山东省枣庄市滕州市北辛街道北辛中学2024-2025学年上学期九年级数学第二次达标试卷(PDF版,含答案)

资源下载
  1. 二一教育资源

山东省枣庄市滕州市北辛街道北辛中学2024-2025学年上学期九年级数学第二次达标试卷(PDF版,含答案)

资源简介

数学参考答案及评分意见
一、选择题:(本大题共10小题,每小题3分,共30分)
1.D; 2.B; 3.D; 4.A; 5.A; 6.C; 7.A; 8.D; 9.A; 10.A;
二、填空题:(本大题共6小题,每小题3分,共18分)
11.2; 12.; 13.24π;
14.﹣2; 15.; 16.2+2;
三、解答题:(本大题共8小题,共72分)
17.(本题满分8分)
解:(1).……………………………………………4分
(2)﹣1+.………………………………………8分
18.(本题满分8分)
解:(1)AC=6;……………………………………………4分
(2).………………………8分
19.(本题满分8分)
(1)解:(1)停止加热后,设,
将(8,600)代入得:,
∴k=4800,
∴停止加热后y与x的函数关系式为,
当y=800时,,解得:x=6,∴B(6,800),
加热时,设y=ax+b,
将(0,20),(6,800)代入y=ax+b得,,解得:,
∴加热时y与x的函数关系式为y=130x+20;…………………………………………4分
(2)当y=480时,130x+20=480,解得:,
当y=480时,,解得:x=10,
∵,
∴加工的时间为.………………………………………………………8分
20.(本题满分8分)
(1)D;……………………………………2分
(2)如图所示,
∵CD∥EF∥AB,
∴△CDF∽△ABF,△ABG∽△EFG,
∴,,……………………………………………………………4分
∵CD=EF,∴,
∵DF=3m,FG=4m,BF=BD+DF=(BD+3)m,BG=BD+DF+GF=BD+3+4=(BD+7)m,
∴,解得:BD=9m,
∴BF=9+3=12m,∴, ∴AB=6.4m,
∴灯杆AB的高度为6.4m.…………………………………8分
21.(本题满分8分)
解:(1)∵BD⊥AC,∴∠ADE=90°,
Rt△ADB中,AB=13,cos∠BAC=,∴AD=5,
由勾股定理得:BD===12,
∵E是BD的中点,∴ED=6,
∴∠EAD的正切==;…………………………………4分
(2)过D作DG∥AF交BC于G,
∵AC=8,AD=5,∴CD=3,∵DG∥AF,∴=,
设CG=3x,FG=5x,∵EF∥DG,BE=ED,∴BF=FG=5x,
∴.………………………………………………………………………8分
22.(本题满分8分)
解:(1)∵AC⊥BC,∴∠ACD=90°,
在Rt△ACD中,AC=3.27米,CD=1米,
∴tan∠ADC==3.27,∴∠ADC≈73°,
∴该市夏至正午太阳高度角(即∠ADC)的度数约为73°;…………………………………4分
(2)由题意得:∠ABC=∠ADC﹣47°=26°,
在Rt△ABC中,AC=3.27米,∴BC=≈≈6.67(米),
∵CD=1米,∴BD=BC﹣CD=6.67﹣1≈5.7(米),
∴BD的长约为5.7米.…………………………………………………………8分
23.(本题满分12分)
证明(1)∵四边形ABCD是正方形,
∴AB=AD,∠CAD=∠ACB=45°,∠BAD=∠CDA=∠B=90°,
∴∠BAM+∠MAD=90°,
∵∠MAN=90°,∴∠MAD+∠DAN=90°,∴∠BAM=∠DAN,
∵AD=AB,∠ABC=∠ADN=90°,∴△ABM≌△ADN(ASA),
∴AM=AN.………………………………………4分
(2)∵AM=AN,∠MAN=90°,∴∠MNA=45°,
∵∠CAD=2∠NAD=45°,∴∠NAD=22.5°
∴∠CAM=∠MAN﹣∠CAD﹣∠NAD=22.5°
∴∠CAM=∠NAD,∠ACB=∠MNA=45°,
∴△AMC∽△AEN,∴,∴AM AN=AC AE,
∵AN=AM,AC=AB,
∴AM2=AB AE;………………………………………8分
(3)如图,过点M作MF∥AB交AC于点F,
设BM=a,∵=k,∴BM=a,BC=(k+1)a,
即ND=BM=a,AB=CD=BC=(k+1)a,
∵MF∥AB∥CD,∴,∴MF=ka,
∴==.…………………………………………………12分
24.(本题满分12分)
解:(1)∵点A(1,3),点B(n,1)在反比例函数上,
∴m=1×3=n×1,
∴m=3,n=3,
∴反比例函数为y=,点B(3,1),
把A、B的坐标代入y=kx+b得,解得,
∴一次函数为:y=﹣x+4;…………………………………………………4分
(2)令x=0,则y=﹣x+4=4,∴C(0,4),∴OC=4,
令y=0,则﹣x+4=0,解得x=4,∴E(4,0),∴OE=4,
∴S△AOB=S△BOC﹣S△AOC==4,
∵△ACD的面积是△OAB面积的2倍,∴S△ACD=8,
∴S△CDE﹣SADE==8,∴DE=16,
∴D(﹣12,0)或(20,0);…………………………………………………8分
(3)如图2,过A点作x轴的平行线CD,作FC⊥CD于C,ED⊥CD于D,
设E(a,)(a>1),
∵A(1,3),∴AD=a﹣1,DE=3﹣,
∵把线段AE绕点A顺时针旋转90°,点E的对应点为F,恰好也落在这个反比例函数的图象上,
∴∠EAF=90°,AE=AF,∴∠EAD+∠CAF=90°,
∵∠EAD+∠AED=90°,∴∠CAF=∠AED,
在△ACF和△EDA中,
,∴△ACF≌△EDA(AAS),
∴CF=AD=a﹣1,AC=DE=3﹣,∴F(﹣2,4﹣a),
∵F恰好也落在这个反比例函数的图象上,∴(﹣2)(4﹣a)=3,
解得a=6或a=1(舍去),
∴E(6,).网所有,未经……………………………………12分九年级数学达标试卷
2024.12
一、选择题:(每小题3分,共30分)】
1、篆刻是中华传统艺术之一,雕刻印章是篆刻基本功.如图是一块雕刻印章的材料,其俯视图为()
从正面着
2.把多项式x2-3x+4进行配方,结果为()
A.(x-3)2-5
C(x-号)2+2
D.(x+)2+
3.反比例函数y=血5的图象在每一象限内y随x的塔大而减小,那么m的值可以是()
A.-1
B.0
C.5
D.6
4.如果100W的压力F作用于物体上,产生的压强p要大于1000Pa,则下列关于物体受力面积S(m2)
的说法正确的是()
A.S小于0.12B.S大于0.1m2
C.S小于10m2D.S大于10m2
5,如图,将一扇车门侧开,车门和车身的夹角∠MON为2°,车门的底边长OW为0.95米,则车门底边
上点w到车身OM的距离为()
A.0.95sin72”米
B.0.95c0s72°米
C.0.95tan72°米D.0.95米
屏幕
胶片
C
点港源
0
第5题图
第6题图
6.如图,点光源O射出的光线沿直线传播,将胶片上的建筑物图片AB投影到与胶片平行的屏幕上,形
成影像CD.已知AB=0.3(dm),点光源到胶片的距离OE长为6(d),CD长为4.3(dm),则胶片
与屏幕的距离EF为()d.
A.86
B.84
C.80
D.78
7.函数y=上(k≠0)与函数y=:-k在同一坐标系中的图象可能是〔)
数学试题第1页(共6页)

Q夸克扫描王
极速扫描,就是高效
8.如图所示,△ABC的顶点是正方形网格的格点,则siA的值为()
B.25
c.√10
5
D.V5
10
5
D
D
B
AM
B
B月
第8题图
第9题图
第10题图
9.如图,在△ABC中,∠ACB=90°,AC=12,BC=5,CD是△ABC的高,则cos∠BCD的值是()
A器
B.13
12
C.5
2
D.5
13
10.如图,在ABCD中,AB=8,以点D为圆心作弧,交AB于点M、N,分别以点M、N为圆心,大于二MN
为半径作弧,两弧交于点F,作直线DF交AB于点E,若∠BCE=∠DCE,DE=4,则四边形BCDE
的周长是()
A.22
B,21
C.20
D.18
二、填空题:(每小题3分,共18分)
11,已知关于x的一元二次方程x2-3x+1=0的两个实数根分别为1和2,则x1+2-x1x2的值为
12.在Rt△ABC中,∠C=90°,AC=1,BC=W2,则c0sM=」
13,如图,一个几何体的三视图如图所示,则这个几何体的体积为
y/cm
主视图
左视酱
俯视图

图2
第13题图
第14题图
第16题图
14.如图,点A在反比例函数y上的图象上,点C在x轴正半轴上,直线AC交y轴于点B,若BC=3AB,
△AOC的面积为3,则的值为
l5.定义一种运算:sin(a+B)=sinacos鄂+cosasinβ,sin(c-B)=-sinacosβ-cosasinB
例如当a=45°,B=30°时,如(45°+30°)=N互xE巨×1-6W2,则i15°的值
22224

16.如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B+C匀速运动至点C停止.若片
P的运动速度为1cms,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2月
示.当AP恰好平分∠BAC时t的值为
数学试题第2页(共6页)

Q夸克扫描王
极速扫描,就是高效

展开更多......

收起↑

资源列表