四川省成都市第七中学2024-2025学年高三上学期12月阶段性考试数学试题(PDF版,含答案)

资源下载
  1. 二一教育资源

四川省成都市第七中学2024-2025学年高三上学期12月阶段性考试数学试题(PDF版,含答案)

资源简介

成都七中2024~2025学年度(上)12月阶段性考试
数学
注意事项:
1.答卷前,请务必将自己的姓名、考号等填写(涂)在答题卡的指定位置上
2.回答选择题时,选出每个小题的答案后,用B铅笔把答题卡上对应题目的答案标
号涂黑,如需改动,用橡皮擦千净后,再选涂其他答案标号;回答非选择题时,用黑色字迹
的签字笔或钢笔将答案写在答题卡相应位置上,
3,考试结束后,只需将答题卡交回,试卷由考生自行保管.
4,试卷满分:150分,考试时间:120分钟.
一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有
一项是符合题目要求的
1.已知z=1+1
则=
A.1
B.2
C.3
D.2
2.1>1是x<1的(
A充要条件
B.必要不充分条件C.充分不必要条件
D.既不充分也不必要条件
3.己知向量a=(0,4)b=(-3,-3),则a在b方向上的投影向量的坐标是()
A.(-2,-2)
B.(0,3)
C.(0,-3)
D.(2,2)
4.函数f(x)=
3 x COSX的部分图象大致为(
x2+1
5.已知等差数列{an}的前n项和为S,且
2=3,则a6-a3=()
63
A.3
B.6
C.9
D.18
6.已知cos(匹-)=3cos(+8,则sin20=()
4
3
4
A.
B.
5
、3
D.、4
5
5
7.已球O内切丁圆台(即球与该圆台的上.、下底面以及侧面均相切〉:几圆台的上、下底
而半径r:=2:3,则圆台的体积与球的体积之比为〔)
19
19
D.2
C.
D.
12
6
8巴C:+
=1和双由线(:
43
方2=1有公共焦点个上,它制在第二象限
的公共点为点P,点P与右焦点F,的迹线交y斩丁点2,儿Q平分∠P,则从由线
C,的离心菜为()
32
5v2
h.2
D.
2
2
二、选择题:本大题共3小题,每小题6分,共1$分.在每小题给出的选项中,有多项符
合题目要求.全部选对的得6分,部分选对的得部份分,有选错的得0分.
9.在(2x+】)泸的展开式巾,下列说法正确的是()
3x
.x的系数为10
B.第4项的二项式系数为10
.没右带激项
).各顶系数的和为32
10.已贺函数f(x)=2sin(r+g)
a>0,0<9<图象的作意·个对称中心到与之相邻的
对称袖的地离为工,且将该网象向左平移又个单位长度得到的图象关于y轴对称,则下列说
6
法确的是〔)
A.0=2,9=
6
B.直线x-2为x)的图象的条对称轴
3
C.若f()(-a.)单讽递塔,则0的最大值为
n.对打章>0.关丁的方程e)=-码)总有有数个不时的根
11.如图:已白.棱柱ABC-AB,C,AB=AC=AA=2,HAB⊥A(
D为线段B点,E、F分别为线段AB、AC的动点,且满足
F
/11
11
EF=6,点G为线段EF的点,则下列说法正确的是〔)
11
A.若E为AB的中点,则EF#平面AD(
1
B.若F为A,C的中点,则AG⊥平间ABC
G
C点G的凯迹长度为V2π
D
4
D.GD的最小值为6
、填空题:本大题共3小题,每小题5分,共5分.
12.函数(x)=x-12.x的极人i点为x=
13.已知抛物线C:y2=4x,过点(4,0)的白线与抛物线交丁A,B两点,则线段1B巾点M的
款迹小程为成都七中20242025学年度(上)12月阶段性考试答案
一、
单项选择题:
二、多项选择题:
1
4
6
>
9
10
11
A
0
B
B
D
BC
ABD
ACD
三、填空题
12.
-2
13.y2=2(x-4)
14.g=2或a≥3
e
e
四、解答题:
15.
(1)由余弦定理cosC=a2+b-c2--V2ab。V
,且C∈(0,π),
(3分)
2ab
2ab 2
所以C=3π
(6分)
4
(2)由正弦定理,c=2 bcos B即sinC=2 sin Bcos B=sin2B
所以C=2B或C+2B=π,
(8分)
当C=2B时,C=4,B3r
,此时B+C>,不成立,
(10分)
8
当C+2B=时,此时A=B=元,则a=b=1,
(12分)
8
5 absinC=x1x1x-日
1
(13分)
2
、24
16.(1)过点P、B分别向直线AC作垂线,垂足分别为点O,E
(1分)
因为ABl=2,BC=23,所以AC=4,PO=BE=V3,OE=2,
(2分)
因为PB=PO+OE+EB,PO.OE=OE·EB=0
所以P8=Pd+0G+EE+2Po.0E+20E.EB+2Po.EB
=|Po°+oE+EB+2Po.EB
(4分)
即10=3+4+3+2P0.EB
所以PO·EB=0,所以PO⊥EB
(5分)
因为PO⊥AC,AC∩BE=E
所以PO⊥平面ABC,
因为POc平面PAC
所以平面PAC⊥平面ABC
(7分)
(2)如图:以(1)中点O为坐标原点建立空间直角坐标系Oz
3V3
则C0,-1,0,B(5,20),P00,B),M0,22)
(9分)
所以丽=5写5C-(5-30.c乎=0L41分
设平面MBC的法向量为n=(x,y,z),则
-05+3-
z=0
2
n-BC=0-3x-3y=0
收y=-3.则x=3.=5,所以n=(3,V3,5)
(13分)
设直线PC与平面HBC成角为日,
CP.n0-v3+5v32x111
则sine=
(15分)
2V37
37
17.¥:(1)设“山甲发球时得1分”为市补A,“甲一发成功”为事仰:B,“甲一发分”
为事件乃,“甲二发成功”为事件C,“中二发得分”为事C
血短忘:P(BB)=P(B小P(BB,)名=)
〔2分)
PC)-@-PC回)=0-3g号
(4分)
525
P(B,CC:)=P(B,C).P(C B.C)=
92_6
(6分)
25325
则P(A)=P(B,B2)+P(B,CC:)=
8+6_14
(7分)
252525
(2)设印需要将白已的一发成功率提升布P,山印发球行1分的核率为
则甲最多再打4个球使高得该场比赛的牧率不低十23价十
75
R*+1-Rx写月×+R×行 Bx写
2
1、23
0(9分)
3-75
tR<小
(1川分)
听以Px4+1-P)x2x
32、3
(13分)
535
所HsA
(11分)
1
答:屮需要将白已的·发成功率提升全2
(15分)
18.1).南已知,2a=4.9-y3
a=2,又a2=b2+c2
(2分)
架得《=2,6=1,所求捅圆方程为4+J少=1.
(1分)
(2)(i)设直线:y=x,若1与圆C机切,
则圆心到有线1的即高d=,-_2
(6分)
V1+k2 V5
经理化专-2+以-音0
5
出题意,、,为该方积两个不等实致根,

展开更多......

收起↑

资源列表