资源简介 数学教师考试试题一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合M={0,1,2},N=,则=( )A. {1} B. {2} C. {0,1} D. {1,2}2.若a为实数且(2+ai)(a-2i)=-4i,则a=( )(A)-1 (B)0 (C)1 (D)23.已知向量,且,则m=( )(A) (B) (C)6 (D)84. 钝角三角形ABC的面积是,AB=1,BC= ,则AC=( )A. 5 B. C. 2 D. 15.等比数列{an}满足a1=3, =21,则 ( )(A)21 (B)42 (C)63 (D)846. 如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. B. C. D.7.若将函数y=2sin 2x的图像向左平移个单位长度,则平移后图象的对称轴为( )(A) (B)(C) (D)8.右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。执行该程序框图,若输入a,b分别为14,18,则输出的a=( )A.0 B.2 C.4 D.149.已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36π B.64π C.144π D.256π10. 设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A. B. C. D.11.已知A,B为双曲线E的左,右顶点,点M在E上, ABM为等腰三角形,且顶角为120°,则E的离心率为( )(A) (B)2 (C) (D)12.已知函数满足,若函数与图像的交点为,, ,,则( )(A)0 (B)m (C)2m (D)4m第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题13. 的展开式中,的系数为15,则a=________.(用数字填写答案)14.若x,y满足约束条件,则的最大值为____________.15.,是两个平面,m,n是两条线,有下列四个命题:①如果,,,那么.②如果,,那么.③如果,,那么.④如果,,那么m与所成的角和n与所成的角相等16.若直线是曲线的切线,也是曲线的切线, .答题卡选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案填空题13--------------- 14 -------------- 15 --------------- 16 ----------------三. 解答题:解答应写出文字说明,证明过程或演算步骤.(17) ABC中,D是BC上的点,AD平分∠BAC, ABD是 ADC面积的2倍。(Ⅰ)求;(Ⅱ) 若=1,=求和的长.18. (本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积.(19)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分 低于70分 70分到89分 不低于90分满意度等级 不满意 满意 非常满意记时间C:“A地区用户的满意度等级高于B地区用户的满意度等级”。假设两地区用户的评价结果相互独立。根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率(20)(本小题满分12分)已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当,时,求△AMN的面积;(II)当时,求k的取值范围.21. (本小题满分12分)已知函数=(Ⅰ)讨论的单调性;(Ⅱ)设,当时,,求的最大值;(Ⅲ)已知,估计ln2的近似值(精确到0.001)请考生在第22、23、24题中任选一题做答,如果多做,同按所做的第一题计分,做答时请写清题号.22.(本小题满分10)选修4—1:几何证明选讲如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交O于点E.证明:(Ⅰ)BE=EC;(Ⅱ)ADDE=223.(本小题满分10分)选修4 - 4:坐标系与参数方程在直角坐标系xOy中,曲线C1:(t为参数,t ≠ 0),其中0 ≤ α < π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:,C3:。(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求的最大值。(24)(本小题满分10分),选修4—5:不等式选讲已知函数,M为不等式的解集.(I)求M;(II)证明:当a,时,.1 展开更多...... 收起↑ 资源预览