资源简介 3 探索与表达规律1.经历探索数量关系、运用符号表示规律、通过计算验证规律的过程,体会探索规律的一般方法.2.在活动中发展观察、合作、交流等能力,认识探索规律的必要性,体会数学学习的乐趣.重点:会利用代数式表示规律.难点:掌握探索规律的常用方法. 一、情境导入今天我们来做游戏:数学活动小组的n位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报(+1),第2位同学报(+1),…,请问第n位同学报的数是什么?这样得到的n个数的积又是多少呢?二、合作探究探究点一:数字规律问题观察下列一组数:,,,,,…,它们是按一定规律排列的,则这组数的第n个数是 .解析:观察这组数发现:分子为从1开始的连续奇数,分母为从2开始的连续正整数的平方,故这组数的第n个数为. 方法总结:解答此类问题要从所给的一些特殊数字中找出其中的变化规律,进而根据规律归纳总结出一般性的结论.探究点二:数阵(表)规律问题如图是一个按规律排列的数表,请用含n的代数式(n为正整数)表示数表中第n行第n列的数: .解析:观察数表可知:第一行第一列至第四行第四列的数依次为1,3,7,13,对这些数字作分解、组合如下:第一行第一列:1=0×1+1;第二行第二列:3=1×2+1;第三行第三列:7=2×3+1;第四行第四列:13=3×4+1;……由此可以发现,所分解的式子乘积中的第1个因数为行(列)数减1,第2个因数恰为行(或列)数.所以第n行第n列的数是(n-1)n+1. 方法总结:在认真观察、分析的基础上,将数或式中的有关数字进行分解、组合变形,从中探索变化规律是解决此类问题的关键.探究点三:图形规律问题观察下列图形:(1)依照此规律,第20个图形共有几个五角星?(2)摆成第n个图形需要几个五角星?(3)摆成第123个图形需要几个五角星?解析:通过观察已知图形可得:每个图形都比其前一个图形多3个五角星,根据此规律即可解答. 解:(1)根据题意得,第1个图中,五角星有3个(3×1);第2个图中,五角星有6个(3×2);第3个图中,五角星有9个(3×3);第4个图中,五角星有12个(3×4)……第n个图中有五角星3n个.所以第20个图中五角星有3×20=60个.(2)摆成第n个图形需要五角星3n个.(3)摆成第123个图形需要369个五角星. 方法总结:此题首先要结合图形具体数出几个值,注意由特殊到一般的分析方法.此题的规律为摆成第n个图形需要3n个五角星.三、板书设计探索规律教学过程中,强调学生自主探索和合作交流,经历观察、操作、验证、归纳、分析、猜想、抽象、积累、类比、转化等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感态度和价值观. 展开更多...... 收起↑ 资源预览