资源简介 用配方法求解一元二次方程一、教材分析一元二次方程的解法是本章的重点内容,“配方法”是学生接触到的的第一种一元二次方程的精确解的求解方法,它是以直接开方法为基础的一次深入探究,是由特殊到一般的一个拓展过程,又对继续学习后面的公式法有着指导和铺垫的作用。在“配方法”的探索过程中体现了“化未知为已知”的数学思想方法,为今后学习高次方程、函数等奠定了基础,具有承上启下的作用。二、学情分析学生的知识技能基础:学生在八年级上学期已经学习过开平方,知道一个正数有两个平方根,会利用开方求一个正数的两个平方根,并且也学习了完全平方公式。在本章前面两节课中,又学习了一元二次方程的概念,并经历了用估算法求一元二次方程的根的过程,初步理解了一元二次方程解的意义;学生活动经验基础:学生已经经历了用计算器估算一元二次方程解的过程,解决了一些简单的现实问题,感受到解一元二次方程的必要性和作用,基于学生的学习心理规律,在学习了估算法求解一元二次方程的基础上,学生自然会产生用简单方法求其精确解的欲望;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。三、教学任务分析基于学生用估算的方法求解一元二次方程的基础之上,提出了本课的具体学习任务:用配方法解二次项系数为1的一元二次方程。本课《用配方法求解一元二次方程》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的素养目标是:1、会用开方法解形如的方程,理解配方法,会用配方法解二次项系数为1的一元二次方程;2、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效模型,增强学生的数学应用意识和能力;3、体会转化的数学思想方法;能根据具体问题中的实际意义检验结果的合理性。四、教法与学法分析教法:新课标中指出数学是数学活动的教学,是师生之间、学生之间交往互动共同发展的过程。教法的确定要符合学生实际,能够激发学生的求知欲和兴趣,引导学生积极开展思维活动主动地获取新知。因此本课主要采用的是“问题——探究——问题”的教学模式和启发、探究式教学方法。学法:由于九年级学生已能按思维的概括去观察事物,观察的精确性、概括性有所提高,他们通过观察进而能抓住事物的主要特点进行较为全面、深刻的分析,并能把个别事物同一般的原理、规则联系。因此,本节课将通过观察、比较、思考、交流、发现等活动,灵活地运用旧知识去研究新问题,在潜移默化中领会学习方法。使学生从“学会”到“会学”最后到“乐学”。五、教学过程分析本节课设计了五个教学环节:第一环节:复习回顾;第二环节:自主探究;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。第一环节:复习回顾活动内容:1、如果一个数的平方等于,则这个数是 ,若一个数的平方等于7,则这个数是 。一个正数有几个平方根,它们具有怎样的关系?2、用字母表示因式分解的完全平方公式。实际效果:第1和第2问选两三个学生口答,由于问题较简单,学生很快回答出来。第二环节:自主探究(1)你能解哪些一元二次方程?(2)你会解下列一元二次方程吗?你是怎么做的?; ; ; 。(3)上节课,我们研究梯子底端滑动的距离满足方程,你能仿照上面几个方程的解题过程,求出的精确解吗 你认为用这种方法解这个方程的困难在哪里 (合作交流)实际效果:在复习了开方的基础上,学生很快口答出了第1问,为解决第二问做好了准备。第2问让学生合作解决,方程可由平方根的意义求解。方程,在第一个方程求解之后进行类比,可以先将其转化为前一个方程的形式,再由平方根的意义求解。两次经历了平方根的意义求解之后,在第三个方程,学生自然就会考虑利用平方根和完全平方公式去解决所遇到的问题。第四个方程可以去验证学生的猜想。利用这四个方程让学生初步了解了开方法在一元二次方程中的简单应用。在第2问的基础上,学生很快就能解决第3问。但学生在解决第3问时遇到了困难,他们发现等号的左端不是完全平方式,不能直接化成 的形式,因此大部分同学认为这个方程不能用开方法解,那么如何解决这样的方程问题呢?这就是我们本节课要来研究的问题(自然引出课题),为后面探索配方法埋好了伏笔。第三环节:讲授新课活动内容1:做一做:(填空配成完全平方式,体会如何配方)填上适当的数,使下列等式成立。(选4个学生口答)问题:上面等式的左边常数项和一次项系数有什么关系?对于形如的式子如何配成完全平方式?(小组合作交流)实际效果:由于在复习回顾时已经复习过完全平方式,所以大部分学生很快解决四个小填空题。通过小组的合作交流,学生发现要把形如的式子如何配成完全平方式,只要加上一次项系数一半的平方即加上即可。而且讲解中小组之间互相补充、互相竞争,气氛热烈,使如何配成完全平方式的方法更加透彻。事实上,通过对配方的感知的过程,学生都能用自己的语言归纳总结出配成完全平方式的方法,这就为下一环节“用配方法解一元二次方程”打好基础。由此也反映出学生善于观察分析的良好品质,而这种品质是在学生自觉行为中得到培养的,体现了学生良好的情感、态度、价值观。活动内容2:解决例题(1)解方程:x2+8x-9=0.(师生共同解决)解:可以把常数项移到方程的右边,得x2+8x=9两边都加上(一次项系数8的一半的平方),得x2+8x+42=9+42.(x+4)2=25开平方,得 x+4=±5,即 x+4=5,或x+4=-5.所以 x1=1, x2=-9.(2)解决梯子底部滑动问题:(仿照例1,学生独立解决)解:移项得 x2+12x=15,两边同时加上62得,x2+12x+62=15+36,即(x+6)2=51两边开平方,得x+6=±所以:,,但因为表示梯子底部滑动的距离所以 不合题意舍去。答:梯子底部滑动了米。活动内容3:及时小结、整理思路用这种方法解一元二次方程的思路是什么?其关键又是什么?(小组合作交流)引出配方法的定义:我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法。通过例题的学习和分析,归纳总结用配方法解一元二次方程的一般步骤是什么?(小组合作交流,教师总结)(1)移,移项,使方程左边为二次项和一次项。(2)配,配方,方程两边都加上一次项系数一半的平方,使原方程变成形式。(3)开,如果方程的右边是非负数,就可左右两边开平方得到x+m=(4)解,即方程的解为x=-m 。如果是解决实际问题,还要注意判断求得的结果是否符合实际意义。实际效果:学生经过前一环节对配方法的特点有了初步的认识,通过两个例题的处理,进一步完善对配方法基本思路的把握,是对配方法的学习由探求迈向实际应用的第一步。最后利用两个问题,通过小组的合作交流得出配方法的基本思路、步骤和解决问题的关键,结论的得出来源于学生在实例分析中的亲身感受,体现学生学习的主动性。第四环节:练习与提高活动内容:解下列方程+4实际效果:此处留给学生充分的时间与空间进行独立练习,通过练习,学生基本都能用配方法解解二次项系数为1、一次项系数为整数的一元二次方程,取得了较好的教学效果,加深了学生对“用配方法解简单一元二次方程”的理解。第五环节:课堂小结活动内容:师生互相交流、总结配方法解一元二次方程的基本思路和关键,及配方法的一般步骤,以及在应用配方法时应注意的问题。实际效果:学生畅所欲言谈自己的切身感受与实际收获,掌握了配方法的基本思路和步骤。第六环节:布置作业课本37页,习题2.3习题1、2、3题1 展开更多...... 收起↑ 资源预览