小学数学人教版(2024)三年级上4.2 两位数乘一位数(不进位)口算 表格式教案

资源下载
  1. 二一教育资源

小学数学人教版(2024)三年级上4.2 两位数乘一位数(不进位)口算 表格式教案

资源简介

课题 4.2 两位数乘一位数(不进位)口算
授课者: 课型:新授 课时:第2课时
一、教材内容分析: 本节课是在学生学习了表内乘法的基础上展开教学的,它既是表内乘法的进一步发展,又是将来两位数乘两位数、三位数乘两位数的重要基础,口算是笔算的基础,掌握本节课有助于理解笔算乘法的算理与算法。
二、学情分析: 三年级学生已具备一定的生活经验和数感,能熟练进行表内乘法口算,但对于多位数乘一位数的口算,尤其是算理理解和算法拓展,还需要进一步引导。学生在处理两位数乘一位数(拆分十位和个位分别相乘再相加)时,也可能出现拆分错误或相加遗漏的情况。教学中需借助直观模型、生活实例,帮助学生突破难点,激发学习兴趣。
三、核心素养目标: 1.情境与问题:通过游乐园碰碰车购票的情境,引导学生发现“求3个12是多少”的问题,激发用乘法解决两位数乘一位数问题的兴趣,感受数学与生活的紧密联系。 2.知识与技能:学生掌握两位数乘一位数(不进位)的口算方法,能正确计算;理解口算原理,即把两位数拆成整十数和一位数,分别与一位数相乘后再相加。 3.思维与表达:通过探究不同口算方法,培养学生的转化思维和逻辑推理能力;能用语言清晰描述口算过程。 4.交流与反思:在小组讨论中分享不同的口算思路,通过对比反思优化计算方法;在解决实际问题后,验证结果的合理性,养成严谨的计算习惯。
四、教学重难点: 教学重点: 1.掌握两位数乘一位数(不进位)的口算方法:拆数(整十数+一位数)→分别相乘→积相加。 2.能正确运用该方法进行口算,并清晰描述过程。 教学难点: 1.理解“拆数相乘再相加”的算理,避免直接用两位数的个位与一位数相乘后忽略十位。 2.解决实际问题时,能准确提取信息并选择合适的口算方法。
五、教学准备:多媒体课件
六、学习活动设计:
教学环节一:情境导入
教师活动 学生活动 设计意图 二次备课
上节课我们学习了整十整百数乘一位数的口算,大家来抢答几道题(出示卡片):40×3=?70×6=?90×5=?800×9=? (教师表扬并追问:“800×9为什么等于7200?”引导回顾“先算8×9=72,再添2个0”)。 今天我们要学习更复杂一点的口算——两位数乘一位数(不进位)的口算(板书课题)。” 学生抢答:120、420、450、7200。 通过复习整十数乘一位数的口算方法,激活“拆数”“分别计算”的思维,为新知识的学习(两位数拆成整十数和一位数)做好铺垫。
教学环节二:新课探究
教师活动 学生活动 设计意图 二次备课
(1)情境引入,提出问题 游乐园里除了过山车,碰碰车也很受欢迎(出示情境图)。已知坐碰碰车每人12元,3人需要多少钱?请大家思考这个问题用什么算式解决。 (2)探究两位数乘一位数的口算方法 12×3等于多少呢?请大家在练习本上试着算一算,也可以和同桌讨论方法。 老师引导对比:“哪种方法更简便?为什么?”(方法二更简便,尤其是当乘数较大时,加法太繁琐) 老师板书算理: 12×3=36(元) 想:12=10+2 10×3=30 2×3=6 30+6=36 教师可通过追问“12中的1表示什么?”(1个十)引导其补全计算。 (3)迁移练习,总结方法 用方法二算一算12×4=?” 老师提问:“对比12×3和12×4的计算过程,谁能说说两位数乘一位数(不进位)的口算方法?” 老师板书方法: 1.拆数:两位数=整十数+一位数 2.分别乘:整十数×一位数;一位数×一位数 3.相加:两次的积相加 (4)规范解答例题 回到碰碰车的问题,3人需要多少钱?我们要写出完整的算式和答语。 学生回答:“12×3”(求3个12是多少)。 学生探究后汇报: 方法一(加法):12+12+12=36,所以12×3=36。 方法二(数的组成):把12分成10和2,先算10×3=30,再算2×3=6,最后30+6=36。 少数学生可能直接用12的个位乘3(2×3=6),忽略十位的10。 学生尝试:12=10+2,10×4=40,2×4=8,40+8=48。 学生总结:“先把两位数分成整十数和一位数,再用这两个数分别乘一位数,最后把积加起来。” 学生齐答:12×3=36(元),答:3人需要36元。 通过游乐园购票的生活情境,让学生感受问题的真实性,明确两位数乘一位数的计算需求。 通过自主探究和算理分析,让学生掌握“拆数→分别相乘→相加”的核心方法,理解其优越性,培养转化思维。 通过迁移练习让学生巩固方法,再引导总结规律,提升归纳能力,形成结构化的知识。 培养学生规范答题的习惯,完整解决实际问题。
教学环节三:巩固与应用
教师活动 学生活动 设计意图 二次备课
1.基础口算 完成课件中的口算题:21×4=?23×2=?32×3=? 老师强调:“拆数时要分成最简便的整十数和一位数,比如32拆成30和2,而不是20和12。” 2.混合运算 计算下面各题:5×8+6=?70×9+14=?32×3 45=? 老师引导:“混合运算要先算乘除,后算加减,用到了我们今天学的口算哦!” 3.租车问题 启点画室租了2辆车去写生,每辆车限乘34人,全都坐满了。(1)一共去了多少人?(2)每辆车租金300元,租车一共要花多少钱? 老师提问:“第(1)题为什么用34×2?第(2)题为什么用300×2?”(引导理解不同数量的乘法意义) 4.游乐园购票问题 游乐园成人票30元,儿童票12元。(1)买8张成人票要多少钱?(2)买4张儿童票要多少钱? 5.锯木料问题 把一根9米长的木料锯成3米一段的短木料,每锯一次需要13分钟,全部锯完需要多久? 学生在锯木料问题中容易忽略“次数=段数-1”,教师可画图演示(3段需要锯2次)帮助理解。 学生计算后汇报: 21×4:20×4=80,1×4=4,80+4=84 23×2:20×2=40,3×2=6,40+6=46 32×3:30×3=90,2×3=6,90+6=96 学生计算: 5×8+6=40+6=46 70×9+14=630+14=644 32×3 45=96 45=51 学生解答: (1)34×2:30×2=60,4×2=8,60+8=68(人) (2)300×2=600(元) 学生解答: (1)30×8=240(元) (2)12×4=48(元)(10×4=40,2×4=8,40+8=48) 学生分析: 先算段数:9÷3=3(段) 再算次数:段数-1=3-1=2(次) 总时间:13×2=26(分钟) 通过基础口算巩固方法,通过混合运算提升综合运用能力,沟通新旧知识的联系。 通过不同情境的实际问题,提升学生运用口算解决问题的灵活性,强化“先分析数量关系,再列式计算”的逻辑。
教学环节四:总结与评价
教师活动 学生活动 设计意图 二次备课
今天我们学习了两位数乘一位数(不进位)的口算,谁能说说计算步骤? 把两位数拆成整十数和一位数; 分别和一位数相乘; 把两次的积加起来。 学生自由回答。 梳理本节课的核心知识,强化运算顺序的重要性,培养学生的总结能力。
七、作业设计: 1.基础作业:完成练习八对应练习题。 2.拓展作业:结合生活,自编2道口算乘法应用题并解答,培养应用意识和创新思维。
八、板书设计: 两位数乘一位数(不进位)口算 例:3人坐碰碰车,每人12元,一共需要多少钱? 12×3=36(元) 方法1:12+12+12=36方法2:12=10+2 10×3=30 2×3=6 30+6=36 口算步骤: 1.拆数:两位数=整十数+一位数 2.分别乘:整十数×一位数;一位数×一位数 3.相加:两次的积相加 答:3人需要36元。
九、教学反思与改进: 成功之处:通过游乐园情境引入,学生参与积极性高,多数能掌握“拆数→分别乘→相加”的方法。 不足之处:在拆数环节,少数学生拆成非整十数(如12拆成6+6),虽不影响结果,但不够简便。 改进措施:加强针对性练习,设计对比题(如23×2和32×2),强化拆分与合并的准确性,同时增加小组互查、错题分享环节,提升学生运算能力和学习主动性。

展开更多......

收起↑

资源预览