资源简介 9.16 分组分解法(1)教学目标:1. 理解分组分解法的概念.2. 掌握用“二二”分组分解法分解四项式.3. 在用分组分解法进行因式分解的过程中培养发散思维的能力.教学重点和难点:选择合理的分组方法对四项式进行正确的因式分解.教学过程:一、复习引入问:前几节课我们学习了分解因式,有哪些方法呢?(生:提取公因式法、公式法、十字相乘法)填空:(1)2(a+b)+3a(a+b)=( )(a+b);(2)x(a–b)–y(a–b)= (a–b)( );(3) –(x–y)2–(x–y)= –(x–y)( ).分解因式时一般先考虑提取公因式,公因式可以是单项式,也可以是多项式.思考:如何将多项式ax+ay+bx+by分解因式?显然,多项式ax+ay+bx+by中既没有公因式,也不好用公式法和十字相乘法,能不能转化为已学知识来进行分解因式呢?问1:观察这个多项式,它有什么特征?答1:它是四项式,前两项和后两项分别有公因式a、b.(第一项和第三项有公因式x,第二项和第四项有公因式y).师:把这个多项式的前两项和后两项分成两组后,分别提出公因式a与b后,我们来看看:ax+ay+bx+by=(ax+ay)+(bx+by)=a(x+y)+ b(x+y)问2:你有什么发现?答2:还有公因式(x+y),可以提取公因式.学生口述,教师板书. =(x+y)(a+b)问3:这是分解因式的结果吗?答3:是的.师:这种利用分组来分解因式的方法叫做分组分解法.板书课题:§9.16分组分解法(1)问4:还有其它的分组方法吗?答4:把这个多项式的第一项和第三项一组,第二项和第四项一组,分为两组,分别提出公因式x与y.学生口述,教师板书.ax+ay+bx+by=(ax+bx)+(ay+by) =x(a+b)+y(a+b) =(a+b)(x+y) 问5:这个结果和前面的分组分解的结果相同吗?师:这两种不同的分组方法都是正确的,关键是多项式分组后还能继续提取公因式来分解因式.我们把这种分组方式简单地称为“二二”分组.答5:相同.二、运用分组分解法分解因式例题1 分解因式:(1)2ac–6ad+bc–3bd.问1:多项式有什么特征?如何分解?学生口述,教师板书.解:2ac–6ad+bc–3bd =(2ac–6ad)+(bc–3bd)=2a(c–3d)+b(c–3d)问2:有公因式吗?是什么? =(c–3d)(2a+ b)问3:这是分解因式的结果吗?答3:是的.问4:还有其它的分组方法吗?答4:有.学生口述,教师板书.解:2ac–6ad+bc–3bd =(2ac+bc) + (–6ad–3bd)=c(2a+b)–3d(2a+b)=(2a+b)(c–3d)问5:还有其它的分组方法吗?答5:有.(预设学生答错)解:2ac–6ad+bc–3bd =(2ac–3bd)+(–6ad+bc)我们发现这种分组,不能继续分解,所以这种分组分解是错误的.问6:观察前两种正确的分组方法,每一组中系数之间有什么联系?答6:第一种分组中,每组两项的系数比都是1:(–3);第二种分组中,每组两项的系数比都是2:1.例题2 分解因式:4a2+2a–b2+b.问1:这个四项式如何分解?答1:前两项一组有公因式2a,后两项一组有公因式b.(预设学生答错,按字母特征分组)按照学生回答板书:4a2+2a–b2+b=2a(a+1)+b(–b+1)问2:有公因式吗?怎么办?答2:没有,重新分组.问3:如何分解?答3:4a2–b2是平方差,把它们分为一组,2a+b分为一组.解:4a2+2a–b2+b =(4a2–b2)+(2a+b)问4:怎么办?答4:用平方差公式分解(4a2–b2).=(2a+b)(2a–b)+(2a+b)问5:有什么发现?=(2a+b)(2a–b+1) 答5:有公因式(2a+b),可以提取公因式进一步分解.问6:观察这种分组方法,每一组中字母指数之间有什么联系?答6:每组中两项的字母指数相同.小结:二二分组分解时应注意的问题:1、把四项式二二分为两组(按字母特征分组,或按系数特征分组,或按字母指数特征分组);2、分组分解后产生新公因式;3、继续用提取公因式法来分解因式;4、分解到不能分解为止.练习(1) a2-ab-2a+2b; (2); (3);(4).三、能力提高例题3 分解因式:2x3–2x2y+8y–8x.问1:这还是一个四项式,如何分解?答1:前两项有公因式2x2,后两项有公因式8.把前两项一组,后两项一组,再分组分解.强调:分解因式时先观察,有公因式应先提取公因式.解:2x3–2x2y+8y–8x =2(x3–x2y+4y–4x)问2:如何分解?答2:括号内前两项有公因式x2,后两项有公因式4.把前两项一组,后两项一组,再分组分解.=2[(x3–x2 y)+ (4y–4x)] =2 [x2(x–y)–4(x–y)]问3:有公因式吗?是什么?答3:有,是(x–y). =2(x–y)(x2–4)问4:这是分解因式的结果吗?为什么?答4:不是,分解因式应分解到不能分解为止,(x2–4)还可以分解. =2(x–y)(x+2)(x–2)小结:分解因式时应注意的问题:1、分解因式的分解因式时先观察,有公因式应先提取公因式;2、分解因式应分解到不能分解为止.练习:分解因式:.四、课堂小结通过今天的学习你有什么收获和体会?预设学生:1、分组分解法;2、二二分组分解时注意的问题:(1)把四项式二二分为两组(按字母特征分组,或按系数特征分组,或按字母指数特征分组);(2)分组分解后产生新公因式;(3)继续用提取公因式法来分解因式.3、分解因式时应注意的问题:(1)分解因式的分解因式时先观察,有公因式应先提取公因式;(2)分解因式应分解到不能分解为止.五、回家作业练习册 9.16 第1、4题9.16分组分解法(2)教学目标:1. 进一步理解分组分解法的概念.2. 掌握用“一三”分组分解法分解四项式.3. 在用分组分解法进行因式分解的过程中感受整体的数学思想.教学重点和难点:根据多项式的特征对多项式进行合理的分组,并正确进行因式分解.教学过程:一、复习引入已知多项式x2+xy+xz+yz,你能对它因式分解吗?问1:用什么方法?问2:分组分解的关键是什么?答1:分组分解法.答2:因式分解后能产生新的公因式.二、运用分组分解法分解因式思考:如何将多项式a2+2ab+b2–1分解因式?问1:用“二二”分组能分解吗?问2:怎么办?答1:不能.答2:前三项是一个完全平方式,把它们分为一组.师:把这个多项式的前三项分在一组后,我们来看看:a2+2ab+b2–1=(a2+2ab+b2) –1=(a+b)2 –1问3:你有什么发现?答3:把(a+b)看作一个整体,可以运用平方差公式分解因式.这样就转化为运用平方差公式分解.学生口述,教师板书. =(a+b+1) (a+b–1)问4:这是分解因式的结果吗?答4:是的.师:这种分组方法简单地称为“一三”分组.问5:还有其它的分组方法吗?答5:没有.二、运用分组分解法分解因式例题1 分解因式: (1)x2–4x–y2+4;问1:多项式有什么特征?如何分解?答1:x2–4x+4是一个完全平方式,把这三项分为一组,–y2为一组,再分组分解.问2:这是分解因式的结果吗?答2:是的.(2)4m2–n2–2n–1.问1:多项式有什么特征?如何分解?答1:–n2–2n–1提取负号后是一个完全平方式,把这三项分为一组,4m2为一组,再分组分解=4m2– (n+1)2问2:怎么办?答2:4m2是(2m)2,用平方差公式分解.小结:三一分组分解的特点:1、三项式这组可用完全公式法分解;2、再用平方差公式法分解到不能分解为止.三、课堂练习分解因式:(1) x2–4xy+4y2–4;问:多项式有什么特征?如何分解?分析特征后,学生独自练习.(2) 1–a2+2ab–b2. 问:多项式有什么特征?如何分解?问:分解因式时应注意什么问题?答:添负括号时注意括号里的每一项都要变号;去括号时应注意括号前的负号.四、能力提高例题2 分解因式:x2+2xy+y2–3x–3y–4;问1:多项式有什么特征?如何分解?解:x2+2xy+y2–3x–3y–4 = (x2+2xy+y2)+(–3x–3y)–4 = (x+y)2–3(x+y)–4问2:怎么办? = (x+y–4)(x+y+1)练习:分解因式:m2–5m+n2+5n–2mn.五、课堂小结通过今天的学习你有什么收获?预设学生:1、三一分组分解的特点:(1)三项式这组可用完全公式法分解;(2)再用平方差公式法分解到不能分解为止.2、分解因式时应注意符号的问题,添负括号时注意括号里的每一项都要变号;去括号时应注意括号前的负号.教师补充:整体的数学思想.六、回家作业练习册 9.16 第2、3、5题 展开更多...... 收起↑ 资源预览