资源简介 1.分数的意义:把一个整体平均分成若干份,表示其中的一份或者几份的数叫作分数。2.分数的各部分名称:在分数中,分数中间的横线叫作分数线,分数线下面的数是分母,分数线上面的数是分子。3.分数的读法:读分数时,先读分母,再读“分之”,最后读分子。4.分数的写法:写分数时,通常先写分数线,再写分母,最后写分子。5.在分数中,整体既可以是一个事物,也可以是多个事物。6.用分数表示各部分数量与整体之间的关系时,首先要确定整体;接着确定把整体平均分成的份数,并把它作为分数的分母;最后确定各部分数量所占的份数,并把它作为分数的分子。1.用画图法比较分数的大小时,可以直接比较涂色部分的面积,涂色部分的面积大,所表示的分数就大,涂色部分的面积小,所表示的分数就小。2.分子是 1的分数相比较,分母小的分数反而大,分母大的分数反而小。3.同分母分数相比较,分子大的分数就大,分子小的分数就小。1.同分母分数相加,分母不变,分子相加。2.同分母分数相减,分母不变,分子相减。3.计算1减几分之几时,可以把1改写成分子和分母都与减数的分母相同的分数,再按照同分母分数减法的计算方法进行计算。易错知识点01:忽略“平均分”前提,直接分配数量典型错误:将12个苹果分成4份,认为每份是 (未明确是否平均分)。正解:必须强调“平均分”是分数成立的前提,如:正确表述:把12个苹果平均分成4份,每份是 ,即3个。破解方法:用实物操作验证:如分小棒、画圈标记,强化“平均分”动作。易错知识点02:混淆“分数关系”与“具体数量”典型错误:认为“6个桃的 ”是1个桃(误将分数视为固定数量)。正解: 分数表示部分与整体的关系,具体数量需计算:6 ÷ 3 = 2(个)。对比训练:设计对比题:6个桃的 是(2)个;12个桃的 是(4)个;强调“整体变化,分数对应的数量也变化”。易错知识点03:单位处理不当,遗漏或错误添加典型错误:求“一桶水20升的 ”时,答案写“5”(漏单位);将“ 米”简写为“ ”(混淆分数与带单位量)。正解:带单位量词时,结果必须带单位:20 ÷ 4 × 3 = 15(升);无单位分数仅表示关系,如“ ”不能直接与“ 米”等同。易错知识点04:求几分之几时分步计算错误典型错误:求“18个梨的 ”时,直接计算18 × 2 ÷ 3 = 12(未分步列式易混淆逻辑)。正解:分步法:1. 每份量:18 ÷ 3 = 6(个);2. 取2份:6 × 2 = 12(个);书写规范:列式明确标注“总份数÷分母”“每份量×分子”。易错知识点05:分数比较时忽略“整体一致性”典型错误:认为“ 个苹果”比“ 个西瓜”大(不同整体无法直接比较)。正解:分数比较需基于同一整体,如:同一盘水果的 和 比较: > ;不同整体的分数需转化为具体数量再比较。易错知识点06:、应用题中未回溯实际意义典型错误:计算“一桶水用去 后剩5升”时,未验证合理性(20-15=5正确,但若计算结果为负数需纠错)。正解:双轨验根法:1. 数学合理性:计算结果是否为非负数(如剩余水量≥0);2. 实际可行性:如剩余水量是否超过原总量。易错知识点07:易错题专项训练1. 基础纠错(巩固概念)题目:把9块糖平均分成3份,2份是整体的( )→ 正确答案:2/3(具体数量:6块)。错因分析:若填“6块”未写分数,混淆关系与数量。2. 综合应用(提升逻辑)题目:一根绳子长15米,剪下它的 ,剪了多少米?剩余多少米?易错点:学生可能直接15 × = 6(米),剩余9米,但未分步列式导致漏步骤分。【考点精讲一】(23-24三年级下·河南郑州·期末)下面是某学校种植农作物的实验田。(1)种植小麦的面积占整个实验田的,种植棉花的面积占整个实验田的,种植玉米的面积占整个实验田的。(2)王老师想用整个实验田的种植花生,请你在图中涂一涂,并标注出来。【答案】(1);;(2)图见详解【分析】(1)题图中每块地的大小并不一样,所以用分数表示它们之间的关系时必须平均分,以种植小麦部分为标准进行平均分,可以将整个实验田分成大小一样的8份,每份是它的,其中种小麦的面积占1份,所以种植小麦的面积占整个实验田的;以种植棉花部分为标准进行平均分,可以将整个实验田分成大小一样的16份,每份是它的,其中种棉花的面积占1份,所以种植棉花的面积占整个实验田的;以种植玉米部分为标准进行平均分,可以将整个实验田分成大小一样的4份,每份是它的,其中种玉米的面积占1份,所以种植玉米的面积占整个实验田的;(2)以实验田空白的部分为标准进行平均分,可以将整个实验田分成大小一样的12份,每份是它,表示其中1份种花生;据此解答即可。【详解】(1)种植小麦的面积占整个实验田的,种植棉花的面积占整个实验田的,种植玉米的面积占整个实验田的。(2)用整个实验田的种植花生。如图所示:(涂色不唯一)【考点精讲二】(23-24三年级下·广西桂林·期末)三(1)班组建啦啦操队,共有16人参加,其中女生有9人。女生和男生人数各占啦啦操队的几分之几?【答案】女生;男生【分析】用总人数减去女生人数,即为男生人数。求女生人数占啦啦操队的几分之几,女生人数作分子,总人数作分母。求男生人数占啦啦操队的几分之几,男生人数作分子,总人数作分母;据此解答即可。【详解】16-9=7(人)答:女生人数占啦啦操队的;男生人数占啦啦操队的。【考点精讲三】(23-24三年级下·河南商丘·期末)涂一涂,比一比。【答案】涂色见详解;>;<【分析】根据分数的初步认识,将左边长方形看作一个整体平均分为6份,其中的1份用分数表示是,据此涂色即可,将右边长方形看作一个整体平均分为8份,其中的1份用分数表示是,据此涂色即可,同分子的分数比较,分母越大分数越小。将左边所有的爱心看作一个整体平均为4份,其中1份用分数表示是,8÷4=2(个),涂两个爱心即可;将右边所有的爱心看作一个整体平均为4份,其中1份用分数表示是,则代表其中的3份,2×3=6(个),涂六个爱心即可,同分母的分数比较,分子越大分数越大。【详解】(涂色方法不唯一)【考点精讲四】(23-24三年级下·吉林长春·期末)有一盒饼干,小东第一天吃了这盒饼干的,第二天吃了这盒饼干的,还剩下这盒饼干的几分之几?【答案】【分析】根据题意,先用第一天吃了这盒饼干的几分之几加上第二天吃了这盒饼干的几分之几,求出两天一共吃了这盒饼干的几分之几,用1减去已经吃了的即可求出还剩下几分之几。【详解】+=1-=答:还剩下这盒饼干的。【考点精讲五】(23-24三年级下·广东清远·期末)中国陆地从总体上看,山地多,平地少,海拔在500米以上的地区约占全国陆地总面积的,海拔在500米以下的约占,那么海拔在500米以上的地区比500米以下的多几分之几?【答案】【分析】同分母分数相加减,分母不变,只把分子相加减;由题意得,海拔在500米以上的地区约占全国陆地总面积的,海拔在500米以下的约占,求海拔在500米以上的地区比500米以下的多几分之几,用减法计算。据此解答。【详解】-=答:海拔在500米以上的地区比500米以下的。一、解答题1.(23-24三年级下·安徽安庆·期末)一个西瓜被平均分成了8块,大熊吃了西瓜的,小熊吃了2块,还剩下这个西瓜的几分之几?2.(23-24三年级下·山西吕梁·期末)一根红绳子,笑笑用去了它的,乐乐用去了它的,两人共用去这根绳子的几分之几?还剩几分之几没用?3.(23-24三年级下·陕西西安·期末)笑笑购买一本《趣味数学》,第一天看了全书的,第二天和第三天都看了全书的,还剩几分之几没有看?4.(23-24三年级下·辽宁·期末)一张长方形白纸,把它的涂成红色,把它的涂成黄色,没涂色部分占这张纸的几分之几?5.(22-23三年级下·四川成都·期末)一条彩带,扎花束用去这条彩带的,捆礼物用去这条彩带的,还剩这条彩带的几分之几?(先画线段图,再解决问题)6.(23-24三年级下·陕西汉中·期末)一瓶可乐,第一次喝了这瓶可乐的,第二次喝得和第一次同样多,两次一共喝了这瓶可乐的几分之几?7.(23-24三年级下·甘肃定西·期末)一份稿件由小小和天天两人录入。小小录完这份稿件的,剩下的由天天录入。天天录入这份稿件的几分之几?8.(22-23三年级下·四川成都·期末)淘气家买了一个西瓜,淘气妈妈吃了这个西瓜的,淘气爸爸吃了这个西瓜的,剩下的全被淘气吃掉了,淘气吃掉了这个西瓜的几分之几?9.(23-24三年级下·浙江金华·期末)“六一”文艺汇演,三(1)班同学都参加了其中一项演出。合唱的人数占全班人数的,诗朗诵的人数占全班人数的,剩下的同学参加的是跳舞。跳舞的人数占全班人数的几分之几?10.(23-24三年级下·山西吕梁·期末)工程队修一条公路。第一周修了全长的,第二周比第一周多修了全长的,两周一共修了全长的几分之几?还剩下全长的几分之几没有修?11.(23-24三年级下·四川成都·期末)天府绿道位于四川省成都市境内,由区域、城区和社区三级绿道构成,其中社区级绿道约占全程的,城区级绿道约占全程的,社区级绿道和城区级绿道一共占了几分之几?12.(22-23三年级下·四川成都·期末)一根电线,第一次用了全长的,第二次用了全长的,剩下的是全长的几分之几?13.(23-24三年级下·陕西榆林·期末)一张硬纸板的用来画画,用来写字,画画和写字部分一共占这张硬纸板的几分之几?14.(23-24三年级下·广西贺州·期末)在文艺汇演活动中,三(1)班有的同学参加大合唱,有的同学参加舞蹈表演,其余的同学参加朗诵比赛。参加大合唱和舞蹈表演的同学一共占全班同学的几分之几?参加朗诵比赛的同学占全班同学的几分之几?15.(23-24三年级下·甘肃定西·期末)小红家买了一桶矿泉水,第一天喝了这桶水的,第二天喝了这桶水的,两天一共喝了这桶水的几分之几?剩下这桶水的几分之几?16.(23-24三年级下·陕西铜川·期末)刺绣是中国民间传统手工艺之一,在中国至少有二三千年历史。刺绣王师傅要完成一幅作品,上午完成了这幅作品的,下午比上午少完成了这幅作品的,王师傅下午完成了这幅作品的几分之几?上午和下午一共完成了这幅作品的几分之几?17.(23-24三年级下·甘肃定西·期末)小红看一本故事书,第一天看了全书的,第二天看了全书的。两天共看了全书的几分之几?还剩下这本书的几分之几没看?18.(23-24三年级下·河南商丘·期末)小亮看一本故事书,第一天看了全书的,第二天看的和第一天同样多。两天一共看了全书的几分之几?还剩几分之几没有看?19.(23-24三年级下·广东清远·期末)淘气和笑笑一起吃一块披萨,淘气吃了这块披萨的,笑笑也吃了这块披萨的,淘气和笑笑共吃了这块披萨的几分之几?20.(23-24三年级下·广东揭阳·期末)上午在华美超市购物的人中,用现金支付的人占付款人数的,其余的用手机支付。用手机支付的人比用现金支付的人多占付款人数的几分之几?21.(23-24三年级下·广东揭阳·期末)看一本书,第一周看了全书的,第二周看了全书的,两周一共看了全书的几分之几?还剩下全书的几分之几没看?22.(23-24三年级下·陕西宝鸡·期末)一车水果上午卖去,下午卖出去,上午和下午一共卖去这车水果的几分之几?还剩下这车水果的几分之几?23.(23-24三年级下·四川成都·期末)阳光小学劳动实践地的种茄子,种黄瓜,剩下的种西红柿。(1)茄子和黄瓜一共占这块地的几分之几?(2)西红柿占这块地的几分之几?24.(23-24三年级下·广东揭阳·期末)妈妈买了一块布,做上衣用了这块布的,做裙子用了这块布的。妈妈做上衣和裙子一共用了这块布的几分之几?还剩下这块布的几分之几?25.(23-24三年级下·陕西汉中·期末)一个生日蛋糕,爸爸吃了整个蛋糕的,妈妈吃了整个蛋糕的,笑笑和妈妈吃得同样多。他们三人一共吃了这个蛋糕的几分之几?还剩几分之几没有吃?26.(22-23三年级下·四川成都·期末)大扫除时三年级学生扫了操场面积的,四年级学生扫了操场面积的,还剩下操场面积的几分之几没有扫?27.(23-24三年级下·安徽宿州·期末)淘气看一本书,第一天看了这本书的,第二天和第一天看的一样多,第三天看了这本书的,这三天能看完这本书吗?28.(23-24三年级下·陕西咸阳·期末)小林和小文一起去打扫卫生区,过了6分钟,小林扫了卫生区的,小文扫了卫生区的,两人一共扫了卫生区的几分之几?还剩几分之几?29.(23-24三年级下·浙江金华·期末)甜甜过生日,妈妈买了一个蛋糕,第一天甜甜吃了蛋糕的,第二天吃的蛋糕和第一天一样多,两天后蛋糕还剩下几分之几没有吃?30.(23-24三年级下·广东惠州·期末)三杯一样的满杯牛奶,每人一杯。笑笑喝了一杯的,淘气喝后还剩一杯的,奇思喝了一杯的,谁喝的牛奶最多?31.(23-24三年级下·广东茂名·期末)冬冬家有一块菜地,其中的种青菜,种萝卜,种白菜。(1)青菜和萝卜一共占这块地的几分之几? (2)请你提出一个用减法计算的数学问题,再解答。32.(23-24三年级下·陕西渭南·期末)炎炎夏日,妈妈买了一个西瓜给大家解暑。爸爸吃了这个西瓜的,妙妙吃了这个西瓜的,剩下的留给妈妈。爸爸和妙妙一共吃了这个西瓜的几分之几?给妈妈留了这个西瓜的几分之几?33.(23-24三年级下·陕西咸阳·期末)一捆电线,第一天用去了全部的,第二天用去的和第一天同样多。(1)两天一共用去了几分之几?(2)还剩几分之几没用?34.(23-24三年级下·陕西汉中·期末)思思计划完成行走“10000步”的运动目标。上午完成了运动目标的,下午比上午少完成了运动目标的。(1)下午完成了运动目标的几分之几?(2)上午和下午一共完成了运动目标的几分之几?35.(23-24三年级下·陕西榆林·期末)佩戴运动手环可以很好的帮助我们记录步数和监测心率。文文每天的运动目标是完成行走“10000步”。某天上午文文完成了运动目标的,下午比上午多完成运动目标的。文文这天下午完成了运动目标的几分之几?36.(23-24三年级下·安徽六安·期末)端午节是我国的传统节日,又称端阳节、重午节、龙舟节、龙日节、正阳节、浴兰节、天中节等,是中国首个入选世界非遗的节日。每年农历五月初五是端午节,有吃粽子、划龙舟等习俗。(1)端午节前夕,幸福水果店运进5筐咸肉粽,连筐称一共175千克。如果每个空筐重5千克,咸肉粽一共有多少千克?(2)端午节当天,这些粽子通过线下卖出,通过线上社区团购卖出,一共卖去这批咸肉粽的几分之几?37.(23-24三年级下·陕西渭南·期末)“吴中四士”:指唐时期吴中四位诗人,即张若虚、贺知章、张旭和包融。如图,按现今的地址算,其中是江苏的诗人占吴中四士的,是浙江的诗人占吴中四士的,其中是江苏的诗人比是浙江的诗人多占“吴中四士”的几分之几?苏州吴县(今江苏苏州)人 扬州(今江苏扬州)人 润州延陵(今江苏省丹阳市)人 越州永兴(今浙江省杭州市萧山区)人张旭 张若虚 包融 贺知章1.分数的意义:把一个整体平均分成若干份,表示其中的一份或者几份的数叫作分数。2.分数的各部分名称:在分数中,分数中间的横线叫作分数线,分数线下面的数是分母,分数线上面的数是分子。3.分数的读法:读分数时,先读分母,再读“分之”,最后读分子。4.分数的写法:写分数时,通常先写分数线,再写分母,最后写分子。5.在分数中,整体既可以是一个事物,也可以是多个事物。6.用分数表示各部分数量与整体之间的关系时,首先要确定整体;接着确定把整体平均分成的份数,并把它作为分数的分母;最后确定各部分数量所占的份数,并把它作为分数的分子。1.用画图法比较分数的大小时,可以直接比较涂色部分的面积,涂色部分的面积大,所表示的分数就大,涂色部分的面积小,所表示的分数就小。2.分子是 1的分数相比较,分母小的分数反而大,分母大的分数反而小。3.同分母分数相比较,分子大的分数就大,分子小的分数就小。1.同分母分数相加,分母不变,分子相加。2.同分母分数相减,分母不变,分子相减。3.计算1减几分之几时,可以把1改写成分子和分母都与减数的分母相同的分数,再按照同分母分数减法的计算方法进行计算。易错知识点01:忽略“平均分”前提,直接分配数量典型错误:将12个苹果分成4份,认为每份是 (未明确是否平均分)。正解:必须强调“平均分”是分数成立的前提,如:正确表述:把12个苹果平均分成4份,每份是 ,即3个。破解方法:用实物操作验证:如分小棒、画圈标记,强化“平均分”动作。易错知识点02:混淆“分数关系”与“具体数量”典型错误:认为“6个桃的 ”是1个桃(误将分数视为固定数量)。正解: 分数表示部分与整体的关系,具体数量需计算:6 ÷ 3 = 2(个)。对比训练:设计对比题:6个桃的 是(2)个;12个桃的 是(4)个;强调“整体变化,分数对应的数量也变化”。易错知识点03:单位处理不当,遗漏或错误添加典型错误:求“一桶水20升的 ”时,答案写“5”(漏单位);将“ 米”简写为“ ”(混淆分数与带单位量)。正解:带单位量词时,结果必须带单位:20 ÷ 4 × 3 = 15(升);无单位分数仅表示关系,如“ ”不能直接与“ 米”等同。易错知识点04:求几分之几时分步计算错误典型错误:求“18个梨的 ”时,直接计算18 × 2 ÷ 3 = 12(未分步列式易混淆逻辑)。正解:分步法:1. 每份量:18 ÷ 3 = 6(个);2. 取2份:6 × 2 = 12(个);书写规范:列式明确标注“总份数÷分母”“每份量×分子”。易错知识点05:分数比较时忽略“整体一致性”典型错误:认为“ 个苹果”比“ 个西瓜”大(不同整体无法直接比较)。正解:分数比较需基于同一整体,如:同一盘水果的 和 比较: > ;不同整体的分数需转化为具体数量再比较。易错知识点06:、应用题中未回溯实际意义典型错误:计算“一桶水用去 后剩5升”时,未验证合理性(20-15=5正确,但若计算结果为负数需纠错)。正解:双轨验根法:1. 数学合理性:计算结果是否为非负数(如剩余水量≥0);2. 实际可行性:如剩余水量是否超过原总量。易错知识点07:易错题专项训练1. 基础纠错(巩固概念)题目:把9块糖平均分成3份,2份是整体的( )→ 正确答案:2/3(具体数量:6块)。错因分析:若填“6块”未写分数,混淆关系与数量。2. 综合应用(提升逻辑)题目:一根绳子长15米,剪下它的 ,剪了多少米?剩余多少米?易错点:学生可能直接15 × = 6(米),剩余9米,但未分步列式导致漏步骤分。【考点精讲一】(23-24三年级下·河南郑州·期末)下面是某学校种植农作物的实验田。(1)种植小麦的面积占整个实验田的,种植棉花的面积占整个实验田的,种植玉米的面积占整个实验田的。(2)王老师想用整个实验田的种植花生,请你在图中涂一涂,并标注出来。【答案】(1);;(2)图见详解【分析】(1)题图中每块地的大小并不一样,所以用分数表示它们之间的关系时必须平均分,以种植小麦部分为标准进行平均分,可以将整个实验田分成大小一样的8份,每份是它的,其中种小麦的面积占1份,所以种植小麦的面积占整个实验田的;以种植棉花部分为标准进行平均分,可以将整个实验田分成大小一样的16份,每份是它的,其中种棉花的面积占1份,所以种植棉花的面积占整个实验田的;以种植玉米部分为标准进行平均分,可以将整个实验田分成大小一样的4份,每份是它的,其中种玉米的面积占1份,所以种植玉米的面积占整个实验田的;(2)以实验田空白的部分为标准进行平均分,可以将整个实验田分成大小一样的12份,每份是它,表示其中1份种花生;据此解答即可。【详解】(1)种植小麦的面积占整个实验田的,种植棉花的面积占整个实验田的,种植玉米的面积占整个实验田的。(2)用整个实验田的种植花生。如图所示:(涂色不唯一)【考点精讲二】(23-24三年级下·广西桂林·期末)三(1)班组建啦啦操队,共有16人参加,其中女生有9人。女生和男生人数各占啦啦操队的几分之几?【答案】女生;男生【分析】用总人数减去女生人数,即为男生人数。求女生人数占啦啦操队的几分之几,女生人数作分子,总人数作分母。求男生人数占啦啦操队的几分之几,男生人数作分子,总人数作分母;据此解答即可。【详解】16-9=7(人)答:女生人数占啦啦操队的;男生人数占啦啦操队的。【考点精讲三】(23-24三年级下·河南商丘·期末)涂一涂,比一比。【答案】涂色见详解;>;<【分析】根据分数的初步认识,将左边长方形看作一个整体平均分为6份,其中的1份用分数表示是,据此涂色即可,将右边长方形看作一个整体平均分为8份,其中的1份用分数表示是,据此涂色即可,同分子的分数比较,分母越大分数越小。将左边所有的爱心看作一个整体平均为4份,其中1份用分数表示是,8÷4=2(个),涂两个爱心即可;将右边所有的爱心看作一个整体平均为4份,其中1份用分数表示是,则代表其中的3份,2×3=6(个),涂六个爱心即可,同分母的分数比较,分子越大分数越大。【详解】(涂色方法不唯一)【考点精讲四】(23-24三年级下·吉林长春·期末)有一盒饼干,小东第一天吃了这盒饼干的,第二天吃了这盒饼干的,还剩下这盒饼干的几分之几?【答案】【分析】根据题意,先用第一天吃了这盒饼干的几分之几加上第二天吃了这盒饼干的几分之几,求出两天一共吃了这盒饼干的几分之几,用1减去已经吃了的即可求出还剩下几分之几。【详解】+=1-=答:还剩下这盒饼干的。【考点精讲五】(23-24三年级下·广东清远·期末)中国陆地从总体上看,山地多,平地少,海拔在500米以上的地区约占全国陆地总面积的,海拔在500米以下的约占,那么海拔在500米以上的地区比500米以下的多几分之几?【答案】【分析】同分母分数相加减,分母不变,只把分子相加减;由题意得,海拔在500米以上的地区约占全国陆地总面积的,海拔在500米以下的约占,求海拔在500米以上的地区比500米以下的多几分之几,用减法计算。据此解答。【详解】-=答:海拔在500米以上的地区比500米以下的。一、解答题1.(23-24三年级下·安徽安庆·期末)一个西瓜被平均分成了8块,大熊吃了西瓜的,小熊吃了2块,还剩下这个西瓜的几分之几?【答案】【分析】把一个物体平均分成几份,每份都是它的几分之一,其中的几份就是它的几分之几。这里把西瓜当作整体的“1”,用1减去大熊吃的几分之几,再减去小熊吃的几分之几,就是还剩这个西瓜的几分之几。据此可以解答。【详解】这个西瓜被平均分成8份,小熊吃了2份,小熊吃了西瓜的。1-=-=答:还剩这个西瓜的。2.(23-24三年级下·山西吕梁·期末)一根红绳子,笑笑用去了它的,乐乐用去了它的,两人共用去这根绳子的几分之几?还剩几分之几没用?【答案】;【分析】将笑笑用去整根绳子的几分之几加上乐乐用去整根绳子的几分之几,即可求出两人共用去了整根绳子的几分之几;把整根绳子看成一个整体,接下来用整体减去上步中得到的结果,就是整根绳子还剩几分之几没用。【详解】答:两人共用去这跟绳子的;还剩没用。3.(23-24三年级下·陕西西安·期末)笑笑购买一本《趣味数学》,第一天看了全书的,第二天和第三天都看了全书的,还剩几分之几没有看?【答案】【分析】将这本故事书看作整体“1”,用整体“1”减去第一天、第二天和第三天看的全书的分率,即可求出还剩几分之几没看。【详解】1---=--=-=答:还剩没有看。4.(23-24三年级下·辽宁·期末)一张长方形白纸,把它的涂成红色,把它的涂成黄色,没涂色部分占这张纸的几分之几?【答案】【分析】根据题意可知,长方形纸的涂红色,涂黄色,要求没涂色的部分占这张纸的几分之几,用减法进行计算,根据同分母分数的减法运算法则,同分母分数相减,分母不变,只把分子相减即可。据此解答。【详解】答:没涂色部分占这张纸的。5.(22-23三年级下·四川成都·期末)一条彩带,扎花束用去这条彩带的,捆礼物用去这条彩带的,还剩这条彩带的几分之几?(先画线段图,再解决问题)【答案】【分析】如下图,将这条彩带看作为单位“1”,用单位“1”减折花束用去彩带的,再减捆礼物用去彩带的,即等于还剩下的几分之几,据此列式即可解答。【详解】1--=-=答:还剩这条彩带的。6.(23-24三年级下·陕西汉中·期末)一瓶可乐,第一次喝了这瓶可乐的,第二次喝得和第一次同样多,两次一共喝了这瓶可乐的几分之几?【答案】【分析】根据题目就可知第二次喝得和第一次同样多,第一次为,所以第二次也为,求两次一共喝了多少,用加法。根据同分母分数加减法法则,同分母分数相加减,分母不变,分子相加减,如此可得出答案。【详解】答:两次一共喝了这瓶可乐的。7.(23-24三年级下·甘肃定西·期末)一份稿件由小小和天天两人录入。小小录完这份稿件的,剩下的由天天录入。天天录入这份稿件的几分之几?【答案】【分析】根据题意,把这份稿件看作一个整体,用整体1减去小小录的分数,即得到剩下由天天录的分数;再根据同分母分数减法的法则进行计算;即把1变形为,只把分子相减,分母不变。据此解答。【详解】1-=-==答:天天录入这份稿件的。8.(22-23三年级下·四川成都·期末)淘气家买了一个西瓜,淘气妈妈吃了这个西瓜的,淘气爸爸吃了这个西瓜的,剩下的全被淘气吃掉了,淘气吃掉了这个西瓜的几分之几?【答案】【分析】淘气妈妈吃了这个西瓜的,淘气爸爸吃了这个西瓜的,那么可以把这个西瓜看作一个整体,也就是单位“1”,然后然后用单位“1”减去爸爸妈妈吃掉的部分,剩余的即为淘气吃掉的的是几分之几。【详解】答:淘气吃掉了这个西瓜的。9.(23-24三年级下·浙江金华·期末)“六一”文艺汇演,三(1)班同学都参加了其中一项演出。合唱的人数占全班人数的,诗朗诵的人数占全班人数的,剩下的同学参加的是跳舞。跳舞的人数占全班人数的几分之几?【答案】【分析】把全班人数看作单位“1”,用单位“1”参加合唱的人数占全班的几分之几参加诗朗诵的人数占全班的几分之几就可算出正确答案。【详解】答:跳舞的人数占全班人数的。10.(23-24三年级下·山西吕梁·期末)工程队修一条公路。第一周修了全长的,第二周比第一周多修了全长的,两周一共修了全长的几分之几?还剩下全长的几分之几没有修?【答案】;【分析】由题意得,第一周修了全长的,第二周比第一周多修了全长的,可以先用加法算出第二周修了全长的几分之几,然后再加上第一周修的即可算出两周一共修了全长的几分之几。求还剩下全长的几分之几没有修,直接用1减去前面的得数即可解答。【详解】+=+=1-=-=答:两周一共修了全长的,还剩下全长的没有修。11.(23-24三年级下·四川成都·期末)天府绿道位于四川省成都市境内,由区域、城区和社区三级绿道构成,其中社区级绿道约占全程的,城区级绿道约占全程的,社区级绿道和城区级绿道一共占了几分之几?【答案】【分析】社区级绿道和城区级绿道各约占全程的几分之几是已知的,把这两个分数相加即可解答,计算分数加法时,分母不变,分子相加即可。【详解】+=答:社区级绿道和城区级绿道一共占。12.(22-23三年级下·四川成都·期末)一根电线,第一次用了全长的,第二次用了全长的,剩下的是全长的几分之几?【答案】【分析】此题将这根电线的长度看作单位“1”,用1减再减,即可求出剩下的是全长的几分之几。【详解】1--=-=答:剩下的是全长的。13.(23-24三年级下·陕西榆林·期末)一张硬纸板的用来画画,用来写字,画画和写字部分一共占这张硬纸板的几分之几?【答案】【分析】根据题意,把一张硬纸板看作一个整体,把画画部分占这张纸的和写字部分占这张纸的相加,即得到画画和写字部分一共占这张硬纸板的几分之几;再根据同分母分数加减法法则进行计算,即只把分子相加减分母不变。据此解答。【详解】+=答:画画和写字部分一共占这张硬纸板的。14.(23-24三年级下·广西贺州·期末)在文艺汇演活动中,三(1)班有的同学参加大合唱,有的同学参加舞蹈表演,其余的同学参加朗诵比赛。参加大合唱和舞蹈表演的同学一共占全班同学的几分之几?参加朗诵比赛的同学占全班同学的几分之几?【答案】共;朗诵比赛的占【分析】参加大合唱的同学占全班的几分之几加上参加舞蹈表演的同学占全班的几分之几,即可算出参加大合唱和舞蹈表演的同学一共占全班同学的(+)。1减去参加大合唱和舞蹈表演的同学一共占全班同学的几分之几,即可算出参加朗诵比赛的同学占全班同学的几分之几。【详解】+=1-=答:参加大合唱和舞蹈表演的同学一共占全班同学的,参加朗诵比赛的同学占全班同学的。15.(23-24三年级下·甘肃定西·期末)小红家买了一桶矿泉水,第一天喝了这桶水的,第二天喝了这桶水的,两天一共喝了这桶水的几分之几?剩下这桶水的几分之几?【答案】;【分析】小红家买了一桶矿泉水,第一天喝了这桶水的,第二天喝了这桶水的,求这两天一共喝了这桶水的几分之几,用加法计算。求还剩下这桶水的几分之几,直接用1减去前面的得数即可解答。【详解】+=1-=-=答:两天一共喝了这桶水的,还剩下这桶水的。16.(23-24三年级下·陕西铜川·期末)刺绣是中国民间传统手工艺之一,在中国至少有二三千年历史。刺绣王师傅要完成一幅作品,上午完成了这幅作品的,下午比上午少完成了这幅作品的,王师傅下午完成了这幅作品的几分之几?上午和下午一共完成了这幅作品的几分之几?【答案】;【分析】根据题意,用上午完成的几分之几,减去下午比上午少的几分之几,就是下午完成这幅作品的几分之几。然后用下午完成的几分之几加上上午完成的几分之几,就是一共完成的几分之几。【详解】-=+=答:王师傅下午完成了这幅作品的,上午和下午一共完成了这幅作品的。17.(23-24三年级下·甘肃定西·期末)小红看一本故事书,第一天看了全书的,第二天看了全书的。两天共看了全书的几分之几?还剩下这本书的几分之几没看?【答案】;【分析】根据题意,把全书的页数看作一个整体,求两天共看了全书的几分之几,即把两天看的分数加起来;求还剩下这本书的几分之几没看,用1减去两天一共看的分数;看根据同分母分数加减法法则进行计算,即只把分子相加减,分母不变。据此解答。【详解】+==答:两天共看了全书的。1-=-==答:还剩下这本书的没看。18.(23-24三年级下·河南商丘·期末)小亮看一本故事书,第一天看了全书的,第二天看的和第一天同样多。两天一共看了全书的几分之几?还剩几分之几没有看?【答案】;【分析】根据题意把第一天看了全书的加上第二天也看了全书的求出两天一共看了全书的几分之几,再把这本书的页数看作一个整体,用1减去两天一共看了全书的几分之几求出还剩几分之几没有看。【详解】+=答:两天一共看了全书的。1-=答:还剩没有看。19.(23-24三年级下·广东清远·期末)淘气和笑笑一起吃一块披萨,淘气吃了这块披萨的,笑笑也吃了这块披萨的,淘气和笑笑共吃了这块披萨的几分之几?【答案】【分析】由题意得,淘气吃了这块披萨的,笑笑也吃了这块披萨的,求淘气和笑笑共吃了这块披萨的几分之几,用加法计算;同分母分数相加减,分母不变,只把分子相加减。据此解答。【详解】+=答:淘气和笑笑共吃了这块披萨的。20.(23-24三年级下·广东揭阳·期末)上午在华美超市购物的人中,用现金支付的人占付款人数的,其余的用手机支付。用手机支付的人比用现金支付的人多占付款人数的几分之几?【答案】【分析】把付款的总人数看成一个整体,可以用1来表示,用1减去用现金支付的人占付款人数的几分之几,即可求出用手机支付的人占付款人数的几分之几,再减去用现金支付的人占付款人数的几分之几,即可求出用手机支付的人比用现金支付的人多占付款人数的几分之几。【详解】1-=-=答:用手机支付的人比用现金支付的人多占付款人数的。21.(23-24三年级下·广东揭阳·期末)看一本书,第一周看了全书的,第二周看了全书的,两周一共看了全书的几分之几?还剩下全书的几分之几没看?【答案】;【分析】用第一周看的分率,加上第二周看的分率即可;同分母分数相加:分母不变,分子相加;将这本书看作一个整体,用1表示,再用1减去两周一共看的分率,计算出还剩下全书的几分之几没看;同分母分数相减:分母不变,分子相减;据此解答。【详解】+=1-=答:两周一共看了全书的,还剩下全书的没看。22.(23-24三年级下·陕西宝鸡·期末)一车水果上午卖去,下午卖出去,上午和下午一共卖去这车水果的几分之几?还剩下这车水果的几分之几?【答案】;【分析】把上午卖去和下午卖出去相加求出上午和下午一共卖去这车水果的几分之几,把一车水果数量看作一个整体,用1减上午和下午一共卖去这车水果的几分之几即可求出还剩下这车水果的几分之几。【详解】+=1-=答:上午和下午一共卖去这车水果的;还剩下这车水果的。23.(23-24三年级下·四川成都·期末)阳光小学劳动实践地的种茄子,种黄瓜,剩下的种西红柿。(1)茄子和黄瓜一共占这块地的几分之几?(2)西红柿占这块地的几分之几?【答案】(1)(2)【分析】(1)阳光小学劳动实践地的种茄子,种黄瓜,求茄子和黄瓜一共占这块地的几分之几,用加法计算。(2)由(1)可得茄子和黄瓜一共占这块地的几分之几,剩下的种西红柿,求西红柿占这块地的几分之几,直接用1减去(1)中的得数即可解答。【详解】(1)+=答:茄子和黄瓜一共占这块地的。(2)1-=-=答:西红柿占这块地的。24.(23-24三年级下·广东揭阳·期末)妈妈买了一块布,做上衣用了这块布的,做裙子用了这块布的。妈妈做上衣和裙子一共用了这块布的几分之几?还剩下这块布的几分之几?【答案】;【分析】根据题意,用+即可求出妈妈做上衣和裙子一共用了这块布的几分之几;用1减去做上衣和裙子一共用了这块布的几分之几,即可求出还剩下这块布的几分之几,据此解答即可。【详解】+=1-=答:妈妈做上衣和裙子一共用了这块布的,还剩下这块布的。25.(23-24三年级下·陕西汉中·期末)一个生日蛋糕,爸爸吃了整个蛋糕的,妈妈吃了整个蛋糕的,笑笑和妈妈吃得同样多。他们三人一共吃了这个蛋糕的几分之几?还剩几分之几没有吃?【答案】;【分析】根据题意,笑笑和妈妈吃得同样多,则笑笑也吃了整个蛋糕的,用++即可求出他们三人一共吃了这个蛋糕的几分之几;用1减去他们三人一共吃了这个蛋糕的几分之几,即可求出还剩几分之几没有吃。【详解】++=+=1-=答:他们三人一共吃了这个蛋糕的,还剩没有吃。26.(22-23三年级下·四川成都·期末)大扫除时三年级学生扫了操场面积的,四年级学生扫了操场面积的,还剩下操场面积的几分之几没有扫?【答案】【分析】把操场的总面积看作整体“1”,用1减去三年级学生扫了操场面积的几分之几,再减去四年级学生扫了操场面积的几分之几,即可求得还剩下操场面积的几分之几没有扫。【详解】1-=-=-=答:还剩下操场面积的没有扫。27.(23-24三年级下·安徽宿州·期末)淘气看一本书,第一天看了这本书的,第二天和第一天看的一样多,第三天看了这本书的,这三天能看完这本书吗?【答案】不能【分析】根据题意,第一天看了这本书的,第二天和第一天看的一样多,则第二天也看了这本书的,将前两天看了这本书的几分之几相加,求出前两天一共看了这本书的几分之几,用1减去前两天看了这本书的几分之几,即可求出第三天要看这本书的几分之几才能看完,如果小于或等于第三天看的则能看完,大于则不能。【详解】+=1-=>答:这三天不能看完这本书。28.(23-24三年级下·陕西咸阳·期末)小林和小文一起去打扫卫生区,过了6分钟,小林扫了卫生区的,小文扫了卫生区的,两人一共扫了卫生区的几分之几?还剩几分之几?【答案】;【分析】小林扫了卫生区的几分之几加上小文扫了卫生区的几分之几,即可算出两人一共扫了卫生区的几分之几。1减去两人共扫的卫生区的几分之几,即可算出还剩几分之几。【详解】 答:两人一共扫了卫生区的,还剩。29.(23-24三年级下·浙江金华·期末)甜甜过生日,妈妈买了一个蛋糕,第一天甜甜吃了蛋糕的,第二天吃的蛋糕和第一天一样多,两天后蛋糕还剩下几分之几没有吃?【答案】【分析】根据题意,把一个蛋糕看做一个整体,题目中“第二天吃的蛋糕和第一天一样多”指的是两天吃掉的分量相同(均为整个蛋糕的 ),用1减去两个,即可求出两天后蛋糕还剩下几分之几没有吃,列式计算即可。【详解】根据分析可知:==答:两天后蛋糕还剩下没有吃。30.(23-24三年级下·广东惠州·期末)三杯一样的满杯牛奶,每人一杯。笑笑喝了一杯的,淘气喝后还剩一杯的,奇思喝了一杯的,谁喝的牛奶最多?【答案】淘气【分析】将每杯牛奶看作单位“1”,用1-求出淘气喝了一杯牛奶的几分之几。再将求得的分数与、比较大小。同分子分数比较大小,分母小的分数大。据此解答。【详解】1-=>>答:淘气喝的牛奶最多。31.(23-24三年级下·广东茂名·期末)冬冬家有一块菜地,其中的种青菜,种萝卜,种白菜。(1)青菜和萝卜一共占这块地的几分之几? (2)请你提出一个用减法计算的数学问题,再解答。【答案】(1);(2)种白菜比种青菜多用去这块地的几分之几?【分析】(1)求青菜和萝卜一共占这块地的几分之几,就是求与的和;(2)根据题目给的条件提出合理的问题即可。【详解】(1)+=答:青菜和萝卜一共占这块地的。(2)种白菜比种青菜多用去这块地的几分之几?(答案不唯一)-=答:种白菜比种青菜多用去这块地的。32.(23-24三年级下·陕西渭南·期末)炎炎夏日,妈妈买了一个西瓜给大家解暑。爸爸吃了这个西瓜的,妙妙吃了这个西瓜的,剩下的留给妈妈。爸爸和妙妙一共吃了这个西瓜的几分之几?给妈妈留了这个西瓜的几分之几?【答案】;【分析】用爸爸吃这个西瓜的加上妙妙吃这个西瓜的,求出爸爸和妙妙一共吃了这个西瓜的几分之几。用1减去爸爸和妙妙一共吃了这个西瓜的几分之几,求出给妈妈留了这个西瓜的几分之几。【详解】答:爸爸和妙妙一共吃了这个西瓜的,给妈妈留了这个西瓜的。33.(23-24三年级下·陕西咸阳·期末)一捆电线,第一天用去了全部的,第二天用去的和第一天同样多。(1)两天一共用去了几分之几?(2)还剩几分之几没用?【答案】(1)(2)【分析】(1)用第一天用去全部的几分之几加上第二天用去全部的几分之几,即可求出两天一共用去了几分之几。(2)将一捆电线看作一个整体,用1减去第一天用去全部的几分之几,再减去第二天用去全部的几分之几,即可求出还剩几分之几没用。【详解】(1)+=答:两天一共用去了。(2)1--=-=答:还剩没用。34.(23-24三年级下·陕西汉中·期末)思思计划完成行走“10000步”的运动目标。上午完成了运动目标的,下午比上午少完成了运动目标的。(1)下午完成了运动目标的几分之几?(2)上午和下午一共完成了运动目标的几分之几?【答案】(1) (2)【分析】(1)减等于下午完成运动目标的几分之几;(2)上午完成运动目标的几分之几再加上下午完成运动目标的几分之几即可解答。【详解】(1)-=答:下午完成了运动目标的。(2)+=答:上午和下午一共完成了运动目标的。35.(23-24三年级下·陕西榆林·期末)佩戴运动手环可以很好的帮助我们记录步数和监测心率。文文每天的运动目标是完成行走“10000步”。某天上午文文完成了运动目标的,下午比上午多完成运动目标的。文文这天下午完成了运动目标的几分之几?【答案】【分析】根据分数加法的意义,上午完成运动目标的分率加上下午比上午多完成运动目标的分率,即得文文这天下午完成了运动目标的几分之几。【详解】+=答:文文这天下午完成了运动目标的。36.(23-24三年级下·安徽六安·期末)端午节是我国的传统节日,又称端阳节、重午节、龙舟节、龙日节、正阳节、浴兰节、天中节等,是中国首个入选世界非遗的节日。每年农历五月初五是端午节,有吃粽子、划龙舟等习俗。(1)端午节前夕,幸福水果店运进5筐咸肉粽,连筐称一共175千克。如果每个空筐重5千克,咸肉粽一共有多少千克?(2)端午节当天,这些粽子通过线下卖出,通过线上社区团购卖出,一共卖去这批咸肉粽的几分之几?【答案】(1)150千克(2)【分析】(1)用每个空筐的重量乘筐数,求出5个空筐的重量,再用5筐咸肉粽连筐的重量减去5个空筐的重量,即为这些咸肉粽的总重量,据此作答。(2)用这些粽子通过线下卖出的分率加上通过线上社区团购卖出的分率,即可求出一共卖去这批咸肉粽的几分之几。【详解】(1)175-5×5=175-25=150(千克)答:咸肉粽一共有150千克。(2)+=答:一共卖去这批咸肉粽的。37.(23-24三年级下·陕西渭南·期末)“吴中四士”:指唐时期吴中四位诗人,即张若虚、贺知章、张旭和包融。如图,按现今的地址算,其中是江苏的诗人占吴中四士的,是浙江的诗人占吴中四士的,其中是江苏的诗人比是浙江的诗人多占“吴中四士”的几分之几?苏州吴县(今江苏苏州)人 扬州(今江苏扬州)人 润州延陵(今江苏省丹阳市)人 越州永兴(今浙江省杭州市萧山区)人张旭 张若虚 包融 贺知章【答案】;;【分析】将“吴中四士”看作一个整体,平均分成4份,每份则是;江苏的诗人有张旭、张若虚、包融,占3份;即江苏的诗人占吴中四士的;浙江的诗人有贺知章,占1份;即的诗人占吴中四士的;用江苏诗人的占比减去浙江诗人的占比,列式-,计算即可解此题。【详解】根据分析:江苏的诗人占吴中四士的;浙江的诗人占吴中四士的;-=答:江苏的诗人比是浙江的诗人多占“吴中四士”的。 展开更多...... 收起↑ 资源列表 北师大版2024-2025学年三年级数学下册第六单元《认识分数》单元复习讲义(学生版).docx 北师大版2024-2025学年三年级数学下册第六单元《认识分数》单元复习讲义(教师版).docx