资源简介 (共40张PPT)人教八下数学同步优质课件人教版八年级下册复习回顾学习目标知识精讲典例解析针对练习总结提升达标检测小结梳理2024春人教版八(下)数学同步精品课件18.2 特殊的平行四边形18.2.5 正方形第十八章 平行四边形1.理解正方形的概念;2.探索正方形的性质与判定,并了解平行四边形、矩形、菱形之间的联系和区别; (重点)3.会应用正方形的性质与判定解决相关证明及计算问题.(难点)学习目标观察下面图形,正方形是我们熟悉的几何图形,在生活中无处不在.观察下面图形,正方形是我们熟悉的几何图形,在生活中无处不在.正方形的四个角都是_____,四条边都_____.因此,正方形既是______,又是______,它既有______的性质,又有______的性质.正方形(square)是我们熟悉的几何图形.直角相等矩形菱形矩形菱形正方形有哪些性质?对边平行、四边相等;四个角都是直角;对角线互相垂直平分且相等,每条对角线平分一组对角.实验一:利用手中矩形纸片用最快的方法剪出一个正方形.实验二:如何将一个活动的菱形框变成一个正方形?1.如果四边形ABCD已经是一个矩形,那么再加上什么条件就可以变为正方形?2.如果四边形ABCD已经是一个菱形,那么再加上什么条件就可以变为正方形?3.如果四边形ABCD是一般的平行四边形,那么再加上什么条件就可以变为正方形?有一个角是直角有一组邻边相等有一组邻边相等有一个角是直角矩形菱形正方形平行四边形正方形、菱形、矩形、平行四边形四者之间有什么关系?与同学们讨论一下,能列表或用框图表示出来吗?有一组邻边相等有一个角是直角正方形、菱形、矩形、平行四边形四者之间有什么关系?与同学们讨论一下,能列表或用框图表示出来吗?有一个角是直角有一组邻边相等有一个角是直角有一组邻边相等例1.求证: 正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.已知: 如图,四边形ABCD是正方形,对角线AC、BD相交于点O.求证: △ABO、 △BCO、 △CDO、 △DAO是全等的等腰直角三角形.证明: ∵ 四边形ABCD是正方形,∴ AC=BD,AC⊥BD,AO=BO=CO=DO.∴ △ABO、 △BCO、 △CDO、 △DAO都是等腰直角三角形,并且△ABO≌△BCO≌△CDO≌△DAO.例2.如图,在正方形ABCD中, ΔBEC是等边三角形.求证:∠EAD=∠EDA=15° .证明:∵ ΔBEC是等边三角形,∴BE=CE=BC,∠EBC=∠ECB=60°,∵ 四边形ABCD是正方形,∴AB=BC=CD,∠ABC=∠DCB=90°,∴AB=BE=CE=CD, ∠ABE= ∠DCE=30°,∴△ABE,△DCE是等腰三角形,∴∠BAE=∠BEA=∠CDE=∠CED=75°,∴∠EAD=∠EDA=90°-75°=15°.四边形ABCD是正方形,以正方形ABCD的一边作等边△ADE,求∠BEC的大小.解:当等边△ADE在正方形ABCD外部时,如图①,AB=AE,∠BAE=90°+60°=150°.∴∠AEB=15°.同理可得∠DEC=15°.∴∠BEC=60°-15°-15°=30°;当等边△ADE在正方形ABCD内部时,如图②,AB=AE,∠BAE=90°-60°=30°,∴∠AEB=75°.同理可得∠DEC=75°.∴∠BEC=360°-75°-75°-60°=150°.综上所述,∠BEC的大小为30°或150°.【点睛】因为等边△ADE与正方形ABCD有一条公共边,所以边相等.本题分两种情况:等边△ADE在正方形的外部或在正方形的内部.例3.如图,在正方形ABCD中,P为BD上一点,PE⊥BC于E, PF⊥DC于F.试说明:AP=EF.ABCDPEF解:连接PC,AC.∵四边形ABCD是正方形,∴∠FCE=90°, AC垂直平分BD,∴AP=PC.又∵PE⊥BC ,PF⊥DC,∴四边形PECF是矩形,∴PC=EF.∴AP=EF.【点睛】在正方形的条件下证明两条线段相等:通常连接对角线构造垂直平分的模型,利用垂直平分线性质,角平分线性质,等腰三角形等来说明.如图在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF. BE与DF之间有怎样的关系?请说明理由.解:BE=DF,且BE⊥DF.理由如下:∵四边形ABCD是正方形.∴BC=DC,∠BCE =90° .∴∠DCF=180°-∠BCE=90°.∴∠BCE=∠DCF.又∵CE=CF.∴△BCE≌△DCF.∴BE=DF.延长BE交DE于点M,∵△BCE≌△DCF ,∴∠CBE =∠CDF.∵∠DCF =90° ,∴∠CDF +∠F =90°,∴∠CBE+∠F=90° ,∴∠BMF=90°.∴BE⊥DF.M例4.在正方形ABCD中,点E、F、M、N分别在各边上,且AE=BF=CM=DN.四边形EFMN是正方形吗 为什么 证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠A=∠B=∠C=∠D=90°.∵AE=BF=CM=DN,∴AN=BE=CF=DM.分析:由已知可证△AEN≌△BFE≌△CMF≌△DNM,得四边形EFMN是菱形,再证有一个角是直角即可.在△AEN、△BFE、△CMF、△DNM中,AE=BF=CM=DN,∠A=∠B=∠C=∠D,AN=BE=CF=DM,∴△AEN≌△BFE≌△CMF≌△DNM,∴EN=FE=MF=NM,∠ANE=∠BEF,∴四边形EFMN是菱形,∠NEF=180°-(∠AEN+∠BEF)=180°-(∠AEN+∠ANE)=180°-90°=90°.∴四边形EFMN是正方形 .如图,EG,FH过正方形ABCD的对角线的交点O,且EG⊥FH.求证:四边形EFGH是正方形.证明:∵四边形ABCD为正方形,∴OB=OC,∠ABO=∠BCO =45°,∠BOC=90°=∠COH+∠BOH.∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO ≌△BEO,∴OE=OH.同理可证:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO ,即EG=HF,∴四边形EFGH为正方形.例5.如图,正方形ABCD,动点E在AC上,AF⊥AC,垂足为A,AF=AE.(1)求证:BF=DE;(2)当点E运动到AC中点时(其他条件都保持不变),问四边形AFBE是什么特殊四边形?说明理由.(1)证明:∵正方形ABCD,∴AB=AD,∠BAD=90°,∵AF⊥AC,∴∠EAF=90°,∴∠BAF=∠EAD,在△ADE和△ABF中,AD=AB ,∠DAE=∠BAF ,AE=AF ,∴△ADE≌△ABF(SAS),∴BF=DE;(2)解:当点E运动到AC的中点时四边形AFBE是正方形,理由:∵点E运动到AC的中点,AB=BC,∴BE⊥AC,BE=AE=AC,∵AF=AE,∴BE=AF=AE.又∵BE⊥AC,∠FAE=∠BEC=90°,∴BE∥AF,∵BE=AF,∴得平行四边形AFBE,∵∠FAE=90°,AF=AE,∴四边形AFBE是正方形.1.正方形具有而菱形不一定具有的性质是( )A.对角线互相平分 B.四个角都是直角C.四条边都相等 D.对角线互相垂直2.已知四边形ABCD中, ∠A=∠B=∠C=90°, 如果再添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A.∠D=90° B. AB=CD C. AD=BC D. BC=CDBD3.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是( )A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时, 它是矩形D.当AC=BD时,它是正方形D4.如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果Q点从A点出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从B点出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为( )A.2 B.4-π C. π D. π-1B5.正方形的一条边长是3,那么它的对角线长是_______.6.如图,正方形ABCD的两条对角线AC,BD交于点O,点E在BD上,且BE=CD, 则∠BEC的度数为_________.7.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为________.367.5°28.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE//CA,DF // BA.(1)四边形AEDF是______________;(2)如果∠BAC=90°,那么四边形AEDF是_________;(3)如果AD平分∠BAC,那么四边形AEDF是_________;(4)如果∠BAC=90°,AD平分∠BAC,那么四边形AEDF是__________.平行四边形矩形菱形正方形9.如图,在AB上取一点C,以AC、BC为正方形的一边在同一侧作正方形AEDC和BCFG连接AF、BD,延长BD交AF于H.求证: BH⊥AF.证明:∵四边形AEDC和BCFG是正方形∴AC=DC,CF=CB, ∠ACF=∠BCF=90°∴△ACF≌△DCB (SAS)∴∠AFC=∠DBC又∵∠AFC+∠CAF=90°∴∠DBC+ ∠CAF=90°∴∠AHB=90° 即 BH⊥AF10.如图,在正方形ABCD中,Q在CD上,且DQ=CQ,P在BC上,AP=CD+CP,求证: AQ平分∠DAP.证明:延长AQ交BC延长线与E.∵四边形ABCD是正方形∴AD=CD,AD// BC∵∠D=∠QCE,∠DAQ=∠E又∵DQ=CQ∴△ADQ≌△ECQ (AAS)∴AD=CE10.如图,在正方形ABCD中,Q在CD上,且DQ=CQ,P在BC上,AP=CD+CP,求证: AQ平分∠DAP.∴CD=CE∴AP=CD+CP=CE+CP=EP∴∠PAQ=∠E∴∠PAQ=∠DAQ,即AQ平分∠DAP11.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.(1)证明四边形EGFH是平行四边形;(2)在(1)的条件下,若EF⊥BC, 且EF=BC,证明平行四边形EGFH是正方形.证明: (1)∵ G,F,H分别是BE,BC,CE的中点∴GF//CE,FH//BE∴GF//EH,FH//GE∴四边形EGFH是平行四边形(2)在(1)的条件下,若EF⊥BC, 且EF=BC,证明平行四边形EGFH是正方形.证明: (2) 连接EF.∵BF=CF,EF⊥BC∴BE=CE∴GE=EH∴四边形EGFH是菱形∵EF=BC,EF⊥BC∴BF=EF=CF∴∠BEF=∠CEF=45°∴∠BEC=90°∴四边形EGFH是菱形且∠BEC=90°∴四边形EGFH是正方形正方形有哪些性质?对边平行、四边相等;四个角都是直角;对角线互相垂直平分且相等,每条对角线平分一组对角.有一个角是直角有一组邻边相等有一组邻边相等有一个角是直角谢谢21世纪教育网(www.21cnjy.com)中小学教育资源网站兼职招聘:https://www.21cnjy.com/recruitment/home/admin 展开更多...... 收起↑ 资源列表 18.2.5 正方形【2024春人教八下数学同步优质课件含动画】.pptx 实验探究.mp4 达标检测第4题.mp4