资源简介 【高考数学】破题36关目 录目 录 1第1关: 极值点偏移问题--对数不等式法 2第2关: 参数范围问题—常见解题6法 6第3关: 数列求和问题—解题策略8法 9第4关: 绝对值不等式解法问题—7大类型 13第5关: 三角函数最值问题—解题9法 19第6关: 求轨迹方程问题—6大常用方法 24第7关: 参数方程与极坐标问题—“考点”面面看 37第8关: 均值不等式问题—拼凑8法 43第9关: 不等式恒成立问题—8种解法探析 49第10关: 圆锥曲线最值问题—5大方面 55第11关: 排列组合应用问题—解题21法 59第12关: 几何概型问题—5类重要题型 66第13关: 直线中的对称问题—4类对称题型 69第14关: 利用导数证明不等式问题—4大解题技巧 71第15关: 函数中易混问题—11对 76第16关: 三项展开式问题—破解“四法” 82第17关: 由递推关系求数列通项问题—“不动点”法 83第18关: 类比推理问题—高考命题新亮点 87第19关: 函数定义域问题—知识大盘点 93第20关: 求函数值域问题—7类题型16种方法 100第21关: 求函数解析式问题—7种求法 121第22关:解答立体几何问题—5大数学思想方法 124第23关: 数列通项公式—常见9种求法 129第24关:导数应用问题—9种错解剖析 141第25关:三角函数与平面向量综合问题—6种类型 144第26关:概率题错解分类剖析—7大类型 150第27关:抽象函数问题—分类解析 153第28关:三次函数专题—全解全析 157第29关:二次函数在闭区间上的最值问题—大盘点 169第30关:解析几何与向量综合问题—知识点大扫描 178第31关:平面向量与三角形四心知识的交汇 179第32关:数学解题的“灵魂变奏曲”—转化思想 183第33关:函数零点问题—求解策略 194第34关:求离心率取值范围—常见6法 199第35关:高考数学选择题—解题策略 202第36关:高考数学填空题—解题策略 211目 录 1第1关: 极值点偏移问题--对数不等式法 2第2关: 参数范围问题—常见解题6法 6第3关: 数列求和问题—解题策略8法 9第4关: 绝对值不等式解法问题—7大类型 13第5关: 三角函数最值问题—解题9法 19第6关: 求轨迹方程问题—6大常用方法 24第7关: 参数方程与极坐标问题—“考点”面面看 37第8关: 均值不等式问题—拼凑8法 43第9关: 不等式恒成立问题—8种解法探析 49第10关: 圆锥曲线最值问题—5大方面 55第11关: 排列组合应用问题—解题21法 59第12关: 几何概型问题—5类重要题型 66第13关: 直线中的对称问题—4类对称题型 69第14关: 利用导数证明不等式问题—4大解题技巧 71第15关: 函数中易混问题—11对 76第16关: 三项展开式问题—破解“四法” 82第17关: 由递推关系求数列通项问题—“不动点”法 83第18关: 类比推理问题—高考命题新亮点 87第19关: 函数定义域问题—知识大盘点 93第20关: 求函数值域问题—7类题型16种方法 100第21关: 求函数解析式问题—7种求法 121第22关:解答立体几何问题—5大数学思想方法 124第23关: 数列通项公式—常见9种求法 129第24关:导数应用问题—9种错解剖析 141第25关:三角函数与平面向量综合问题—6种类型 144第26关:概率题错解分类剖析—7大类型 150第27关:抽象函数问题—分类解析 153第28关:三次函数专题—全解全析 157第29关:二次函数在闭区间上的最值问题—大盘点 169第30关:解析几何与向量综合问题—知识点大扫描 178第31关:平面向量与三角形四心知识的交汇 179第32关:数学解题的“灵魂变奏曲”—转化思想 183第33关:函数零点问题—求解策略 194第34关:求离心率取值范围—常见6法 199第35关:高考数学选择题—解题策略 202第36关:高考数学填空题—解题策略 211【高考数学】破题36关第1关: 极值点偏移问题--对数不等式法我们熟知平均值不等式:即“调和平均数”小于等于“几何平均数”小于等于“算术平均值”小于等于“平方平均值”等号成立的条件是.我们还可以引入另一个平均值:对数平均值:那么上述平均值不等式可变为:对数平均值不等式,以下简单给出证明:不妨设,设,则原不等式变为:以下只要证明上述函数不等式即可.以下我们来看看对数不等式的作用.题目1:(长春四模题)已知函数有两个零点,则下列说法错误的是A. B. C. D.有极小值点,且【答案】C【解析】函数导函数:有极值点,而极值,,A正确.有两个零点:,,即:①②①-②得:根据对数平均值不等式:,而, B正确,C错误而①+②得:,即D成立.题目2:(辽宁理)已知函数.若函数的图像与轴交于两点,线段中点的横坐标为,证明:【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,,,则,①②①-②得:,化简得:③而根据对数平均值不等式:③等式代换到上述不等式④根据:(由③得出)∴④式变为:∵,∴,∴在函数单减区间中,即:题目3:(天津理)已知函数 .如果,且.证明:.【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,则,,两边取对数①②①-②得:根据对数平均值不等式题目4:(江苏南通市二模)设函数 ,其图象与轴交于两点,且.证明:(为函数的导函数).【解析】根据题意:,移项取对数得:①②①-②得:,即:根据对数平均值不等式:,①+②得:根据均值不等式:∵函数在单调递减∴题目5:已知函数与直线交于两点.求证:【解析】由,,可得:①,②①-②得:③①+②得:④根据对数平均值不等式利用③④式可得:由题于与交于不同两点,易得出则∴上式简化为:∴【高考数学】破题36关第2关: 参数范围问题—常见解题6法求解参数的取值范围是一类常见题型.近年来在各地的模拟试题以及高考试题中更是屡屡出现.学生遇到这类问题,较难找到解题的切入点和突破口,下面介绍几种解决这类问题的策略和方法.一、确定“主元”思想常量与变量是相对的,一般地,可把已知范围的那个看作自变量,另一个看作常量.例1.对于满足0的一切实数,不等式x2+px>4x+p-3恒成立,求x的取值范围.分析:习惯上把x当作自变量,记函数y= x2+(p-4)x+3-p,于是问题转化为当p时y>0恒成立,求x的范围.解决这个问题需要应用二次函数以及二次方程实根分布原理,这是相当复杂的.若把x与p两个量互换一下角色,即p视为变量,x为常量,则上述问题可转化为在[0,4]内关于p的一次函数大于0恒成立的问题.解:设f(p)=(x-1)p+x2-4x+3,当x=1时显然不满足题意.由题设知当0时f(p)>0恒成立,∴f(0)>0,f(4)>0即x2-4x+3>0且x2-1>0,解得x>3或x<-1.∴x的取值范围为x>3或x<-1.二、分离变量对于一些含参数的不等式问题,如果能够将不等式进行同解变形,将不等式中的变量和参数进行分离,即使变量和参数分别位于不等式的左、右两边,然后通过求函数的值域的方法将问题化归为解关于参数的不等式的问题。例2.若对于任意角总有成立,求的范围.分析与解:此式是可分离变量型,由原不等式得,又,则原不等式等价变形为恒成立.根据边界原理知,必须小于的最小值,这样问题化归为怎样求的最小值.因为即时,有最小值为0,故.评析:一般地,分离变量后有下列几种情形:①f(x)≥g(k) [f(x)]min≥g(k)②f(x)> g(k) g(k) < [f(x)] min③f(x)≤g(k) [f(x)] max≤g(k)④f(x)三、数形结合对于含参数的不等式问题,当不等式两边的函数图象形状明显,我们可以作出它们的图象,来达到解决问题的目的.例3.设,若不等式恒成立,求a的取值范围.分析与解:若设函数,则,其图象为上半圆.设函数,其图象为直线.在同一坐标系内作出函数图象如图,依题意要使半圆恒在直线下方,只有圆心到直线的距离且时成立,即a的取值范围为.四、分类讨论当不等式中左、右两边的函数具有某些不确定因素时,应用分类讨论的方法来处理,分类讨论可使原问题中的不确定因素变成确定因素,为问题的解决提供新的条件。例4.当时,不等式恒成立,求a的取值范围.解:(1)当时,由题设知恒成立,即,而∴ 解得(2)当时,由题设知恒成立,即,而∴ 解得.∴a的取值范围是.五、利用判别式当问题可化为一元二次不等式在实数集上恒成立的问题,可用判别式来求解.例5.不等式,对一切恒成立,求实数的取值范围.解:∵在R上恒成立,∴,R∴,解得故实数的取值范围是.一般地二次函数f(x)=ax2+bx+c恒正,f(x)=ax2+bx+c恒负.六、构造函数构造出函数,通过对函数性质的研究,来达到解决问题的目的.例6.已知不等式对于一切大于1的自然数都成立,求实数的取值范围.分析:注意到不等式仅仅左边是与有关的式子,从函数的观点看,左边是关于的函数,要使原不等式成立,即要求这个函数的最小值大于右式.如何求这个函数的最小值呢?这又是一个非常规问题,应该从研究此函数的单调性入手.解:设,N∴是关于N的递增函数,则=.∴要使不等式成立,只须,解之得.∴实数的取值范围是.以上介绍了求参数的取值范围问题的处理方法,在具体解题中可能要用到两种或两种以上的方法,应灵活处理.【高考数学】破题36关第3关: 数列求和问题—解题策略8法数列是高中代数的重要内容,又是学习高等数学的基础,在高考和数学竞赛中都占有十分重要的地位,数列求和问题是数列的基本内容之一,也是高考命题的热点和重点。由于数列求和问题题型多样,技巧性也较强,以致成为数列的一个难点。鉴于此,下面就数列求和问题的常见解题策略作一归纳,供广大师生参考。1、公式法求和若所给数列的通项是关于n的多项式,此时可采用公式法求和,利用下列常用求和公式求和是数列求和的最基本最重要的方法之一。常用求和公式列举如下:等差数列求和公式:,等比数列求和公式:自然数的方幂和:k3=13+23+33++n3= n2 (n+1)2, k=1+2+3++n= n(n+1),k2=12+22+32++n2= n(n+1)(2 n+ 1)例1已知数列,其中,记数列的前项和为,数列的前项和为,求。解:由题意,是首项为,公差为的等差数列前项和,2、错位相减法求和若数列的通项公式为,其中,中有一个是等差数列,另一个是等比数列,求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q,然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。它在推导等比数列的前n项和公式时曾用到的方法。例2已知当时,求数列的前n项和;解:当时,.由题可知,{}的通项是等差数列{}的通项与等比数列{}的通项之积,这时数列的前项和. ①①式两边同乘以,得 ②①式减去②式,得若,,若,3、反序相加法求和将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个,Sn表示从第一项依次到第n项的和,然后又将Sn表示成第n项依次反序到第一项的和,将所得两式相加,由此得到Sn的一种求和方法。也称倒写相加法,这是在推导等差数列的前n项和公式时曾用到的方法.例3设,利用课本中推导等差数列的前项和的公式的方法,可求得的值为:解:因为f(x)=,∴f(1-x)=∴f(x)+f(1-x)=.设S=f(-5)+f(-4)+…+f(6),则S=f(6)+f(5)+…+f(-5)∴2S=(f(6)+f(-5))+(f(5)+f(-4))+…+(f(-5)+…f(6))=6∴S=f(-5)+f(-4)+…+f(0)+…+f(6)=3.4、拆项重组求和.有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,能分为几个等差、等比或常见的数列的和、差,则对拆开后的数列分别求和,再将其合并即可求出原数列的和.也称分组求和法.例4求数列{n(n+1)(2n+1)}的前n项和.解:设∴=将其每一项拆开再重新组合得:Sn====5、裂项相消法求和有些数列求和的问题,可以对相应的数列的通项公式加以变形,将其写成两项的差,这样整个数列求和的各加数都按同样的方法裂成两项之差,其中每项的被减数一定是后面某项的减数,从而经过逐项相互抵消仅剩下有限项,可得出前项和公式.这是分解与组合思想在数列求和中的具体应用,也称为分裂通项法。它适用于型(其中{}是各项不为0的等差数列,c为常数)、部分无理数列、含阶乘的数列等。常见拆项公式有:;;;;;;;等例5设数列的前项的和,,令,,求解:由题意得: (其中n为正整数)所以:。6、并项求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求和。例6设数列的首项为,前项和满足关系式:设数列的公比为,作数列使,求和:b1b2-b2b3+b3b4-b4b5…+b2n-1b2n-b2nb2n+1.解:由题意知为等比数列,得,故=,故:bn=,可知{b2n-1}和{b2n}是首项分别为1和,公差均为的等差数列。于是b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1=b2(b1-b3)+b4(b3-b5)+b6(b5-b7)+…+b2n(b2n-1+b2n+1)=-(b2+b4+…+b2n)=-=-(2n2+3n)7、累加法给出数列{}的递推式和初始值,若递推式可以巧妙地转化为型,可以考虑利用累加法求和,此法也叫叠加法。例7数列的前项和为,已知,求解:由得:,即,,对成立。由,,…,累加得:,又,所以,当时,也成立8多法并取求和根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n项和,它通常集分组、裂项、公式求和于一体,是一个解决综合性数列求和的重要途径.例8已知数列{an}:的值.解:∵==∴==【高考数学】破题36关第4关: 绝对值不等式解法问题—7大类型类型一:形如型不等式解法:根据的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础.1、 当时,或1、 当,无解使的解集1、 当时,,无解使成立的的解集.例1不等式的解集为( )A. B.C. D.解:因为 ,所以.即,解得:,所以 ,故选A.类型二:形如型不等式解法:将原不等式转化为以下不等式进行求解:或需要提醒一点的是,该类型的不等式容易错解为:例2 不等式的解集为( )A. B.C. D.解:或或,故选D类型三:形如,型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下解法:把看成一个大于零的常数进行求解,即:,或例3设函数,若,则的取值范围是解:,故填:.类型四:形如型不等式解法:可以利用两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即:例4不等式的解集为解:所以原不等式的解集为类型五:形如型不等式解法:先利用绝对值的定义进行判断,再进一步求解,即:,无解例5解关于的不等式解:(1) 当时,原不等式等价于:(1) 当时,原不等式等价于:(1) 当时,原不等式等价于:或或综上所述(1) 当时,原不等式的解集为:(1) 当时,原不等式的解集为:(1) 当时,原不等式的解集为:类型六:形如使恒成立型不等式.解法:利用和差关系式:,结合极端性原理即可解得,即:;;例6不等式对任意的实数恒成立,则实数a的取值范围是( )A. B.C. D.解:设函数所以而不等式对任意的实数恒成立故,故选择A类型七:形如,,1、解法:对于解含有多个绝对值项的不等式,常采用零点分段法,根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案,其步骤是:找出零点,确定分段区间;分段求解,确定各段解集;综合取并,去掉所求解集,亦可集合图像进行求解.例7解不等式分析:找出零点:确定分段区间:解:(1)当时,原不等式可化为:解得:因为 ,所以 不存在(2)当时,原不等式可化为:解得:又因为 ,所以(3)当时,原不等式可化为:,解得:又 ,所以综上所述,原不等式的解集为:2、特别地,对于形如,型不等式的解法,除了可用零点分段法外,更可转化为以下不等式,即:或例8设函数(1)若,解不等式(2)如果求的范围解:(1) 当由得:即:或解得:,即: 或故不等式的解集为:(2)由得:即:或即:或因为恒成立,所以 成立,解得:或故的取值范围为:绝对值不等式一直是高中教学中的一个难点,我们通过化归思想将其进行等价变换,从而避免了繁琐的讨论,减小了运算量,以上所介绍的七种类型的含有绝对值的不等式总体上囊括了近几年高考中有关的题目,当然方法可能并不为一,在解决此类问题的时候很多人也比较喜欢使用数形结合的方法来处理,这其实也体现了数学形式多样化的统一美.方法是多种多样的,只是无论多么优秀的方法最终也是用来解题的工具,如果我们仅仅是停留在最求方法的多样化而忽略了数学的本质——思想,那么就有点得不偿失了.【高考数学】破题36关第5关: 三角函数最值问题—解题9法三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,也是高中数学中经常涉及的问题。这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。解决这一类问题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性(如有界性等),另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题。下面就介绍几种常见的求三角函数最值的方法:一 配方法若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定的函数化归为二次函数的最值问题来处理。例1 函数的最小值为( ).A. 2 B . 0 C . D . 6[分析]本题可通过公式将函数表达式化为,因含有cosx的二次式,可换元,令cosx=t,则配方,得, 当t=1时,即cosx=1时,,选B.例2 求函数y=5sinx+cos2x的最值[分 析] :观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。二 引入辅助角法例3已知函数当函数y取得最大值时,求自变量x的集合。[分析] 此类问题为的三角函数求最值问题,它可通过降次化简整理为型求解。解: 三 利用三角函数的有界性在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。例4求函数的值域[分析] 此为型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解。或者也可先用反解法,再用三角函数的有界性去解。解法一:原函数变形为,可直接得到:或解法一:原函数变形为或例5 已知函数,求函数f(x)的最小正周期和最大值。[分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式。解:f(x)的最小正周期为,最大值为。四 引入参数法(换元法)对于表达式中同时含有sinx+cosx,与sinxcosx的函数,运用关系式 一般都可采用换元法转化为t的二次函数去求最值,但必须要注意换元后新变量的取值范围。例6 求函数y=sinx+cosx+sinxcosx的最大值。[分析]解:令sinx+cosx=t,则,其中当五 利用基本不等式法利用基本不等式求函数的最值,要合理的拆添项,凑常数,同时要注意等号成立的条件,否则会陷入误区。例7 求函数的最值。解:=当且仅当即时,等号成立,故。六 利用函数在区间内的单调性例8 已知,求函数的最小值。[分析] 此题为型三角函数求最值问题,当sinx>0,a>1,不能用均值不等式求最值,适合用函数在区间内的单调性来求解。设,在(0,1)上为减函数,当t=1时,。七 数形结合由于,所以从图形考虑,点(cosx,sinx)在单位圆上,这样对一类既含有正弦函数,又含有余弦函数的三角函数的最值问题可考虑用几何方法求得。例9 求函数的最小值。[分析] 法一:将表达式改写成y可看成连接两点A(2,0)与点(cosx,sinx)的直线的斜率。由于点(cosx,sinx)的轨迹是单位圆的上半圆(如图),所以求y的最小值就是在这个半圆上求一点,使得相应的直线斜率最小。设过点A的切线与半圆相切与点B,则可求得所以y的最小值为(此时).法二:该题也可利用关系式asinx+bcosx=(即引入辅助角法)和有界性来求解。八 判别式法例10 求函数的最值。[分析] 同一变量分子、分母最高次数齐次,常用判别式法和常数分离法。解:时此时一元二次方程总有实数解由y=3,tanx=-1,由九 分类讨论法含参数的三角函数的值域问题,需要对参数进行讨论。例 11 设,用a表示f(x)的最大值M(a).解:令sinx=t,则(1) 当,即在[0,1]上递增,(1) 当即时,在[0,1]上先增后减,(1) 当即在[0,1]上递减,以上几种方法中又以配方法和辅助角法及利用三角函数的有界性解题最为常见。解决这类问题最关键的在于对三角函数的灵活应用及抓住题目关键和本质所在。【高考数学】破题36关第6关: 求轨迹方程问题—6大常用方法知识梳理:(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。4.求轨迹方程还有整体法等其他方法。在此不一一缀述。课前热身:1. P是椭圆=1上的动点,过P作椭圆长轴的垂线,垂足为M,则PM中点的轨迹中点的轨迹方程为: ( )A、 B、 C、 D、=1【答案】:B【解答】:令中点坐标为,则点P 的坐标为(代入椭圆方程得,选B2. 圆心在抛物线上,并且与抛物线的准线及轴都相切的圆的方程是( )A BC D【答案】:D【解答】:令圆心坐标为(,则由题意可得,解得,则圆的方程为,选D3: 一动圆与圆O:外切,而与圆C:内切,那么动圆的圆心M的轨迹是:A:抛物线B:圆 C:椭圆 D:双曲线一支【答案】:D【解答】令动圆半径为R,则有,则|MO|-|MC|=2,满足双曲线定义。故选D。4: 点P(x0,y0)在圆x2+y2=1上运动,则点M(2x0,y0)的轨迹是 ( )A.焦点在x轴上的椭圆 B. 焦点在y轴上的椭圆C. 焦点在y轴上的双曲线 D. 焦点在X轴上的双曲线【答案】:A【解答】:令M的坐标为则代入圆的方程中得,选A【互动平台】一:用定义法求曲线轨迹求曲线轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程。例1:已知的顶点A,B的坐标分别为(-4,0),(4,0),C 为动点,且满足求点C的轨迹。【解析】由可知,即,满足椭圆的定义。令椭圆方程为,则,则轨迹方程为(,图形为椭圆(不含左,右顶点)。【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。(1) 圆:到定点的距离等于定长(1) 椭圆:到两定点的距离之和为常数(大于两定点的距离)(1) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)(1) 到定点与定直线距离相等。【变式1】: 1:已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程。解:设动圆的半径为R,由两圆外切的条件可得:,。。∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,c=4,a=2,b2=12。故所求轨迹方程为2:一动圆与圆O:外切,而与圆C:内切,那么动圆的圆心M的轨迹是:A:抛物线B:圆 C:椭圆 D:双曲线一支【解答】令动圆半径为R,则有,则|MO|-|MC|=2,满足双曲线定义。故选D。二:用直译法求曲线轨迹方程此类问题重在寻找数量关系。例2: 一条线段AB的长等于2a,两个端点A和B分别在x轴和y轴上滑动,求AB中点P的轨迹方程?解 设M点的坐标为 由平几的中线定理:在直角三角形AOB中,OM=M点的轨迹是以O为圆心,a为半径的圆周.【点评】此题中找到了OM=这一等量关系是此题成功的关键所在。一般直译法有下列几种情况:1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.【变式2】: 动点P(x,y)到两定点A(-3,0)和B(3,0)的距离的比等于2(即),求动点P的轨迹方程?【解答】∵|PA|=代入得化简得(x-5)2+y2=16,轨迹是以(5,0)为圆心,4为半径的圆.三:用参数法求曲线轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。注意参数的取值范围。例3.过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程。【解析】分析1:从运动的角度观察发现,点M的运动是由直线l1引发的,可设出l1的斜率k作为参数,建立动点M坐标(x,y)满足的参数方程。解法1:设M(x,y),设直线l1的方程为y-4=k(x-2),(k≠0)∵M为AB的中点,消去k,得x+2y-5=0。另外,当k=0时,AB中点为M(1,2),满足上述轨迹方程;当k不存在时,AB中点为M(1,2),也满足上述轨迹方程。综上所述,M的轨迹方程为x+2y-5=0。分析2:解法1中在利用k1k2=-1时,需注意k1、k2是否存在,故而分情形讨论,能否避开讨论呢?只需利用△PAB为直角三角形的几何特性:解法2:设M(x,y),连结MP,则A(2x,0),B(0,2y),∵l1⊥l2,∴△PAB为直角三角形化简,得x+2y-5=0,此即M的轨迹方程。分析3::设M(x,y),由已知l1⊥l2,联想到两直线垂直的充要条件:k1k2=-1,即可列出轨迹方程,关键是如何用M点坐标表示A、B两点坐标。事实上,由M为AB的中点,易找出它们的坐标之间的联系。解法3:设M(x,y),∵M为AB中点,∴A(2x,0),B(0,2y)。又l1,l2过点P(2,4),且l1⊥l2∴PA⊥PB,从而kPA·kPB=-1,注意到l1⊥x轴时,l2⊥y轴,此时A(2,0),B(0,4)中点M(1,2),经检验,它也满足方程x+2y-5=0综上可知,点M的轨迹方程为x+2y-5=0。【点评】1) 解法1用了参数法,消参时应注意取值范围。解法2,3为直译法,运用了kPA·kPB=-1,这些等量关系用参数法求解时,一般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度,有向线段的数量,直线的斜率,点的横,纵坐标等。也可以没有具体的意义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响【变式3】过圆O:x2 +y2= 4 外一点A(4,0),作圆的割线,求割线被圆截得的弦BC的中点M的轨迹解法一:“几何法”设点M的坐标为(x,y),因为点M 是弦BC的中点,所以OM⊥BC,所以|OM | 2+|MA|2 =|OA| 2 , 即(x2 +y2)+(x -4)2 +y2 =16化简得:(x-2)2+ y2 =4................................①由方程 ① 与方程x2 +y2= 4得两圆的交点的横坐标为1,所以点M的轨迹方程为(x-2)2+ y2 =4 (0≤x<1)。所以M的轨迹是以(2,0)为圆心,2为半径的圆在圆O内的部分。解法二:“参数法”设点M的坐标为(x,y),B(x1,y1),C(x2,y2)直线AB的方程为y=k(x-4),由直线与圆的方程得(1+k2)x2 -8k2x +16k2-4=0...........(*),由点M为BC的中点,所以x=...............(1) , 又OM⊥BC,所以k=.................(2)由方程(1)(2)消去k得(x-2)2+ y2 =4,又由方程(*)的△≥0得k2 ≤,所以x<1.所以点M的轨迹方程为(x-2)2+ y2 =4 (0≤x<1)所以M的轨迹是以(2,0)为圆心,2为半径的圆在圆O内的部分。四:用代入法等其它方法求轨迹方程例4.轨迹方程。分析:题中涉及了三个点A、B、M,其中A为定点,而B、M为动点,且点B的运动是有规律的,显然M的运动是由B的运动而引发的,可见M、B为相关点,故采用相关点法求动点M的轨迹方程。【解析】设动点M的坐标为(x,y),而设B点坐标为(x0,y0)则由M为线段AB中点,可得即点B坐标可表为(2x-2a,2y)【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系【变式4】如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程【解析】: 设AB的中点为R,坐标为(x,y),则在Rt△ABP中,|AR|=|PR| 又因为R是弦AB的中点,依垂径定理 在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2)又|AR|=|PR|=所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0因此点R在一个圆上,而当R在此圆上运动时,Q点即在所求的轨迹上运动设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=,代入方程x2+y2-4x-10=0,得-10=0整理得 x2+y2=56,这就是所求的轨迹方程【备选题】已知双曲线的左、右焦点分别为,,过点的动直线与双曲线相交于两点.(I)若动点满足(其中为坐标原点),求点的轨迹方程;(II)在轴上是否存在定点,使·为常数?若存在,求出点的坐标;若不存在,请说明理由.解:由条件知,,设,.解法一:(I)设,则则,,,由得即于是的中点坐标为.当不与轴垂直时,,即.又因为两点在双曲线上,所以,,两式相减得,即.将代入上式,化简得.当与轴垂直时,,求得,也满足上述方程.所以点的轨迹方程是.(II)假设在轴上存在定点,使为常数.当不与轴垂直时,设直线的方程是.代入有.则是上述方程的两个实根,所以,,于是.因为是与无关的常数,所以,即,此时=.当与轴垂直时,点的坐标可分别设为,,此时.故在轴上存在定点,使为常数.解法二:(I)同解法一的(I)有当不与轴垂直时,设直线的方程是.代入有.则是上述方程的两个实根,所以..由①②③得.…………………………………………………④.……………………………………………………………………⑤当时,,由④⑤得,,将其代入⑤有.整理得.当时,点的坐标为,满足上述方程.当与轴垂直时,,求得,也满足上述方程.故点的轨迹方程是.(II)假设在轴上存在定点点,使为常数,当不与轴垂直时,由(I)有,.以上同解法一的(II).【误区警示】1.错误诊断【例题5】中,B,C 坐标分别为(-3,0),(3,0),且三角形周长为16,求点A的轨迹方程。【常见错误】由题意可知,|AB|+|AC|=10,满足椭圆的定义。令椭圆方程为,则由定义可知,则,得轨迹方程为【错因剖析】ABC为三角形,故A,B,C不能三点共线。【正确解答】ABC为三角形,故A,B,C不能三点共线。轨迹方程里应除去点,即轨迹方程为2.误区警示1:在求轨迹方程中易出错的是对轨迹纯粹性及完备性的忽略,因此,在求出曲线方程的方程之后,应仔细检查有无“不法分子”掺杂其中,将其剔除;另一方面,又要注意有无“漏网之鱼”仍逍遥法外,要将其“捉拿归案”。2:求轨迹时方法选择尤为重要,首先应注意定义法,几何法,直接法等方法的选择。3:求出轨迹后,一般画出所求轨迹,这样更易于检查是否有不合题意的部分或漏掉的部分。【课外作业】【基础训练】1:已知两点给出下列曲线方程:①;②;③;④,在曲线上存在点P满足的所有曲线方程是( )A ①③ B ②④ C ①②③ D ②③④【答案】:D【解答】: 要使得曲线上存在点P满足,即要使得曲线与MN的中垂线有交点.把直线方程分别与四个曲线方程联立求解,只有①无解,则选D2.两条直线与的交点的轨迹方程是 .【解答】:直接消去参数即得(交轨法):3:已知圆的方程为(x-1)2+y2=1,过原点O作圆的弦0A,则弦的中点M的轨迹方程是 .【解答】:令M点的坐标为(,则A的坐标为(2,代入圆的方程里面得:4:当参数m随意变化时,则抛物线的顶点的轨迹方程为___________。【分析】:把所求轨迹上的动点坐标x,y分别用已有的参数m来表示,然后消去参数m,便可得到动点的轨迹方程。【解答】:抛物线方程可化为它的顶点坐标为消去参数m得:故所求动点的轨迹方程为。5:点M到点F(4,0)的距离比它到直线的距离小1,则点M的轨迹方程为____________。【分析】:点M到点F(4,0)的距离比它到直线的距离小1,意味着点M到点F(4,0)的距离与它到直线的距离相等。由抛物线标准方程可写出点M的轨迹方程。【解答】:依题意,点M到点F(4,0)的距离与它到直线的距离相等。则点M的轨迹是以F(4,0)为焦点、为准线的抛物线。故所求轨迹方程为。6:求与两定点距离的比为1:2的点的轨迹方程为_________【分析】:设动点为P,由题意,则依照点P在运动中所遵循的条件,可列出等量关系式。【解答】:设是所求轨迹上一点,依题意得由两点间距离公式得:化简得:7抛物线的通径(过焦点且垂直于对称轴的弦)与抛物线交于A、B两点,动点C在抛物线上,求△ABC重心P的轨迹方程。【分析】:抛物线的焦点为。设△ABC重心P的坐标为,点C的坐标为。其中【解答】:因点是重心,则由分点坐标公式得:即由点在抛物线上,得:将代入并化简,得:(【能力训练】8.已知双曲线中心在原点且一个焦点为F(,0),直线y=x-1与其相交于M、N两点,MN中点的横坐标为,求此双曲线方程。【解答】:设双曲线方程为。将y=x-1代入方程整理得。由韦达定理得。又有,联立方程组,解得。∴此双曲线的方程为。9.已知动点P到定点F(1,0)和直线x=3的距离之和等于4,求点P的轨迹方程。【解答】:设点P的坐标为(x,y),则由题意可得。(1)当x≤3时,方程变为,化简得。(2)当x>3时,方程变为,化简得。故所求的点P的轨迹方程是或10.过原点作直线l和抛物线交于A、B两点,求线段AB的中点M的轨迹方程。【解答】:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx。把它代入抛物线方程,得。因为直线和抛物线相交,所以△>0,解得。设A(),B(),M(x,y),由韦达定理得。由消去k得。又,所以。∴点M的轨迹方程为。【创新应用】11.一个圆形纸片,圆心为O,F为圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于P,则P的轨迹是( )A:椭圆 B:双曲线 C:抛物线 D:圆【答案】:A【解答】:由对称性可知||PF|=|PM|,则|PF|+|PO|=|PM|+|PO|=R(R为圆的半径),则P的轨迹是椭圆,选A【高考数学】破题36关第7关: 参数方程与极坐标问题—“考点”面面看“参数方程与极坐标”主要内容是参数方程和普通方程的互化,极坐标系与普通坐标系的互化,参数方程和极坐标的简单应用三块,下面针对这三块内容进行透析:一、参数方程与普通方程的互化化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数,先确定一个关系(或,再代入普通方程,求得另一关系(或).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标)例1、方程表示的曲线是( )A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆分析:把参数方程化为我们熟悉的普通方程,再去判断它表示的曲线类型是这类问题的破解策略.解析:注意到t与互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含的项,即有,又注意到 ,可见与以上参数方程等价的普通方程为.显然它表示焦点在轴上,以原点为中心的双曲线的上支,选B.点评:这是一类将参数方程化为普通方程的检验问题,转化的关键是要注意变量范围的一致性.趁热打铁1:与普通方程等价的参数方程是( )(为能数)解析:所谓与方程等价,是指若把参数方程化为普通方程后不但形式一致而且的变化范围也对应相同,按照这一标准逐一验证即可破解.对于A化为普通方程为;对于B化为普通方程为;对于C化为普通方程为;对于D化为普通方程为.而已知方程为显然与之等价的为B.例2、设P是椭圆上的一个动点,则的最大值是 ,最小值为 .分析:注意到变量的几何意义,故研究二元函数的最值时,可转化为几何问题.若设,则方程表示一组直线,(对于取不同的值,方程表示不同的直线),显然既满足,又满足,故点是方程组的公共解,依题意得直线与椭圆总有公共点,从而转化为研究消无后的一元二次方程的判别式问题.解析:令,对于既满足,又满足,故点是方程组的公共解,依题意得,由,解得:,所以的最大值为,最小值为.点评:对于以上的问题,有时由于研究二元函数有困难,也常采用消元,但由满足的方程来表示出或时会出现无理式,这对进一步求函数最值依然不够简洁,但若通过三角函数换元,则可实现这一途径.即 ,因此可通过转化为的一元函数.以上二个思路都叫“参数法”.趁热打铁2:已知线段,直线l垂直平分,交于点O,在属于l并且以O为起点的同一射线上取两点,使,求直线BP与直线的交点M的轨迹方程.解析:以O为原点,BB’为y轴,为轴建立直角坐标系,则,,设,则由,得,则直线BP的方程为;直线和方程为;,因此点M的轨迹为长轴长为6,短轴长为4的椭圆(除B,).二、极坐标与直角坐标的互化利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题,这二者互化的前提条件是(1)极点与原点重合;(2)极轴与轴正方向重合;(3)取相同的单位长度.设点P的直角坐标为,它的极坐标为,则 ;若把直角坐标化为极坐标,求极角时,应注意判断点P所在的象限(即角的终边的位置),以便正确地求出角.例3、极坐标方程表示的曲线是( )A. 圆 B. 椭圆 C. 双曲线的一支 D. 抛物线分析:这类问题需要将极坐标方程转化为普通方程进行判断.解析:由,化为直角坐标系方程为,化简得.显然该方程表示抛物线,故选D.点评:若直接由所给方程是很难断定它表示何种曲线,因此通常要把极坐标方程化为直角坐标方程,加以研究.趁热打铁3:已知直线的极坐标方程为,则极点到该直线的距离是解析:极点的直角坐标为,对于方程,可得化为直角坐标方程为,因此点到直线的距离为.例4、极坐标方程转化成直角坐标方程为( )A. B. C. D.分析:极坐标化为直解坐标只须结合转化公式进行化解.解析:,因此选C.点评:此题在转化过程中要注意不要失解,本题若成为填空题,则更要谨防漏解.趁热打铁4:点的直角坐标是,则点的极坐标为( )A. B. C. D.解析:都是极坐标,因此选C.三、参数方程与极坐标的简单应用参数方程和极坐标的简单应用主要是:求几何图形的面积、曲线的轨迹方程或研究某些函数的最值问题.例5、已知的三个顶点的极坐标分别为,判断三角形ABC的三角形的形状,并计算其面积.分析:判断△ABC的形状,就需要计算三角形的边长或角,在本题中计算边长较为容易,不妨先计算边长.解析:如图,对于,又,由余弦定理得:,,,,,,所以AB边上的高,趁热打铁5:如图,点A在直线x=5上移动,等腰△OPA的顶角∠OPA为120°(O,P,A按顺时针方向排列),求点P的轨迹方程.解析:取O为极点,正半轴为极轴,建立极坐标系,则直线的极坐标方程为,设A(,),P,因点A在直线上, 为等腰三角形,且,以及,把<2>代入<1>,得点P的轨迹的极坐标方程为: .即时训练一、选择题(8题)1. 已知点M的极坐标为,下列所给出的四个坐标中不能表示点M的坐标是( )A. B. C. D.2.若直线的参数方程为,则直线的斜率为( )A. B. C. D.3.下列在曲线上的点是( )A. B. C. D.4.将参数方程化为普通方程为( )A. B. C. D.5.参数方程为表示的曲线是( )A.一条直线 B.两条直线 C.一条射线 D.两条射线6.直线和圆交于两点,则的中点坐标为( ) A. B. C. D.7.极坐标方程表示的曲线为( )A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆8.直线的参数方程为,上的点对应的参数是,则点与之间的距离是( )A. B. C. D.二、填空题(4题)9. 点的极坐标为10. 圆心为C,半径为3的圆的极坐标方程为11. 极坐标方程为表示的圆的半径为12 若A,B,则|AB|=__________,___________(其中O是极点)三、解答题(3题)13. 求椭圆。14. 若方程的曲线是椭圆,求实数的取值范围.15. ,若A、B是C上关于坐标轴不对称的任意两点,AB的垂直平分线交x轴于P(a,0),求a的取值范围.即时训练参考答案一、选择题:1.A 解析:能表示点M的坐标有3个,分别是B、C、D.2.D 解析:3.B 解析:转化为普通方程:,当时,4.C 解析:转化为普通方程:,但是5、D 解析:表示一条平行于轴的直线,而,所以表示两条射线6.D 解析: ,得,因此中点为7.C 解析:,则或8、C 解析: 距离为二、填空题:9、或写成解析:由,得而点位于第四象限且或,故点的极坐标为或写成.10、 解析:如下图,设圆上任一点为P(),则11、1 解析:方程变形为,该方程表示的圆的半径与圆的半径相等,故所求的圆的半径为r=112、 解析:在极坐标系中画出点A、B,易得,三、解答题:13. 解析:(先设出点P的坐标,建立有关距离的函数关系)到定点的距离为,14. 解析:将方程两边同乘以,化为:,,若方程表示椭圆,则须满足:15. ,若A、B是C上关于坐标轴不对称的任意两点,AB的垂直平分线交x轴于P(a,0),求a的取值范围.15. 解析:,,,,【高考数学】破题36关第8关: 均值不等式问题—拼凑8法利用均值不等式求最值或证明不等式是高中数学的一个重点。在运用均值不等式解题时,我们常常会遇到题中某些式子不便于套用公式,或者不便于利用题设条件,此时需要对题中的式子适当进行拼凑变形。均值不等式等号成立条件具有潜在的运用功能。以均值不等式的取等条件为出发点,为解题提供信息,可以引发出种种拼凑方法。笔者把运用均值不等式的拼凑方法概括为八类。1、 拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。例1 已知,求函数的最大值。解:。当且仅当,即时,上式取“=”。故。评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。例2 求函数的最大值。解:。因,当且仅当,即时,上式取“=”。故。评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。例3 已知,求函数的最大值。解:。当且仅当,即时,上式取“=”。故,又。1、 拼凑定积通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件例3 设,求函数的最小值。解:。当且仅当时,上式取“=”。故。评注:有关分式的最值问题,若分子的次数高于分母的次数,则可考虑裂项,变为和的形式,然后“拼凑定积”,往往是十分方便的。例3 已知,求函数的最大值。解:,。当且仅当时,上式取“=”。故。评注:有关的最值问题,若分子的次数低于分母的次数,可考虑改变原式的结构,将分子化为常数,再设法将分母“拼凑定积”。例3 已知,求函数的最小值。解:因为,所以,令,则。所以。当且仅当,即时,上式取“=”。故。评注:通过有理代换,化无理为有理,化三角为代数,从而化繁为简,化难为易,创造出运用均值不等式的环境。1、 拼凑常数降幂例3 若,求证:。分析:基本不等式等号成立的条件具有潜在的运用功能,它能在“等”与“不等”的互化中架设桥梁,能为解题提供信息,开辟捷径。本题已知与要求证的条件是,为解题提供了信息,发现应拼凑项,巧妙降次,迅速促成“等”与“不等”的辩证转化。证明:。当且仅当时,上述各式取“=”,故原不等式得证。评注:本题借助取等号的条件,创造性地使用基本不等式,简洁明了。例3 若,求的最大值。解:。当且仅当时,上述各式取“=”,故的最大值为7。例3 已知,求证:。证明:,,又,。当且仅当时,上述各式取“=”,故原不等式得证。1、 拼凑常数升幂例3 若,且,求证。分析:已知与要求证的不等式都是关于的轮换对称式,容易发现等号成立的条件是,故应拼凑,巧妙升次,迅速促成“等”与“不等”的辩证转化。证明:,。当且仅当时,上述各式取“=”,故原不等式得证。例3 若,求证:。证明:。又。当且仅当时,上述各式取“=”,故原不等式得证。1、 约分配凑通过“1”变换或添项进行拼凑,使分母能约去或分子能降次。例3 已知,求的最小值。解:。当且仅当时,即,上式取“=”,故。例3 已知,求函数的最小值。解:因为,所以。所以。当且仅当时,即,上式取“=”,故。例3 若,求证。分析:注意结构特征:要求证的不等式是关于的轮换对称式,当时,等式成立。此时,设,解得,所以应拼凑辅助式为拼凑的需要而添,经此一添,解题可见眉目。证明:。。当且仅当时,上述各式取“=”,故原不等式得证。1、 引入参数拼凑某些复杂的问题难以观察出匹配的系数,但利用“等”与“定”的条件,建立方程组,解地待定系数,可开辟解题捷径。例3 已知,且,求的最小值。解:设,故有。。当且仅当同时成立时上述不等式取“=”,即,代入,解得,此时,故的最小值为361、 引入对偶式拼凑根据已知不等式的结构,给不等式的一端匹配一个与之对偶的式子,然后一起参与运算,创造运用均值不等式的条件。例3 设为互不相等的正整数,求证。证明:记,构造对偶式,则,当且仅当时,等号成立。又因为为互不相等的正整数,所以,因此评注:本题通过对式中的某些元素取倒数来构造对偶式。1、 确立主元拼凑在解答多元问题时,如果不分主次来研究,问题很难解决;如果根据具体条件和解题需要,确立主元,减少变元个数,恰当拼凑,可创造性地使用均值不等式。例3 在中,证明分析:为轮换对称式,即的地位相同,因此可选一个变元为主元,将其它变元看作常量(固定),减少变元个数,化陌生为熟悉。证明:当时,原不等式显然成立。当时,当且仅当,即为正三角形时,原不等式等号成立。综上所述,原不等式成立。评注:变形后选择A为主元,先把A看作常量,B、C看作变量,把B、C这两个变量集中到,然后利用的最大值为1将其整体消元,最后再回到A这个主元,变中求定。综上可见,许多貌似繁难的最值问题或不等式证明问题,运用均值不等式等号成立条件,恰当拼凑,可创造性地使用均值不等式,轻松获解。这种运用等号成立条件的拼凑方法,既开拓了学生的思路,又活跃了学生的思维,培养了学生的数学能力。【高考数学】破题36关第9关: 不等式恒成立问题—8种解法探析不等式恒成立问题一般设计独特,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,成为历年高考的一个热点.考生对于这类问题感到难以寻求问题解决的切入点和突破口.这里对这一类问题的求解策略作一些探讨.1最值法例1.已知函数在处取得极值,其中为常数.(I)试确定的值;(II)讨论函数的单调区间;(III)若对于任意,不等式恒成立,求的取值范围.分析:不等式恒成立,可以转化为解:(I)(过程略).(II)(过程略)函数的单调减区间为,函数的单调增区间为.(III)由(II)可知,函数在处取得极小值,此极小值也是最小值.要使()恒成立,只需,解得或.所以的取值范围为.评注:最值法是我们这里最常用的方法.恒成立;恒成立.2分离参数法例2.已知函数(I)求函数的单调区间;(II)若不等式对于任意都成立(其中是自然对数的底数),求的最大值.分析:对于(II)不等式中只有指数含有,故可以将函数进行分离考虑.解:(I)(过程略)函数的单调增区间为,的单调减区间为(II)不等式等价于不等式,由于,知;设 ,则.由(I)知,,即;于是, ,即在区间上为减函数.故在上的最小值为.所以的最大值为.评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当时,不等式恒成立,则实数的取值范围是___.分析:本题若直接求解则比较繁难,但若在同一平面直角坐标系内作出函数与函数在上的图象,借助图形可以直观、简捷求解.解:在同一平面直角坐标系内作出函数与函数在上的图象(如右),从图象中容易知道:当且时,函数的图象恒在函数上方,不合题意;当且时,欲使函数的图象恒在函数下方或部分点重合,就必须满足,即.故所求的的取值范围为.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法.4 变更主元法例4.对于满足不等式的一切实数,函数的值恒大于,则实数的取值范围是___.分析:若审题不清,按习惯以为主元,则求解将非常烦琐.应该注意到:函数值大于对一定取值范围的谁恒成立,则谁就是主元.解:设,,则原问题转化为恒成立的问题.故应该有,解得或.所以实数的取值范围是.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设是常数,且().(I)证明:对于任意,.(II)假设对于任意有,求的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意有求出的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I)递推式可以化归为,,所以数列是等比数列,可以求得对于任意,.(II)假设对于任意有,取就有解得;下面只要证明当时,就有对任意有由通项公式得当()时,当()时,,可见总有.故的取值范围是评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法.6分段讨论法例6.已知,若当时,恒有<0,求实数a的取值范围.解:(i)当时,显然<0成立,此时,(ii)当时,由<0,可得<<,令则>0,∴是单调递增,可知<0,∴是单调递减,可知此时的范围是(—1,3)综合i、ii得:的范围是(—1,3) .例7.若不等式对于恒成立,求的取值范围.解:(只考虑与本案有关的一种方法)解:对进行分段讨论,当时,不等式恒成立,所以,此时;当时,不等式就化为,此时的最小值为,所以;当时,不等式就化为,此时的最大值为,所以;由于对上面的三个范围要求同时满足,则所求的的范围应该是上三个的范围的交集即区间说明:这里对变量进行分段来处理,那么所求的对三段的要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在的函数满足,且时不等式成立,若不等式对于任意恒成立,则实数的取值范围是___.解:设,则,有.这样,,则,函数在为减函数.因此;而(当且仅当时取等号),又,所以的取值范围是.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式对于任意恒成立.则实数的取值范围是___.分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意恒成立,可以选择判别式法.解:当时,不等式化为,显然对一切实数恒成立;当时,要使不等式一切实数恒成立,须有,解得.综上可知,所求的实数的取值范围是.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于的不等式在上恒成立,求 实数的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵,∴不等式可以化为;下面只要求在时的最小值即可,分段处理如下.当时,,,再令,,它的根为;所以在区间上有,递增,在区间上有,递减,则就有在的最大值是,这样就有,即在区间是递减.同理可以证明在区间是递增;所以,在时的最小值为,即.技巧解:由于,所以,,两个等号成立都是在时;从而有(时取等号),即.评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.【高考数学】破题36关第10关: 圆锥曲线最值问题—5大方面最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。以下从五个方面予以阐述。一.求距离的最值例1.设AB为抛物线y=x2的一条弦,若AB=4,则AB的中点M到直线y+1=0的最短距离为 ,解析:抛物线y=x2的焦点为F(0 ,),准线为y=,过A、B、M准线y=的垂线,垂足分别是A1、B1、M1,则所求的距离d=MM1+=(AA1+BB1) +=(AF+BF) +≥AB+=×4+=,当且仅当弦AB过焦点F时,d取最小值,评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识,使解题简洁明快,得心应手。二.求角的最值例2.M,N分别是椭圆的左、右焦点,l是椭圆的一条准线,点P在l上,则∠MPN的最大值是 .解析:不妨设l为椭圆的右准线,其方程是,点,直线PM和PN倾斜角分别为.∵∴于是∵ ∴ 即∠MPN的最大值为.评注:审题时要注意把握∠MPN与PM和PN的倾斜角之间的内在联系.三、求几何特征量代数和的最值例3.点M和F分别是椭圆上的动点和右焦点,定点B(2,2).⑴求|MF|+|MB|的最小值. ⑵求|MF|+|MB|的最小值.解析:易知椭圆右焦点为F(4,0),左焦点F′(-4,0),离心率e=,准线方程x=±.⑴|MF| + |MB| = 10―|MF′ | + |MB| =10―(|MF′|―|MB|)≥10―|F′B|=10―2.故当M,B,F′三点共线时,|MF|+|MB|取最小值10―2.⑵过动点M作右准线x=的垂线,垂足为H,则.于是|MF|+|MB|=|MH|+|MB|≥|HB|=.可见,当且仅当点B、M、H共线时,|MF|+|MB|取最小值.评注:从椭圆的定义出发,将问题转化为平几中的问题,利用三角形三边所满足的基本关系,是解决此类问题的常见思路。例4.点P为双曲线的右支上一点,M,N分别为和上的点,则PM-PN的最大值为 .解析:显然两已知圆的圆心分别为双曲线的左焦点和右焦点.对于双曲线右支上每一个确定的点P,连结PF1,并延长PF1交⊙F1于点Mo.则PM0为适合条件的最大的PM,连结PF2,交⊙F2于点No.则PN0为适合条件的最小的PN.于是故PM-PN的最大值为6.评注:仔细审题,合理应用平面几何知识,沟通条件与所求结论的内在联系,是解决本题的关键.例5.已知e1,e2分别是共轭双曲线和的离心率,则e1+e2的最小值为 .解析:考虑到,故得.即e1+e2的最小值为.评注:解题关键在于对圆锥曲线性质的准确理解,并注意基本不等式等代数知识的合理应用.四、求面积的最值例6.已知平面内的一个动点P到直线的距离与到定点的距离之比为,点,设动点P的轨迹为曲线C.⑴求曲线C的方程;⑵过原点O的直线l与曲线C交于M,N两点.求△MAN面积的最大值.解析:⑴设动点P到l的距离为d,由题意根据圆锥曲线统一定义,点P的轨迹C为椭圆.∵, 可得∴故椭圆C的方程为:⑵若直线l存在斜率,设其方程为l与椭圆C的交点将y=kx代入椭圆C的方程并整理得.∴于是又 点A到直线l的距离故△MAN的面积从而①当k=0时,S2=1得S=1②当k>0时,S2<1得S<1③当k<0时, 得若直线l不存在斜率,则MN即为椭圆C的短轴,所以MN=2. 于是△MAN的面积.综上,△MAN的最大值为.评注:本题将△MAN的面积表示为l的斜率k的函数,其过程涉及弦长公式和点到直线距离等解析几何的基础知识,在处理所得的面积函数时,运用了分类讨论的思想方法。当然,也可以将该面积函数转化为关于k的一元二次方程,由△≥0求得面积S的最大值。五.求最值条件下的曲线方程例7.已知椭圆的焦点F1(―3,0)、F2(3,0)且与直线x―y+9=0有公共点,求其中长轴最短的椭圆方程.解法1:设椭圆为=1与直线方程x―y+9=0联立并消去y得:(2 a2― 9) x2 + 18 a2 x + 90 a2―a4= 0,由题设△=(18 a2)2―4(2 a2―9) (90 a2―a4) ≥0a4―54 a2 + 405 ≥0a2≥45或a2≤9.∵a2-9> 0, ∴a2≥45, 故amin=3,得(2a)min=6,此时椭圆方程为.解法2:设椭圆=1与直线x―y+9=0的公共点为M(acosα,),则acosα―+9=0有解.∵=―9cos(α+)=,∴||1≥9a2≥45,∴amin=3,得(2a)min=6,此时椭圆的方程.解法3:先求得F1(―3,0)关于直线x―y+9=0的对称点F(―9,6),设直线x―y+9=0与椭圆的一个交点为M,则2a=|MF1|+|MF2| =|MF| +|MF2|≥|FF2|=6,于是(2a)min=6,此时易得: a2=45, b2=36,于是椭圆的方程为.评注:本题分别从代数、三角、几何三种途径寻求解决。由不同角度进行分析和处理,有利于打开眼界,拓宽思路,训练思维的发散性。解决圆锥曲线中的最值问题,要熟练准确地掌握圆锥曲线的定义、性质,在此基础上,灵活合理地运用函数与方程、转化与划归及数形结合等思想方法,仔细审题,挖掘隐含,寻求恰当的解题方法。此外,解题过程力争做到思路清晰、推理严密、运算准确、规范合理。【高考数学】破题36关第11关: 排列组合应用问题—解题21法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有然后排首位共有最后排其它位置共有 由分步计数原理得练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?=1440二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 1种坐法,则共有种方法。思考:可以先让甲乙丙就坐吗 (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有种不同的排法练习题:1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 422. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法 解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人并从此位置把圆形展成直线其余7人共有(8-1)!种排法即!练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有种,再排后4个位置上的特殊元素丙有种,其余的5人在5个位置上任意排列有种,则共有种练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有种方法,根据分步计数原理装球的方法共有练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?解:把1,5,2,4当作一个小集团与3排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法.练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有种十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有种分法。练习题:1. 10个相同的球装5个盒中,每盒至少一有多少装法?2.求这个方程组的自然数解的组数十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有,只含有1个偶数的取法有,和为偶数的取法共有。再淘汰和小于10的偶数共9种,符合条件的取法共有练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种 十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?解: 分三步取书得种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF,若第一步取AB,第二步取CD,第三步取EF该分法记为(AB,CD,EF),则中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有种分法。练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?()2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法 (1540)3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______()十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。选上唱歌人员为标准进行研究只会唱的5人中没有人选上唱歌人员共有种,只会唱的5人中只有1人选上唱歌人员种,只会唱的5人中只有2人选上唱歌人员有种,由分类计数原理共有种。练习题:1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有342. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. (27)本题还有如下分类标准:*以3个全能演员是否选上唱歌人员为标准*以3个全能演员是否选上跳舞人员为标准*以只会跳舞的2人是否选上跳舞人员为标准都可经得到正确结果十四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有 种练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120)十五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法解:从5个球中取出2个与盒子对号有种还剩下3球3盒序号不能对应,利用实际操作法,如果剩下3,4,5号球, 3,4,5号盒3号球装4号盒时,则4,5号球有只有1种装法,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有种3号盒 4号盒 5号盒练习题:1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9)2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种十六. 分解与合成策略例16. 30030能被多少个不同的偶数整除分析:先把30030分解成质因数的乘积形式30030=2×3×5 × 7 ×11×13依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,所有的偶因数为:练习:正方体的8个顶点可连成多少对异面直线解:我们先从8个顶点中任取4个顶点构成四体共有体共,每个四面体有3对异面直线,正方体中的8个顶点可连成对异面直线十七.化归策略例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?解:将这个问题退化成9人排成3×3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去.从3×3方队中选3人的方法有种。再从5×5方阵选出3×3方阵便可解决问题.从5×5方队中选取3行3列有选法所以从5×5方阵选不在同一行也不在同一列的3人有选法。练习题:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?()十八.数字排序问题查字典策略例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?解:练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是 3140十九.树图策略例19.人相互传球,由甲开始发球,并作为第一次传球,经过次传求后,球仍回到甲的手中,则不同的传球方式有______练习: 分别编有1,2,3,4,5号码的人与椅,其中号人不坐号椅()的不同坐法有多少种?二十.复杂分类问题表格策略例20.有红、黄、兰色的球各5只,分别标有A、B、C、D、E五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法解:二十一:住店法策略解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.例21.七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 .分析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客”,每个“客”有7种住宿法,由乘法原理得7种.小结本节课,我们对有关排列组合的几种常见的解题策略加以复习巩固。排列组合历来是学习中的难点,通过我们平时做的练习题,不难发现排列组合题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字庞大,难以验证。同学们只有对基本的解题策略熟练掌握。根据它们的条件,我们就可以选取不同的技巧来解决问题.对于一些比较复杂的问题,我们可以将几种策略结合起来应用把复杂的问题简单化,举一反三,触类旁通,进而为后续学习打下坚实的基础。【高考数学】破题36关第12关: 几何概型问题—5类重要题型解决几何概型问题首先要明确几何概型的定义,掌握几何概型中事件A的概率计算公式:.其次要学会构造随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.1.几何概型的两个特征:(1)试验结果有无限多;(2)每个结果的出现是等可能的.事件A可以理解为区域的某一子区域,事件A的概率只与区域A的度量(长度、面积或体积)成正比,而与A的位置和形状无关.2..解决几何概型的求概率问题关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.3.用几何概型解简单试验问题的方法(1)适当选择观察角度,把问题转化为几何概型求解.(2)把基本事件转化为与之对应的总体区域D.(3)把随机事件A转化为与之对应的子区域d.(4)利用几何概型概率公式计算.4.均匀随机数在一定范围内随机产生的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以代替我们进行大量的重复试验,从而求得几何概型的概率.一般地.利用计算机或计算器的rand()函数可以产生0~1之间的均匀随机数.a~b之间的均匀随机数的产生:利用计算机或计算器产生0~1之间的均匀随机数x= rand( ),然后利用伸缩和平移变换x= rand( )*(b-a)+a,就可以产生[a,b]上的均匀随机数,试验的结果是产生a~b之间的任何一个实数,每一个实数都是等可能的.5.均匀随机数的应用(1)用随机模拟法估计几何概率;(2)用随机模拟法计算不规则图形的面积.下面举几个常见的几何概型问题.一.与长度有关的几何概型例1 如图,A,B两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C,D,问A与C,B与D之间的距离都不小于10米的概率是多少?思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型.解 记 E:“A与C,B与D之间的距离都不小于10米”,把AB三等分,由于中间长度为30×=10米,∴.方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解.二.与面积有关的几何概型例2 如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?思路点拨 此为几何概型,只与面积有关.解 记“射中黄心”为事件B,由于中靶点随机地落在面积为的大圆内,而当中靶点落在面积为的黄心时,事件B发生,于是事件B发生的概率为.即:“射中黄心”的概率是0.01.方法技巧 事件的发生是“击中靶心”即“黄心”的面积;总面积为最大环的圆面积.三.与体积有关的几何概型例3.在区间[0,l]上任取三个实数x.y.z,事件A={(x,y,z)| x2+y2+z2<1, x≥0,y≥0,z≥0}(1)构造出随机事件A对应的几何图形;(2)利用该图形求事件A的概率.思路点拨: 在空间直角坐标系下,要明确x2+y2+z2<1表示的几何图形是以原点为球心,半径r=1的球的内部.事件A对应的几何图形所在位置是随机的,所以事件A的概率只与事件A对应的几何图形的体积有关,这符合几何概型的条件.解:(1)A={(x,y,z)| x2+y2+z2<1, x≥0,y≥0,z≥0}表示空间直角坐标系中以原点为球心,半径r=1的球的内部部分中x≥0,y≥0,z≥0的部分,如图所示.(2)由于x,y,z属于区间[0,1],当x=y=z=1时,为正方体的一个顶点,事件A为球在正方体内的部分.∴.方法技巧:本例是利用几何图形的体积比来求解的几何概型,关键要明白点P(x,y,z)的集合所表示的图形.从本例可以看出求试验为几何概型的概率,关键是求得事件所占区域和整个区域的几何度量,然后代入公式即可解,另外要适当选择观察角度.四.求会面问题中的概率例4 两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率.思路点拨 两人不论谁先到都要等迟到者40分钟,即小时.设两人分别于x时和y时到达约见地点,要使两人在约定的时间范围内相见,当且仅当-≤x-y≤,因此转化成面积问题,利用几何概型求解.解 设两人分别于x时和y时到达约见地点,要使两人能在约定时间范围内相见,当且仅当-≤x-y≤.两人到达约见地点所有时刻(x,y)的各种可能结果可用图中的单位正方形内(包括边界)的点来表示,两人能在约定的时间范围内相见的所有时刻(x,y)的各种可能结果可用图中的阴影部分(包括边界)来表示.因此阴影部分与单位正方形的面积比就反映了两人在约定时间范围内相遇的可能性的大小,也就是所求的概率为.方法技巧 会面的问题利用数形结合转化成面积问题的几何概型.难点是把两个时间分别用x,y两个坐标表示,构成平面内的点(x,y),从而把时间是一段长度问题转化为平面图形的二维面积问题,转化成面积型几何概型问题.五.均匀随机数的应用例5 利用随机模拟方法计算图中阴影部分(由曲线y= 2x与x轴、x=±1围成的部分)面积.思路点拨 不规则图形的面积可用随机模拟法计算.解 (1)利用计算机产生两组[0,1]上的随机数,a1=rand( ),b1=rand( ).(2)进行平移和伸缩变换,a=(a1-0.5)*2,b=b1*2,得到一组[0,2]上的均匀随机数.(3)统计试验总次数N和落在阴影内的点数N1.(4)计算频率,则即为落在阴影部分的概率的近似值.(5)利用几何概型公式得出点落在阴影部分的概率(6)因为=,所以S=即为阴影部分的面积.方法技巧 根据几何概型计算公式,概率等于面积之比,如果概率用频率近似在不规则图形外套上一个规则图形,则不规则图形的面积近似等于规则图形面积乘以频率.而频率可以通过随机模拟的方法得到,从而求得不规则图形面积的近似值.【高考数学】破题36关第13关: 直线中的对称问题—4类对称题型直线的对称问题是我们学习平面解析几何过程中的不可忽视的问题,我们可以把它主要归纳为,点关于点对称,点关于线对称,线关于点对称,线关于线对称问题,下面我们来一一探讨:一、点关于点对称问题解决点点对称问题的关键是利用中点坐标公式,同时也是其它对称问题的基础.例1.求点(1)关于点的对称点的坐标,(2), 关于点对称,求点坐标.解:由题意知点是线段的中点,所以易求(1)(2).因此,平面内点关于对称点坐标为平面内点,关于点对称二、点关于线对称问题求定点关于定直线的对称问题时,根据轴对称定义利用①两直线斜率互为负倒数,②中点坐标公式来求得.例2.已知点直线:,求点关于直线的对称点的坐标解:法(一)解:设,则中点坐标为且满足直线的方程①又与垂直,且斜率都存在即有 ②由①②解得 ,法(二)求点点关于线对称问题,其实我们可以转化为求点关于点对称的问题,可先求出的直线方程进而求与的交点坐标,再利用中点坐标公式建立方程求坐标.三、线关于点对称问题求直线关于某一点的对称直线的问题,一般转化为直线上的点关于点的对称问题.例3.求直线:关于点的对称直线的方程.解:法(一)直线:与两坐标轴交点为,点关于对称点点关于对称点过的直线方程为故所求直线方程为.法(二)由两直线关于点对称,易知两直线平行,则对称点到两直线的距离相等,可以建立等式,求出直线方程.四、线关于线的对称问题求直线关于直线的对称问题,一般转化为点关于直线对称问题:即在已知直线上任取两不同点,求出这两点关于直线的对称点再求出直线方程.例4.求已知直线:关于直线对称的直线方程.解:在:上任取一点直线的斜率为3过点且与直线垂直的直线斜率为,方程为得所以点为直线与的交点,利用中点坐标公式求出关于的对称点坐标为又直线与的交点也在所求直线上由 得 所以交点坐标为.过和的直线方程为,故所求直线方程.【高考数学】破题36关第14关: 利用导数证明不等式问题—4大解题技巧趣题引入已知函数 设,证明:分析:主要考查利用导数证明不等式的能力。证明:,设当时 ,当时 ,即在上为减函数,在上为增函数∴,又 ∴,即设当时,,因此在区间上为减函数;因为,又 ∴,即故综上可知,当 时,本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此,设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。技巧精髓一、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。二、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。1、利用题目所给函数证明【例1】 已知函数,求证:当时,恒有分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数,从其导数入手即可证明。【绿色通道】∴当时,,即在上为增函数当时,,即在上为减函数故函数的单调递增区间为,单调递减区间于是函数在上的最大值为,因此,当时,,即∴ (右面得证),现证左面,令,当 ,即在上为减函数,在上为增函数,故函数在上的最小值为,∴当时,,即∴,综上可知,当【警示启迪】如果是函数在区间上的最大(小)值,则有(或),那么要证不等式,只要求函数的最大值不超过就可得证.2、直接作差构造函数证明【例2】已知函数 求证:在区间上,函数的图象在函数的图象的下方;分析:函数的图象在函数的图象的下方问题,即,只需证明在区间上,恒有成立,设,,考虑到要证不等式转化变为:当时,,这只要证明: 在区间是增函数即可。【绿色通道】设,即,则=当时,=从而在上为增函数,∴∴当时 ,即,故在区间上,函数的图象在函数的图象的下方。【警示启迪】本题首先根据题意构造出一个函数(可以移项,使右边为零,将移项后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。读者也可以设做一做,深刻体会其中的思想方法。3、换元后作差构造函数证明【例3】证明:对任意的正整数n,不等式 都成立.分析:本题是山东卷的第(II)问,从所证结构出发,只需令,则问题转化为:当时,恒有成立,现构造函数,求导即可达到证明。【绿色通道】令,则在上恒正,所以函数在上单调递增,∴时,恒有 即,∴对任意正整数n,取【警示启迪】我们知道,当在上单调递增,则时,有.如果=,要证明当时,,那么,只要令=-,就可以利用的单调增性来推导.也就是说,在可导的前提下,只要证明0即可.4、从条件特征入手构造函数证明【例4】若函数y=在R上可导且满足不等式x>-恒成立,且常数a,b满足a>b,求证:.a>b【绿色通道】由已知 x+>0 ∴构造函数 ,则 展开更多...... 收起↑ 资源预览