3.2.2 函数奇偶性 教学设计

资源下载
  1. 二一教育资源

3.2.2 函数奇偶性 教学设计

资源简介

3.2.2 奇偶性
教材分析
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.
教学目标及核心素养
课程目标
1、理解函数的奇偶性及其几何意义;
2、学会运用函数图象理解和研究函数的性质;
3、学会判断函数的奇偶性.
学科素养
1.数学抽象:用数学语言表示函数奇偶性;
2.逻辑推理:证明函数奇偶性;
3.数学运算:运用函数奇偶性求参数;
4.数据分析:利用图像求奇偶函数;
5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。
教学重难点
重点:函数奇偶性概念的形成和函数奇偶性的判断;
难点:函数奇偶性概念的探究与理解.
课前准备
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程
情景导入
前面我们用符号语言准确地描述了函数图象在定义域的某个区间上“上升”(或“下降”)的性质.下面继续研究函数的其他性质.
画出并观察函数的图像,你能发现这两个函数图像
有什么共同特征码?
预习课本,引入新课
阅读课本82-84页,思考并完成以下问题
1.偶函数、奇函数的概念是什么?
2.奇偶函数各自的特点是?
新知探究
1.奇函数、偶函数
(1)偶函数(even function)
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2)奇函数(odd function)
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.
奇偶函数的特点
具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.因此定义域关于原点对称是函数存在奇偶性的一个必要条件。
(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.
(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.
(4)偶函数: ,
奇函数: ;
(5)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
(6)已知函数f(x)是奇函数,且f(0)有定义,则f(0)=0。
四、典例分析、举一反三
题型一 判断函数奇偶性
例1 (课本P84例6):判断下列函数的奇偶性
(1) (2) (3) (4)
跟踪训练一
1.判断下列函数的奇偶性:
(1)f(x)=2-|x|;
(2)f(x)= + ;
(3)f(x)=;
(4)f(x)=
题型二 利用函数的奇偶性求解析式
例2  已知f(x)为R上的奇函数,当x>0时,f(x)=-2+3x+1,
(1)求f(-1);
(2)求f(x)的解析式.
跟踪训练二
1.若f(x)是定义在R上的奇函数,当x>0时,f(x)=x2-2x+3,求f(x)的解析式.
题型三 利用函数的奇偶性求参
例3 (1)若函数f(x)=a+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;
(2)已知函数f(x)=a+2x是奇函数,则实数a=________. 
跟踪训练三
1.设函数为奇函数,则a=________
五、课堂小结
让学生总结本节课所学主要知识及解题技巧
六、板书设计
(
3
.2
.
2奇偶性
奇偶性概念
例1
例2
例3
奇偶函数的特点
)
七、作业
课本85页习题3.2
教学反思
本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.

展开更多......

收起↑

资源预览