资源简介 §2 指数幂的运算性质学习任务 核心素养1.掌握指数幂的运算性质.(重点) 2.能用指数幂的运算性质对代数式进行化简与求值.(难点) 通过指数幂的运算,培养数学运算素养.指数幂的运算性质有哪些?指数幂的运算性质已知a>0,b>0,α∈R,β∈R,1.aα·aβ=aα+β;2.(aα)β=aαβ;3.(ab)α=aα·bα.以下计算正确吗?若计算错误,应该如何计算?=-2.[提示] 错误,=21=2.1.计算:×2-2=________. [原式=.]2.计算:=________.[答案] 类型1 指数幂的运算【例1】 【链接教材P80例1】计算下列各式:-0.010.5;+16-0.75;(a>0,b>0).[解] (1)原式==1+.(2)原式=0.4-1-1+(-2)-4+2-3=.(3)原式=.【教材原题·P80例1】例1 计算:-2; 3;.[解] -2=;3=×23=2-2×23=2-2+3=2;. 在进行幂和根式的化简时,一般先将根式化成幂的形式,并化小数指数幂为分数指数幂,再利用幂的运算性质进行化简.[跟进训练]1.计算:-3-1+π0;(2)(a-2b-3)·(-4a-1b)÷(12a-4b-2c);(3)2.[解] (1)原式=+1=0.3-.(2)原式=-4a-2-1b-3+1÷(12a-4b-2c)=a-3-(-4)b-2-(-2)c-1=-.(3)原式==.类型2 对指数幂的运算性质的理解【例2】 (1)下列函数中,满足f 的是( )A.f =4x B.f =4-xC.f =2x D.f =2-x=( )(1)D (2)A [(1)对于A项,f (x+1)=4x+1=4×4x=4f (x),故A项错误;对于B项,f (x+1)=4-(x+1)=f (x),故B项错误;对于C项,f (x+1)=2x+1=2×2x=2f (x),故C项错误;对于D项,f (x+1)=2-(x+1)=f (x),故D项正确.故选D.].] 1.根据需要,指数幂的运算性质可正用、逆用和变形使用.2.运用幂的运算性质化简时,其底数必须大于零,对于底数小于零的,要先化为底数大于零的形式.如先化为.[跟进训练]2.下列运算结果中,正确的是( )A.a2·a3=a6 B.C.=a5 D.=-a6D [a2·a3=a5,A错;(-a2)3=(-1)3×a2×3=-a6,(-a3)2=(-1)2×a3×2=a6,B错;=a6,C错,故选D.]类型3 根据条件求值【例3】 【链接教材P81例4】已知,求下列各式的值:(1)a+a-1;(2)a2+a-2.[解] (1)将两边平方,得a+a-1+2=5,所以a+a-1=3.(2)由(1)知a+a-1=3,两边平方,得a2+a-2+2=9,所以a2+a-2=7.[母题探究] 在本例条件不变的情况下,则a2-a-2=______.±3 [令y=a2-a-2,两边平方,得y2=a4+a-4-2=(a2+a-2)2-4=72-4=45,∴y=±3,即a2-a-2=±3.]【教材原题·P81例4】例4 已知10α=3,10β=4,求的值.[解] 10α+β=10α×10β=3×4=12;10α-β=10α×10-β=;10-2α=(10α)-2=3-2=;. 条件求值的步骤[跟进训练]3.已知a,b分别为x2-12x+9=0的两根,且a<b,求 的值.[解] =.①∵a+b=12,ab=9,②∴(a-b)2=(a+b)2-4ab=122-4×9=108.∵a<b,∴a-b=-6.③将②③代入①,得.1.思考辨析(正确的画“√”,错误的画“×”)(1)对任意实数a,am+n=aman. ( )(2)当a>0时,=amn. ( )(3)当a≠0时,=am-n. ( )[答案] (1)× (2)√ (3)√=( ) C.310 D.7B []3.已知=5,则的值为( )A.5 B.23C.25 D.27B [∵=5,∴x+2+x-1=25,∴x+x-1=23.∴=x+x-1=23.]4.-的值为________. [原式=.]=________.110 [原式==2+22×33=2+4×27=110.]课时分层作业(二十一) 指数幂的运算性质一、选择题1.将化为分数指数幂为( )B [].的值为( )A.- B.C. D.D [原式=1-(1-22)÷=1-(-3)×.故选D.]3.设a>0,将表示成分数指数幂的形式,其结果是( )A.C [=a2·.]4.计算(n∈N*)的结果为( )A. B.22n+5C.2n2-2n+6 D.D [原式=.]5.若a>1,b>0,ab+a-b=2,则ab-a-b等于( )A. B.2或-2C.-2 D.2D [因为a>1,b>0,所以ab>a-b,(ab-a-b)2=(ab+a-b)2-4=2-4=4,所以ab-a-b=2.故选D.]二、填空题6.若=0,则(x2 024)y=________.1 [因为+=0,所以+=|x+1|+|y+3|=0,所以x=-1,y=-3.所以(x2 024)y=[(-1)2 024]-3=1-3=1.]7.已知,则y的最小值是________.- [由已知得,,所以y=(x2-x)=,所以y的最小值是-.]8.如果a=3,b=384,那么n-3=________.3×2n-3 [=3×2n-3.]三、解答题9.(源自人教B版教材)化简下列各式:(1);.[解] (1)原式=.(2)原式==.10.化简求值:-3π0+;.[解] (1)原式==100.(2)原式==4.11.(多选)下列各式中一定成立的有( )A. B.C. D.BD [A中应为=n7m-7;;D正确.故选BD.]12.设x,y是正数,且xy=yx,y=9x,则x的值为( )A. B.C.1 D.B [∵x9x=(9x)x,(x9)x=(9x)x,∴x9=9x.∴x8=9.∴x=.]13.已知2m+2-m=5,则4m+4-m的值为________.23 [∵2m+2-m=5,∴(2m+2-m)2=25,即4m+2+4-m=25,∴4m+4-m=23.]14.已知实数x满足x2-3x+1=0,则x+x-1=________,x2+x-2=________.3 7 [因为x2-3x+1=0,则x2+1=3x,即x+x-1=3,两边平方,得x2+x-2+2=9,所以x2+x-2=7.]15.已知a=3,求的值.[解] =====-1.1 / 1§2 指数幂的运算性质学习任务 核心素养1.掌握指数幂的运算性质.(重点) 2.能用指数幂的运算性质对代数式进行化简与求值.(难点) 通过指数幂的运算,培养数学运算素养.指数幂的运算性质有哪些 指数幂的运算性质已知a>0,b>0,α∈R,β∈R,1.aα·aβ=__________;2.(aα)β=__________;3.(ab)α=__________.以下计算正确吗 若计算错误,应该如何计算 =-2.____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________1.计算:23××2-2=________.2.计算:(x2y-1z3=________.类型1 指数幂的运算【例1】 【链接教材P80例1】计算下列各式:(1)+2-2×-0.010.5;(2)0.06+[(-2)3+16-0.75;(3)(a>0,b>0).[尝试解答] _______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 在进行幂和根式的化简时,一般先将根式化成幂的形式,并化小数指数幂为分数指数幂,再利用幂的运算性质进行化简.[跟进训练]1.计算:(1)0.02+25+(2-3-1+π0;(2)(a-2b-3)·(-4a-1b)÷(12a-4b-2c);(3)2÷4·3.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________类型2 对指数幂的运算性质的理解【例2】 (1)下列函数中,满足f 的是( )A.f =4x B.f =4-xC.f =2x D.f =2-x(2)=( )A.2 B.2 C.1 D.1[尝试解答] ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 1.根据需要,指数幂的运算性质可正用、逆用和变形使用.2.运用幂的运算性质化简时,其底数必须大于零,对于底数小于零的,要先化为底数大于零的形式.如.[跟进训练]2.下列运算结果中,正确的是( )A.a2·a3=a6 B.C.=a5 D.=-a6类型3 根据条件求值【例3】 【链接教材P81例4】已知,求下列各式的值:(1)a+a-1;(2)a2+a-2.[尝试解答] ________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[母题探究] 在本例条件不变的情况下,则a2-a-2=________. 条件求值的步骤[跟进训练]3.已知a,b分别为x2-12x+9=0的两根,且a______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________1.思考辨析(正确的画“√”,错误的画“×”)(1)对任意实数a,am+n=aman. ( )(2)当a>0时,=amn. ( )(3)当a≠0时,=am-n. ( )2.=( )A.103 B.1 C.310 D.73.已知=5,则的值为( )A.5 B.23 C.25 D.274. 的值为________.5.=________.1 / 1 展开更多...... 收起↑ 资源列表 第三章 §2 指数幂的运算性质(教师版).docx 第三章 §2 指数幂的运算性质(学生版).docx