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.【补充】1)正方形具有平行四边形、矩形、菱形的所有性质.2)一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°.3)两条对角线把正方形分成四个全等的等腰直角三角形.4)正方形的面积是边长的平方,也可表示为对角线长平方的一半.3.正方形的对称性:1)正方形是轴对称图形,它有四条对称轴,分别是对边中点所在的直线和两条对角线所在的直线.2)正方形是中心对称图形,对角线的交点是对称中心.4.正方形的判定:定义法 平行四边形+一组邻边相等+一个角为直角 有一组邻边相等且有一个角是直角的平行四边形是正方形判定定理 矩形+一组邻边相等 有一组邻边相等的矩形是正方形矩形+对角线互相垂直 对角线互相垂直的矩形是正方形菱形+一个角是直角 有一个角是直角的菱形是正方形菱形+对角线相等 对角线相等的菱形是正方形1.(2021·黑龙江·中考真题)如图,在矩形中,对角线相交于点,在不添加任何辅助线的情况下,请你添加一个条件 ,使矩形是正方形.2.(2024·甘肃兰州·中考真题)如图,四边形为正方形,为等边三角形,于点F,若,则 .3.(2024·新疆·中考真题)如图,在正方形中,若面积,周长,则 .4.(2024·福建·中考真题)如图,正方形的面积为4,点,,,分别为边,,,的中点,则四边形的面积为 . 5.(2023·湖南怀化·中考真题)如图,点是正方形的对角线上的一点,于点,.则点到直线的距离为 . 04题型精研·考向洞悉命题点一 正方形的性质与判定 题型01 利用正方形的性质求角度1.(2023·重庆·中考真题)如图,在正方形中,点,分别在,上,连接,,,.若,则一定等于( ) A. B. C. D.2.(2021·重庆·中考真题)如图,把含30°的直角三角板PMN放置在正方形ABCD中,,直角顶点P在正方形ABCD的对角线BD上,点M,N分别在AB和CD边上,MN与BD交于点O,且点O为MN的中点,则的度数为( )A.60° B.65° C.75° D.80°3.(2023·山东·中考真题)如图,点E是正方形内的一点,将绕点B按顺时针方向旋转得到.若,则 度. 4.(2024·宁夏·中考真题)如图,在正五边形的内部,以边为边作正方形,连接,则 . 题型02 利用正方形的性质求线段长在正方形问题中,一般可以通过证三角形全等来证两条线段相等,也可以利用正方形的角是直角来构造直角三角形,利用勾股定理解题.在正方形中,也常用对角线互相垂直平分证明线段相等.5.(2023·浙江绍兴·中考真题)如图,正方形中,,点E在边上,是的中点,点H在边上,,则的长为( ).A. B. C. D.6.(2024·江苏南通·中考真题)如图,在中,,.正方形的边长为,它的顶点D,E,G分别在的边上,则的长为 .7.(2024·内蒙古·中考真题)如图,正方形的面积为50,以为腰作等腰,平分交于点G,交的延长线于点E,连接.若,则 .8.(2024·吉林·中考真题)如图,正方形的对角线相交于点O,点E是的中点,点F是上一点.连接.若,则的值为 .の 题型03 利用正方形的性质求周长9.(2024·内蒙古呼伦贝尔·中考真题)如图,边长为2的正方形的对角线与相交于点.是边上一点,是上一点,连接.若与关于直线对称,则的周长是( ) A. B. C. D.10.(2024·江苏连云港·中考真题)如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是,则图中阴影图形的周长是( ) A. B. C. D.11.(2023·山东枣庄·中考真题)如图,在正方形中,对角线与相交于点O,E为上一点,,F为的中点,若的周长为32,则的长为 . 12.(2022·江苏南通·中考真题)如图,点O是正方形的中心,.中,过点D,分别交于点G,M,连接.若,则的周长为 . 题型04 利用正方形的性质求面积13.(2023·广东·中考真题)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为 . 14.(2023·湖南·中考真题)七巧板是我国民间广为流传的一种益智玩具,某同学用边长为的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为 . 15.(2023·四川内江·中考真题)如图,四边形是边长为4的正方形,是等边三角形,则阴影部分的面积为 . 16.(2023·浙江金华·中考真题)如图,在中,,以其三边为边在的同侧作三个正方形,点在上,与交于点与交于点.若,则的值是( ) A. B. C. D.17.(2022·贵州黔西·中考真题)如图,边长为4的正方形ABCD的对角线交于点O,以OC为半径的扇形的圆心角.则图中阴影部分面积是 . 题型05 根据正方形的性质求点的坐标18.(2024·河南·中考真题)如图,在平面直角坐标系中,正方形的边在x轴上,点A的坐标为,点E在边上.将沿折叠,点C落在点F处.若点F的坐标为,则点E的坐标为 .19.(2024·江苏常州·中考真题)如图,在平面直角坐标系中,正方形的对角线相交于原点O.若点A的坐标是,则点C的坐标是 .20.(2023·甘肃武威·中考真题)如图1,正方形的边长为4,为边的中点.动点从点出发沿匀速运动,运动到点时停止.设点的运动路程为,线段的长为,与的函数图象如图2所示,则点的坐标为( ) A. B. C. D.21.(2022·山东威海·中考真题)正方形ABCD在平面直角坐标系中的位置如图所示,点A的坐标为(2,0),点B的坐标为(0,4).若反比例函数y=(k≠0)的图象经过点C,则k的值为 .22.(2021·浙江金华·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC及四边形②的边CD都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是 . 题型06 利用正方形的性质证明23.(2024·甘肃临夏·中考真题)如图,对折边长为2的正方形纸片,为折痕,以点为圆心,为半径作弧,分别交,于,两点,则的长度为 (结果保留).24.(2024·江苏徐州·中考真题)已知:如图,四边形为正方形,点E在的延长线上,连接.(1)求证:;(2)若,求证:.25.(2024·广东广州·中考真题)如图,点,分别在正方形的边,上,,,.求证:.26.(2023·湖北黄石·中考真题)如图,正方形中,点,分别在,上,且,与相交于点. (1)求证:≌;(2)求的大小.27.(2022·贵州贵阳·中考真题)如图,在正方形中,为上一点,连接,的垂直平分线交于点,交于点,垂足为,点在上,且.(1)求证:;(2)若,,求的长. 题型07 正方形的折叠问题28.(2023·湖北·中考真题)如图,将边长为3的正方形沿直线折叠,使点的对应点落在边上(点不与点重合),点落在点处,与交于点,折痕分别与边,交于点,连接. (1)求证:;(2)若,求的长.29.(2022·辽宁抚顺·中考真题)如图,正方形的边长为10,点G是边的中点,点E是边上一动点,连接,将沿翻折得到,连接.当最小时,的长是 .30.(2022·河南·中考真题)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动. (1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:______.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=______°,∠CBQ=______°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长. 题型08 求正方形重叠部分面积31.(2023·山东菏泽·一模)如图,两个边长为4的正方形重叠在一起,点是其中一个正方形的中心,则图中阴影部分的面积为 .32.(2021·辽宁抚顺·三模)如图,正方形的对角线、相交于点,点又是正方形的一个顶点,而且这两个正方形的边长相等.设两个正方形重合部分的面积为,正方形的面积为,通过探索,我们发现:无论正方形绕点怎样转动,始终有 .33.(2020·河北·二模)在平面上,边长为的正方形和短边长为的矩形几何中心重合,如图①,当正方形和矩形都水平放置时,容易求出重叠面积.甲、乙、丙三位同学分别给出了两个图形不同的重叠方式;甲:矩形绕着几何中心旋转,从图②到图③的过程中,重叠面积大小不变.乙:如图④,矩形绕着几何中心继续旋转,矩形的两条长边与正方形的对角线平行时,此时的重叠面积大于图③的重叠面积.丙:如图⑤,将图④中的矩形向左上方平移,使矩形的一条长边恰好经过正方形的对角线,此时的重叠面积是个图形中最小的.下列说法正确的是( )A.甲、乙、丙都对 B.只有乙对 C.只有甲不对 D.甲、乙、丙都不对34.(2020·浙江·中考真题)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖的面积为a,小正方形地砖的面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为 (用含a,b的代数式表示). 题型09 添加一个条件使四边形是正方形35.(2020·湖北襄阳·中考真题)已知四边形是平行四边形,,相交于点O,下列结论错误的是( )A.,B.当时,四边形是菱形C.当时,四边形是矩形D.当且时,四边形是正方形36.(2023·辽宁鞍山·一模)如图中,阴影部分表示的四边形是 .37.(2023·陕西宝鸡·模拟预测)在下列条件中,能够判定矩形为正方形的是( )A. B. C. D.38.(2024·河北秦皇岛·一模)数学课上,嘉嘉作线段的垂直平分线时,是这样操作的:分别以点,为圆心,大于长为半径画弧,两弧相交于点,,则直线即为所求.作完图之后,嘉嘉经过测量发现,,根据他的作图方法和测量可知四边形是正方形,嘉嘉的理由是( )A.两组对边分别平行的菱形是正方形 B.四条边相等的菱形是正方形C.对角线相等的菱形是正方形 D.有一个角是直角的菱形是正方形39.(2024·山东东营·中考真题)如图,四边形是平行四边形,从①,②,③,这三个条件中任意选取两个,能使是正方形的概率为( )A. B. C. D.40.(2024·黑龙江大兴安岭地·中考真题)已知菱形中对角线相交于点O,添加条件 可使菱形成为正方形.41.(2021·广西玉林·中考真题)一个四边形顺次添加下列中的三个条件便得到正方形:a.两组对边分别相等 b.一组对边平行且相等c.一组邻边相等 d.一个角是直角顺次添加的条件:①a→c→d②b→d→c③a→b→c则正确的是:( )A.仅① B.仅③ C.①② D.②③ 题型10 证明四边形是正方形判定一个四边形是正方形通常先证明它是矩形,再证明它有一组邻边相等或对角线互相垂直;或者先证明它是菱形,再证明它有一个角是直角或对角线相等;还可以先判定四边形是平行四边形,再证明它有一个角为直角和一组邻边相等.42.(2023·湖北十堰·中考真题)如图,的对角线交于点,分别以点为圆心,长为半径画弧,两弧交于点,连接. (1)试判断四边形的形状,并说明理由;(2)请说明当的对角线满足什么条件时,四边形是正方形?43.(2024·内蒙古·中考真题)如图,,平分,.(1)求证:四边形是平行四边形;(2)过点B作于点G,若,请直接写出四边形的形状.44.(2021·内蒙古呼伦贝尔·中考真题)如图,是的角平分线,,,垂足分别是E、F,连接,与相交千点H.(1)求证:;(2)满足什么条件时,四边形是正方形?说明理由.45.(2024·湖北武汉·模拟预测)如图,在平行四边形中,对角线与相交于点E,,点G为的中点,连接的延长线交的延长线于点F,连接.(1)求证:;(2)请增加一个条件,使得四边形为正方形.(不需要说明理由)46.(2023·山东青岛·一模)如图,在中,为边的中点,连接并延长,交的延长线于点,延长至点,使,分别连接,,. (1)求证:;(2)若平分,已知______(从以下两个条件中选择一个作为已知条件并补写相应内容,填写序号),四边形为正方形?请证明.①平行四边形的边满足______时②平行四边形的角满足______时 题型11 根据正方形的性质与判定求角度47.(2021·湖南株洲·中考真题)《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),它的基本组件为斜角形,包括长斜两只、右半斜两只、左半斜两只、闺一只、小三斜四只、大三斜两只,共十三只(图①中的“様”和“隻”为“样”和“只”).图②为某蝶几设计图,其中和为“大三斜”组件(“一様二隻”的大三斜组件为两个全等的等腰直角三角形),已知某人位于点处,点与点关于直线对称,连接、.若,则 度.48.(2023·四川·中考真题)如图,半径为的扇形中,,是上一点,,,垂足分别为,,若,则图中阴影部分面积为( ) A. B. C. D.49.(2023·福建宁德·一模)如图,将矩形沿折叠,使顶点B落在上点处;再将矩形展平,沿折叠,使顶点B落在上点G处,连接. 小明发现可以由绕某一点顺时针旋转得到,则 °.50.(2020·黑龙江哈尔滨·二模)正方形中,点为对角线上的一个动点,连接,并延长交射线于点,连接,若为等腰三角形,则 . 题型12 根据正方形的性质与判定求线段长51.(2024·江苏无锡·中考真题)如图,在中,.(1)尺规作图:作的角平分线,在角平分线上确定点,使得;(不写作法,保留痕迹)(2)在(1)的条件下,若,,,则的长是多少?(请直接写出的值)52.(2024·四川广安·中考真题)如图,直线与轴、轴分别相交于点,,将绕点逆时针方向旋转得到,则点的坐标为 .53.(2024·四川南充·中考真题)如图,在矩形中,为边上一点,,将沿折叠得,连接,,若平分,,则的长为 . 题型13 根据正方形的性质与判定求面积54.(2023·青海西宁·中考真题)如图,边长为的正方形内接于,分别过点A,D作⊙O的切线,两条切线交于点P,则图中阴影部分的面积是 . 55.(2021·内蒙古呼伦贝尔·中考真题)如图,两个半径长均为的直角扇形的圆心分别在对方的圆弧上,扇形的圆心C是的中点,且扇形绕着点C旋转,半径,交于点G,半径,交于点H,则图中阴影面积等于( )A. B. C. D.56.(2021·江苏扬州·中考真题)如图,在中,的角平分线交于点D,.(1)试判断四边形的形状,并说明理由;(2)若,且,求四边形的面积.57.(2020·江苏苏州·中考真题)如图,在扇形中,已知,,过的中点作,,垂足分别为、,则图中阴影部分的面积为( )A. B. C. D. 题型14 根据正方形的性质与判定解决多结论问题58.(2024·山东东营·中考真题)如图,在正方形中,与交于点O,H为延长线上的一点,且,连接,分别交,BC于点E,F,连接,则下列结论:①;②;③平分;④.其中正确结论的个数是( )A.1个 B.2个 C.3个 D.4个59.(2024·四川遂宁·中考真题)如图,在正方形纸片中,是边的中点,将正方形纸片沿折叠,点落在点处,延长交于点,连结并延长交于点.给出以下结论:①为等腰三角形;②为的中点;③;④.其中正确结论是 .(填序号)60.(2023·黑龙江·中考真题)如图,在正方形中,点分别是上的动点,且,垂足为G,将沿翻折,得到交于点P,对角线交于点H,连接,下列结论正确的是:①;②;③若,则四边形是菱形;④当点E运动到的中点,;⑤.( ) A.①②③④⑤ B.①②③⑤ C.①②③ D.①②⑤61.(2021·四川攀枝花·中考真题)如图,在正方形ABCD中,点M、N分别为边CD、BC上的点,且DM=CN,AM与DN交于点P,连接AN,点Q为AN的中点,连接PQ,BQ,若AB=8,DM=2,给出以下结论:①AM⊥DN;②∠MAN=∠BAN;③PQN≌BQN;④PQ=5.其中正确的结论有 (填上所有正确结论的序号) 题型15 与正方形有关的规律探究问题62.(2023·山东青岛·中考真题)如图①,正方形的面积为1. (1)如图②,延长到,使,延长到,使,则四边形的面积为______;(2)如图③,延长到,使,延长到,使,则四边形的面积为______;(3)延长到,使,延长到,使,则四边形的面积为______.63.(2022·山东烟台·中考真题)如图,正方形ABCD边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为( ) A.(2)5 B.(2)6 C.()5 D.()664.(2021·内蒙古呼伦贝尔·中考真题)如图,点在直线上,点的横坐标为1,过点作轴,垂足为,以为边向右作正方形,延长交直线l于点;以为边向右作正方形,延长交直线l于点;……;按照这个规律进行下去,点的坐标为 .65.(2020·辽宁·中考真题)如图,,正方形,正方形,正方形,正方形,…,的顶点,在射线上,顶点,在射线上,连接交于点,连接交于点,连接交于点,…,连接交于点,连接交于点,…,按照这个规律进行下去,设与的面积之和为与的面积之和为与的面积之和为,…,若,则等于 .(用含有正整数的式子表示)66.(2021·山东东营·中考真题)如图,正方形中,,AB与直线l所夹锐角为,延长交直线l于点,作正方形,延长交直线l于点,作正方形,延长交直线l于点,作正方形,…,依此规律,则线段 .67.(2024·黑龙江大兴安岭地·中考真题)如图,在平面直角坐标系中,正方形顶点M的坐标为,是等边三角形,点B坐标是,在正方形内部紧靠正方形的边(方向为)做无滑动滚动,第一次滚动后,点A的对应点记为,的坐标是;第二次滚动后,的对应点记为,的坐标是;第三次滚动后,的对应点记为,的坐标是;如此下去,……,则的坐标是 . 题型16 正方形有关的新定义问题68.(2023·江苏·中考真题)综合与实践定义:将宽与长的比值为(为正整数)的矩形称为阶奇妙矩形.(1)概念理解:当时,这个矩形为1阶奇妙矩形,如图(1),这就是我们学习过的黄金矩形,它的宽()与长的比值是_________.(2)操作验证:用正方形纸片进行如下操作(如图(2)):第一步:对折正方形纸片,展开,折痕为,连接;第二步:折叠纸片使落在上,点的对应点为点,展开,折痕为;第三步:过点折叠纸片,使得点分别落在边上,展开,折痕为.试说明:矩形是1阶奇妙矩形. (3)方法迁移:用正方形纸片折叠出一个2阶奇妙矩形.要求:在图(3)中画出折叠示意图并作简要标注.(4)探究发现:小明操作发现任一个阶奇妙矩形都可以通过折纸得到.他还发现:如图(4),点为正方形边上(不与端点重合)任意一点,连接,继续(2)中操作的第二步、第三步,四边形的周长与矩形的周长比值总是定值.请写出这个定值,并说明理由. 69.(2021·上海·中考真题)定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为2,中心为O,在正方形外有一点,当正方形绕着点O旋转时,则点P到正方形的最短距离d的取值范围为 .70.(2020·湖南益阳·中考真题)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形,根据以上定义,解决下列问题:(1)如图1,正方形中,是上的点,将绕点旋转,使与重合,此时点的对应点在的延长线上,则四边形为“直等补”四边形,为什么?(2)如图2,已知四边形是“直等补”四边形,,,,点到直线的距离为.①求的长.②若、分别是、边上的动点,求周长的最小值.71.(2024·江苏常州·模拟预测)在学习了“中心对称图形…平行四边形”这一章后,同学小明对特殊四边形的探究产生了浓厚的兴趣,他发现除了已经学过的特殊四边形外,还有很多比较特殊的四边形,勇于创新的他大胆地作出这样的定义:有一个内角是直角,且对角线互相垂直的四边形称为“双直四边形”.请你根据以上定义,回答下列问题:(1)下列关于“双直四边形”的说法,正确的有 (把所有正确的序号都填上);①双直四边形”的对角线不可能相等:②“双直四边形”的面积等于对角线乘积的一半;③若一个“双直四边形”是中心对称图形,则其一定是正方形.(2)如图①,正方形中,点、分别在边、上,连接,,,,若,证明:四边形为“双直四边形”;(3)如图②,在平面直角坐标系中,已知点,,点在线段上且,是否存在点在第一象限,使得四边形为“双直四边形”,若存在;求出所有点的坐标,若不存在,请说明理由.72.(2024·辽宁大连·模拟预测)点M在四边形内,点M和四边形的一组对边组成两个三角形,如果这两个三角形都是以对边为斜边的等腰直角三角形,那么定义该四边形 为蝴蝶四边形.例如,如图1,在四边形中, , ,,则四边形 为蝴蝶四边形.【概念理解】如图2,正方形 中,对角线 ,相交于点 M.判断正方形 是否为蝴蝶四边形,说明理由.【性质探究】如图3,在蝴蝶四边形中,.求证:.【拓展应用】在蝴蝶四边形中, °,,当 是等腰三角形时,求此时的值. 题型17 与正方形有关的动点问题73.(2024·甘肃临夏·中考真题)如图1,在矩形中,点为边上不与端点重合的一动点,点是对角线上一点,连接,交于点,且.【模型建立】(1)求证:;【模型应用】(2)若,,,求的长;【模型迁移】(3)如图2,若矩形是正方形,,求的值.74.(2023·海南·中考真题)如图,在正方形中,,点E在边上,且,点P为边上的动点,连接,过点E作,交射线于点F,则 .若点M是线段的中点,则当点P从点A运动到点B时,点M运动的路径长为 . 75.(2022·辽宁丹东·中考真题)已知矩形,点E为直线上的一个动点(点E不与点B重合),连接,以为一边构造矩形(A,E,F,G按逆时针方向排列),连接.(1)如图1,当时,请直接写出线段与线段的数量关系与位置关系;(2)如图2,当时,请猜想线段与线段的数量关系与位置关系,并说明理由;(3)如图3,在(2)的条件下,连接,,分别取线段,的中点M,N,连接,,,若,,请直接写出的面积.76.(2022·浙江绍兴·中考真题)如图,在平行四边形中,,,,是对角线上的动点,且,,分别是边,边上的动点.下列四种说法:①存在无数个平行四边形;②存在无数个矩形;③存在无数个菱形;④存在无数个正方形.其中正确的个数是( )A.1 B.2 C.3 D.4 题型18 与正方形有关的最值问题77.(2024·江西·中考真题)综合与实践如图,在中,点D是斜边上的动点(点D与点A不重合),连接,以为直角边在的右侧构造,,连接,.特例感知(1)如图1,当时,与之间的位置关系是______,数量关系是______;类比迁移(2)如图2,当时,猜想与之间的位置关系和数量关系,并证明猜想.拓展应用(3)在(1)的条件下,点F与点C关于对称,连接,,,如图3.已知,设,四边形的面积为y.①求y与x的函数表达式,并求出y的最小值;②当时,请直接写出的长度.78.(2024·四川泸州·中考真题)如图,在边长为6的正方形中,点E,F分别是边上的动点,且满足,与交于点O,点M是的中点,G是边上的点,,则的最小值是( ) A.4 B.5 C.8 D.1079.(2021·青海·中考真题)如图,正方形的边长为8,M在上,且,N是上一动点,则的最小值为80.(2023·广东广州·中考真题)如图,在正方形中,E是边上一动点(不与点A,D重合).边关于对称的线段为,连接. (1)若,求证:是等边三角形;(2)延长,交射线于点G;①能否为等腰三角形?如果能,求此时的度数;如果不能,请说明理由;②若,求面积的最大值,并求此时的长.81.(2024·江苏扬州·中考真题)如图,点依次在直线上,点固定不动,且,分别以为边在直线同侧作正方形、正方形,,直角边恒过点,直角边恒过点.(1)如图,若,,求点与点之间的距离;(2)如图,若,当点在点之间运动时,求的最大值;(3)如图,若,当点在点之间运动时,点随之运动,连接,点是的中点,连接,则的最小值为_______. 题型19 正方形与函数综合82.(2023·江苏泰州·中考真题)在平面直角坐标系中,点,的位置和函数、的图像如图所示.以为边在x轴上方作正方形,边与函数的图像相交于点E,边与函数、的图像分别相交于点G、H,一次函数的图像经过点E、G,与y轴相交于点P,连接. (1),,求函数的表达式及的面积;(2)当a、m在满足的条件下任意变化时,的面积是否变化?请说明理由;(3)试判断直线与边的交点是否在函数的图像上?并说明理由.83.(2023·湖南·中考真题)如图所示,在平面直角坐标系中,四边形为正方形,其中点A、C分别在x轴负半轴,y轴负半轴上,点B在第三象限内,点,点在函数的图像上 (1)求k的值;(2)连接,记的面积为S,设,求T的最大值.84.(2022·黑龙江齐齐哈尔·中考真题)综合与探究如图,某一次函数与二次函数的图象交点为A(-1,0),B(4,5).(1)求抛物线的解析式;(2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为 ;(3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度的最大值;(4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标. 题型20 与正方形有关的存在性问题85.(2022·内蒙古赤峰·中考真题)同学们还记得吗?图①、图②是人教版八年级下册教材“实验与探究”中我们研究过的两个图形.受这两个图形的启发,数学兴趣小组提出了以下三个问题,请你回答:(1)【问题一】如图①,正方形的对角线相交于点,点又是正方形的一个顶点,交于点,交于点,则与的数量关系为_________;(2)【问题二】受图①启发,兴趣小组画出了图③:直线、经过正方形的对称中心,直线分别与、交于点、,直线分别与、交于点、,且,若正方形边长为8,求四边形的面积;(3)【问题三】受图②启发,兴趣小组画出了图④:正方形的顶点在正方形的边上,顶点在的延长线上,且,.在直线上是否存在点,使为直角三角形?若存在,求出的长度;若不存在,说明理由.86.(2020·湖南衡阳·中考真题)如图1,平面直角坐标系中,等腰的底边在轴上,,顶点在的正半轴上,,一动点从出发,以每秒1个单位的速度沿向左运动,到达的中点停止.另一动点从点出发,以相同的速度沿向左运动,到达点停止.已知点、同时出发,以为边作正方形,使正方形和在的同侧.设运动的时间为秒().(1)当点落在边上时,求的值;(2)设正方形与重叠面积为,请问是存在值,使得?若存在,求出值;若不存在,请说明理由;(3)如图2,取的中点,连结,当点、开始运动时,点从点出发,以每秒个单位的速度沿运动,到达点停止运动.请问在点的整个运动过程中,点可能在正方形内(含边界)吗?如果可能,求出点在正方形内(含边界)的时长;若不可能,请说明理由. 题型21 与正方形有关的材料阅读类问题87.(2022·江苏盐城·中考真题)【经典回顾】梅文鼎是我国清初著名的数学家,他在《勾股举隅》中给出多种证明勾股定理的方法图1是其中一种方法的示意图及部分辅助线.在中,,四边形、和分别是以的三边为一边的正方形.延长和,交于点,连接并延长交于点,交于点,延长交于点.(1)证明:;(2)证明:正方形的面积等于四边形的面积;(3)请利用(2)中的结论证明勾股定理.(4)【迁移拓展】如图2,四边形和分别是以的两边为一边的平行四边形,探索在下方是否存在平行四边形,使得该平行四边形的面积等于平行四边形、的面积之和.若存在,作出满足条件的平行四边形(保留适当的作图痕迹);若不存在,请说明理由.88.(2024·四川成都·模拟预测)如图1,在正方形中,,P是边上的一点,连接,过点D作于点H,在边上有一点E,连接,过点H作,交边于点F.(1)求证:;(2)如图2,连接,交线段于点G,当为等边三角形时,求的长;(3)如图3,设M是的中点,连接,分别交线段,于点K,N,当P是的中点时,在边上是否存在点E,使得?若存在,求此时的长;若不存在,请说明理由.89.(2022·贵州黔东南·中考真题)阅读材料:小明喜欢探究数学问题,一天杨老师给他这样一个几何问题:如图,和都是等边三角形,点在上.求证:以、、为边的三角形是钝角三角形.(1)【探究发现】小明通过探究发现:连接,根据已知条件,可以证明,,从而得出为钝角三角形,故以、、为边的三角形是钝角三角形.请你根据小明的思路,写出完整的证明过程.(2)【拓展迁移】如图,四边形和四边形都是正方形,点在上.①试猜想:以、、为边的三角形的形状,并说明理由.②若,试求出正方形的面积.90.(2021·山东济宁·中考真题)研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题.(1)阅读材料立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角.例如,正方体(图1).因为在平面中,,与相交于点A,所以直线与所成的就是既不相交也不平行的两条直线与所成的角.解决问题如图1,已知正方体,求既不相交也不平行的两条直线与所成角的大小.(2)如图2,M,N是正方体相邻两个面上的点.①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是 ;②在所选正确展开图中,若点M到,的距离分别是2和5,点N到,的距离分别是4和3,P是上一动点,求的最小值.91.(2024·山东德州·一模)综合与实践【阅读经典】2002年国际数学家大会在北京召开,如图①,大会的会徽是我国古代数学家赵爽画的“弦图”,体现了数学研究中的继承和发展.“弦图”在三国时期被赵爽发明,是证明______的几何方法(填序号).①勾股定理 ②完全平方公式 ③平方差公式【动手操作】如图②,某数学兴趣小组发现,用四个大小、形状完全相同的直角三角形就可以拼接得到一个“赵爽弦图”.组员小明自制了四个大小形状一样,且两直角边的边长分别为5和12的三角板拼成了一个“赵爽弦图”,则中间四边形的面积为______;【问题探究】兴趣小组组员小红发现,通过旋转某个三角形得到一些美妙的结论:如图③,为正方形内一点,满足,将绕点顺时针旋转,得到.(1)连接,若点为的中点,则四边形为______(填形状);【问题解决】(2)若的延长线交于点,连接,点分别为的中点,请仅就图④的情形解决下列问题:①请判断和的数量关系,并说明理由;②若,求的长.92.(2024九年级下·全国·专题练习)阅读与思考阅读下列材料完成后面任务.仅利用折纸将线段三等分我们已经学过线段的中点、三等分点、四等分点等概念,并且可以利用三角函数等方法求出线段的三等分点,下面介绍一种新的方法可以利用其将线段三等分—折纸法.具体步骤如下.第一步:如图1,准备一张长为,宽为的矩形纸片.第二步:如图2,将矩形纸片折叠,使得点B的对应点F落在边上,展开后得到折痕.第三步:如图3,再将该矩形纸片沿过点C的直线折叠,使得点D的对应点H落在上,展开后得到折痕.第四步:如图4,再将矩形纸片折叠,使得点G落在边上的点M处,展开后得到折痕,则M为的三等分点,即.下面是该结论的部分证明过程:证明:由折叠的性质,得.,根据勾股定理,可得.设,,…任务:(1)请再仔细阅读上面的操作步骤,完成材料中剩余的证明过程.(2)在解决问题的过程中,我们通过计算的长,从而得到结论,这里运用的数学思想方法是 .(填序号即可)①函数思想;②公理化思想;③数形结合思想;④分类讨论思想.(3)如图5,在图4的基础上,将矩形纸片沿着折痕折叠后,点C恰好落在上的点Q处,连接,判断四边形的形状,并加以证明. 展开更多...... 收起↑ 资源列表 第26讲 正方形的性质与判定(讲义,1考点+1命题点21种题型(含3种解题技巧))(原卷版).docx 第26讲 正方形的性质与判定(讲义,1考点+1命题点21种题型(含3种解题技巧))(解析版).docx