浙教版科学中考一轮讲义 第22讲 简单机械(学案)

资源下载
  1. 二一教育资源

浙教版科学中考一轮讲义 第22讲 简单机械(学案)

资源简介

中小学教育资源及组卷应用平台
第一部分 物质科学
第22讲 简单机械
01考情透视·目标导航
02知识导图·思维引航
03考点突破·考法探究
考点一 杠杆
实验01杠杆平衡条件的实验探究
考点二 滑轮
考点三 机械效率
04题型精研·考向洞悉
题型一 杠杆
考向01 杠杆的五要素分析
考向02 杠杆的静态平衡
考向03 杠杆的动态平衡
考向04 杠杆的最小力分析
题型二 滑轮的相关量计算
题型三 机械效率
考向01 机械效率的计算
考向02 机械效率的实验探究
05分层训练·巩固提升
基础巩固
能力提升
考点要求 课标要求 考查频次 命题预测
简单机械 1、知道简单机械(杠杆、滑轮、轮轴、斜面)及其在生产生活中的应用。 2、掌握简单机械的机械效率计算式 24年考查3分 1.杠杆类型的判断主要在选择题中考查,个别地市会在填空题中涉及.试题有时以纯文字的形式进行考查,有时以四幅图的形式进行考查;命题时多结合生活中的一些杠杆(独轮车、镊子等)的应用为背景进行. 2.杠杆平衡条件主要出现在选择题中,有时也会在填空题、实验探究题及计算题中涉及. 在计算题中考查利用杠杆平衡条件计算力或力臂.常结合杠杆在生活中的应用命题; 3.滑轮、斜面特点的理解和相关计算一般在选择题和计算题中考查,个别地市会在填空题中涉及.命题时主要结合滑轮或者斜面考查其特点或功、功率以及机械效率的计算. 4.机械效率是中考的难点.计算时要特别注意绳子的段数与物体移动的距离(速度)及绳子自由端移动的距离(速度)的关系.命题时大多结合滑轮(组)或斜面一起出现,在填空题和计算题中经常结合功或功率的知识综合考查.在选择题、填空题和计算题中均有出现;
考点一 杠杆
一、杠杆
1.认识杠杆
一根硬棒,在力的作用下能绕着固定点O转动,这根硬棒就是杠杆。杠杆可以是直的,也可以是弯的或其他形状,如图所示是生活中常见的几种杠杆。
撬棒 羊角锤 镊子 指甲刀
杠杆在使用中有力作用在杠杆上,因此,杠杆是受力物体,将力作用于杠杆的物体是施力物体。
2.杠杆五要素
五要素 物理含义及表示方法
支点 杠杆绕着转动的点,用“O”表示
动力 使杠杆转动的力,用“F1”表示
阻力 阻碍杠杆转动的力,用“F2”表示
动力臂 从支点到动力作用线的距离,用“l1”表示
阻力臂 从支点到动力作用线的距离,用“l2”表示
二、杠杆平衡条件
1.杠杆平衡
当杠杆处于静止状态或匀速绕支点转动状态时,说明杠杆处于平衡状态。
2.杠杆的平衡条件
杠杆的平衡条件:动力×动力臂=阻力×阻力臂。用字母表示:F l =F l .
3.杠杆最小力作图
要用最小的力使得杠杆AB在如图甲所示的位置平衡,根据杠杆平衡条件F l =F l ,因为此时的阻力和阻力臂是固定的,所以只要此时的动力臂最大,则动力就最小。如图乙所示,当力的作用点在B点,且力垂直于OB,方向向上时,动力臂最大,动力最小。
在求解最小力问题时,我们不能受思维定式的影响,只想到F要作用在AO段,出现如图丙所示的错误。实际上,在讨论杠杆中的最小力问题时,如果力的作用点没有预先设定,可以在杠杆上任意处选择。
实验01制取杠杆平衡条件的实验探究
1.杠杆平衡
当杠杆处于静止状态或匀速绕支点转动状态时,说明杠杆处于平衡状态。
2.实验探究:杠杆的平衡条件
实验目的 (1)知道什么是杠杆的平衡; (2)通过实验得出杠杆的平衡条件; (3)体验利用归纳法得出杠杆平衡条件的过程
提出问题 在学习二力平衡时,如果作用在物体上的几个力相互平衡,物体就处于平衡状态。因为杠杆会转动,所以杠杆在动力和阻力作用下静止时,与二力平衡的情况是不同的,杠杆平衡不仅与力的大小有关,还可能与力的作用位置有关
猜想与假设 一般情况下,当杠杆静止或匀速转动时,我们就说此时杠杆处于平衡状态,对杠杆处于平衡状态时,动力、动力臂、阻力、阻力臂之间存在的关系,我们可作出如下猜想: A.动力+动力臂=阻力+阻力臂 B.动力-动力臂=阻力-阻力臂 C. D.动力×动力臂=阻力×阻力臂
实验设计 杠杆是否平衡是由动力、阻力、动力僻和阻力臂共同决定的。为了探究其平衡条件,可以在杠杆处于静止状态时,分别测出动力F 、阻力F 、动力臂l1和阻力臂l ,然后经过大量数据的对比、分析、归纳得出杠杆的平衡条件
实验步骤 (1)调节杠杆两端的平衡螺母,使杠杆在不挂钩码时,在水平位置保持平衡; (2)在支点两侧挂上不同数量的钩码,移动钩码的位置,使杠杆再一次在水平位置平衡,如图所示。这时杠杆两侧受到的作用力分别等于两侧钩码所受的重力,力臂为悬挂点到支点的距离; (3)设右侧钩码对杠杆施加的力为动力F ,左侧钩码对杠杆施加的力为阻力F ,测出杠杆平衡时的动力臂l 和阻力臂l ,把F 、F 、l 、l 的数值填入表格中。 实验 序号动力F /N动力臂l /cm动力×动力 臂/(N·cm)阻力F /N阻力臂l /cm阻力×阻力臂/(N·cm)11.010100.5201022.015301.5203034.010402.02040…
(4)改变钩码个数和位置,多做几次实验(避免偶然性),将实验得到的数据填入表格中
实验结论 分析实验数据,发现每次杠杆平衡时,动力与动力臂的乘积总是等于阻力与阻力臂的乘积,即动力×动力臂=阻力×阻力臂,或F l =F l
特别提醒 调节杠杆水平的原因
该实验中当杠杆最初不在水平位置平衡时,调节杠杆每次都在同一位置平衡进行实验,也能得出结论,但此时杠杆是倾斜的,力臂的测量会非常困难.所以,实验前一般先调节杠杆使其在水平位置平衡,这样实验时动力臂和阻力臂与杠杆重合,可直接在杠杆尺上读出力臂大小,会大大方便实验操作。
3.杠杆的平衡条件
杠杆的平衡条件:动力×动力臂=阻力×阻力臂。用字母表示:F l =F l ;
三、生活中的杠杆
杠杆的分类
根据动力臂与阻力臂的关系,可将杠杆分为三类——省力杠杆、费力杠杆、等臂杠杆.不同的杠杆可以满足人们不同的需求.
(2024 金华三模)平板支撑属于肌肉等长收缩的运动,人需要用上肢支撑在地面上静止时,如图所示。能正确表示人在平板支撑时的杠杆示意图是(  )
A. B.
C. D.
(2024 瑞安市模拟)为拔除外来入侵物种“一枝黄花”,小明自制轻质拔草器,如图甲所示。用该装置拔除同一植株,若l1>l2>l3=l4,下列操作中最省力的是(  )
A. B.
C. D.
(2024 上城区校级三模)早在3000多年以前,勤劳智慧的中国人就已经开始使用杠杆。如图甲所示是古人利用桔棒从井里汲水的示意图,它的前端A系一水桶,后端B系一配重物,O1为支点,杆的自重不计。请回答:
(1)当人沿着AC方向向下拉时,拉力F1的力臂是 (填字母);若将支架移到O2点,方向不变的拉力F1大小将 (填“变大”、“变小”或“不变”)。
(2)若O1A=3O1B,配重质量为4.5kg,桶和水总重50牛,请计算使用配重后,从井中汲水时人可以节省用力多少牛?
(3)对于配重物,有人认为越重越好,有人却认为越轻越好,请写出你的观点: 。
考点二 滑轮
一、定滑轮和动滑轮
1.认识定滑轮和动滑轮
(1)滑轮:周边有槽,可绕中心轴转动的轮
(2)定滑轮和动滑轮:在实际使用时,根据轮的中心轴是否随物体移可分为定滑轮和动滑轮,即轴不随物体一起运动的滑轮叫定滑轮,如乙所示;轴随物体一起运动的滑轮叫动滑轮,如图丙所示。
2.定滑轮和动滑轮的实质
种类 实质 示意图 作用分析
定滑轮 能够连续转动的等臂杠杆 如图所示,定滑轮两边的力的方向与轮相切,定滑轮的中心为杠杆的支点,动力臂和阻力臂相等,且都等于轮的半径r,所以使用定滑轮时不省力
动滑轮 动力臂是阻力臂二倍的杠杆 如图所示,重物的重力作用线通过滑轮中心轴,滑轮的“支点”位于绳与轮相切的点O,因此动力臂等于直径(2r),阻力臂等于半径r,动力臂是阻力臂的二倍,所以理论上动滑轮能省一半的力
二、滑轮组
1.滑轮组
定滑轮和动滑轮组合在一起的装置。使用滑轮组既可以省力,又可以改变力的方向,但要费距离。
2.滑轮组确定承担物重绳子段数n的方法
在动滑轮与定滑轮之间画一条虚线,将它们隔离开,只计算绕在动滑轮上的绳子段数,在图甲中,有两段绳子吊着动滑轮,n=2,图乙中有三段绳子吊着动滑轮,n=3。
3.升力情况
使用滑轮组时,不计绳重及摩擦,则滑轮组用几段绳子提起物体,提起物体所用的力就是物重和动滑轮重的几分之一,即动力,若再忽略动滑轮重,则,其中n为承担物重的绳子段数。
4.费距离情况
用滑轮组提升物体时,虽然省了力,但是费距离,滑轮组用几段绳子提起物体,绳子自由端移动的距离就是物体升高距离的几倍。设物体升高的距离为h,则绳子自由端移动的距离为s=nh(n表示该担物重的绳子段数)。
三、斜面
(1)如图所示,向车上装重物时常用木板搭成斜面,把重物推上车。斜面是一种可以省力的简单机械,但费距离。
(2)特点:如图所示,设斜面长度为l,高为h,重物重力为G,在理想情况下,不考虑斜面摩擦,即斜面是光滑的,则沿斜面向上的推力(即斜面长是斜面高的几倍,推力就是物重的几分之一),因l>h,故F(2024 拱墅区一模)小乐用如图所示的两种方式竖直匀速提升某物体,且都使物体上升了2m。已知物体重200N,滑轮重40N,提升时的拉力分别为F甲和F乙。若不计绳重和摩擦,则在提升过程中(  )
A.F甲=240N
B.F甲做的功为240J
C.F乙向上移动距离为4m
D.F乙所做的功为440J
(2024 余姚市模拟)甲、乙两铁块通过滑轮组用细绳连接,吸附在竖直放置且足够长的固定磁性平板两侧,m甲=1.8kg、m乙=2kg,如图所示。甲以0.2m/s的速度竖直向下做匀速直线运动,磁性平板对甲的摩擦力大小为4N,对乙的摩擦力大小为2N(细绳足够长且始终处于竖直拉伸状态,不计绳重和绳与滑轮的摩擦,磁性平板对其他器材无磁力作用)。下列说法不正确的是(  )
A.动滑轮质量为0.6kg
B.甲所受拉力为22N
C.乙所受拉力的功率为2.2W
D.3s时间内甲、乙克服摩擦力做的功不相等
(2024 江北区模拟)如图所示,F1=8N,F2=6N,此时物体A相对于地面静山,物体B以0.1m/s的速度在物体A表面向左做匀速直线运动(不计弹簧测力计、滑轮和绳子的自重及滑轮和绳子之间的摩擦)。
(1)弹簧测力计读数为 N。
(2)物体A和地面之间的摩擦力 N。
(3)如果增大F2,物体A是否有可能向左运动?请说明理由 。
考点三 机械效率
一、有用功、额外功和总功
1.有用功、额外功和总功
(1)有用功:在上面的实验中,无论是否使用滑轮,钩码都被提升了,这部分功是必须要做的,叫做有用功,用W有表示。若重物的重力为G,提升的高度为h,则W有=Gh。
(2)额外功:若用滑轮组提升钩码,我们还不得不克服动滑轮本身所受的重力以及摩擦力等因素而多做一些功,这部分功叫做额外功,用表示W额。额外功是对人们没有用但不得不做的功。
(3)总功:有用功与额外功之和是总共做的功,叫做总功,用W总表示。总功、有用功和额外功之间的关系为W总=W有+W额。
(4)总功、有用功、额外功的单位都是焦(J)。
2.三种简单机械的有用功、额外功和总功
种类 杠杆 滑轮组 斜面
图示
有用功 W有=Gh W有=Gh W有=Gh
额外功 若不计摩擦:W额=G杆·h杆 若不计绳重及摩擦:W额=G动h W额=fl
总功 W总=Fs W总=Fs W总=Fl
三者关系 W总=W有+W额
二、机械效率
1.使用机械时额外功不可避免
使用机械做功时,额外功是不可避免的。由于额外功是我们不需要的,它白白浪费能量,因此使用不同机械来对物体做功时,人们总是希望额外功越少越好,或者说有用功在总功中所占的比例越大越好。有用功占总功的比例反映了机械的一项性能,在物理学中用机械效率来表示这一性能。
2.机械效率
定义 物理学中,将有用功跟总功的比值叫做机械效率,用η表示
公式 (机械效率是一个比值,它没有单位,通常用百分数表示)
物理意义 机械效率越高,做的有用功占总功的比例就越大
可变性 机械效率不是固定不变的,机械效率反映的是机械在一次做功过程中有用功跟总功的比值,同一机械在不同的做功过程中,有用功不同,机械效率也会不同
特点 因为使用机械时,不可避免地要做额外功,故任何机械的机械效率都小于1,只有在理想情况下机械效率才为1
注意 机械效率的高低与是否省力、滑轮组绳子的绕法、物体被提升的高度及速度等无关
3.功、功率、机械效率的比较
物理量 意义 定义 符号 公式 单位 说明
功 做功,即能量的转化 力与物体在力的方向上移动距离的乘积 W W=Fs J (1)功率大小由功和时间共同决定,单独强调任何一方面都是错误的。 (2)功率和机械效率是两个不同的物理量,它们之间没有直接关系
功率 表示物体做功的快慢 功与做功时间之比 P W
机械效率 反映机械做功性能的好坏 有用功与总功之比 η 无
4.机械效率的计算
机械效率的表达式为,三种简单机械的机械效率总结如下:
装置图 计算公式
杠杆
滑轮组 竖直提升物体 (1)已知拉力、物重及绳子段数时: (2)不计绳重及摩擦时:
水平匀速拉动物体 η==(f为物体在地面上的摩擦力)
斜面
5.影响滑轮组机械效率的主要因素与改进措施
影响因素 分析 改进措施(提高效率)
被提升物体的重力 同一滑轮组,被提升物体的重力越大,做的有用功越多,机械效率越大 在机械承受的范围内,尽可能增加被提升物体的重力
动滑轮的自重 有用功不变时,减小提升动滑轮时做的额外功,可提高机械效率 改进滑轮结构,减轻滑轮自重
滑轮组自身部件的摩擦 机械自身部件的摩擦力越大,机械效率越低 对机械进行保养,保持良好的润滑,减小摩擦
功率和机械效率是两个不同的概念,功率表示物体做功的快慢,即单位时间内所做的功;机械效率表示机械做功的效率,即所做的总功中有多大比例的功是有用的。它们之间的物理意义不同,也没有直接联系,功率大的机械,机械效率不一定大;机械效率高的机械,功率也不一定大。
(2024 舟山模拟)如图所示,滑轮组悬挂在水平钢架上,某工人站在水平地面上,竖直向下拉动绳子自由端,5s内使物体A匀速上升1.5m,提升过程中拉力F的功率为180W。已知物体A重540N,该工人重700N。不计绳重和摩擦,下列关于该过程的说法正确的是(  )
A.绳子自由端移动的速度为0.3m/s
B.动滑轮重160N
C.该工人对地面的压力为400N
D.工人利用该滑轮组提升物体的最大机械效率为90%
(2024 杭州模拟)如图甲所示,小金到滑雪场进行滑雪圈滑雪运动,小金的质量为M。滑雪圈如图乙所示,其质量为m,滑雪场是一个高H,长L的斜坡。
(1)当小金从滑道顶端一直滑到水平终点,在斜坡上的时受到的摩擦力为f1,在水平轨道时受到的摩擦力为f2,由此可知f1 f2(填“大于”、“小于”或“等于”)。
(2)小金坐在滑雪圈里被电动机从斜面底部拉到了顶端,已知电动机的拉力F,上坡过程中的机械效率是 。(用题目中的已知量表示)
(2024 宁波模拟)如图甲是建筑工地上的“塔吊”示意图,其配重箱A重4000kg,起重臂上有一个可以沿水平方向左右移动的滑车B,图乙为滑车B及滑轮组中钢绳的穿绳示意图,滑车B内装的电机可卷动钢绳提升重物C。现用该装置吊起重8×103N的物体C,若不计起重臂、滑车、钢绳、动滑轮重及摩擦,g取10N/kg,请完成以下问题。
(1)滑车B中定滑轮的作用是 。
(2)若配重箱A到支点O的距离为5m,则滑车B可向右移动的最远距离是多少?
(3)若电机在25s内将物体C竖直向上匀速吊起10m,则该电机克服物体C重力做功的功率为多少?若此时电机工作的实际功率为5000W,则该电机的机械效率为多少?
题型一 杠杆
考向01 杠杆的五要素分析
(2023 衢江区二模)如图中的皮划艇运动员一手支撑住桨柄的末端,另一手用力划桨,此时的船桨可看作是一个杠杆。下图中的船桨模型中最合理的是(  )
A.B. C. D.
如图是实验常用的试管夹,O是支点,使用时用力向下按图示按压处可打开试管夹。下列能正确表示使用该试管夹时的杠杆示意图是(  )
A. B. C. D.
(2023 嵊州市模拟)某实验小组用飞镖的镖盘做了一个圆心固定且可以绕圆心O转动的圆盘,圆盘的直径上AB两端各有1个平衡螺母,A、B、C是在镖盘以O为圆心的同一个圆上的三个点,BD垂直于AB。接下来用这个装置探究杠杆力臂的具体概念。
①调节圆盘两端的平衡螺母让A、B在水平位置平衡。
②在圆盘A点挂两个钩码(总重1牛),B点挂两个钩码,杠杆平衡,再将B点的两个钩码分别挂在C点和D点,结果挂在D点时杠杆能保持平衡,挂在C点时杠杆不能平衡。
(1)步骤①之前,若A比B低,为使AB在水平位置平衡,平衡螺母应向 调节。(选填“左”或“右”)
(2)通过实验发现影响杠杆平衡的是支点到 的距离,科学上将这个距离定义为力臂。(选填“力的作用点”或“力的作用线”)
(3)取下右侧两个钩码后,若小明想用作用在C点的拉力使杠杆再次平衡,则拉力的大小至少为 牛。
考向02 杠杆的静态平衡
(2024 黄岩区二模)如图所示,现有一张质地均匀的纸(O为重心),如果只用一枚大头针将其固定在墙上,要求使其尽可能保持稳定,受到左右晃动也能回归原位,则大头针的位置是(  )
A.① B.② C.③ D.④
(2024 瓯海区一模)我国古代《墨经》最早记述了秤的杠杆原理(如图所示),此时杠杆处于平衡状态(忽略杆的质量),有关它的说法正确的是(  )
A.杠杆在图示的位置平衡时,“权”的质量小于“重”的质量
B.“权”和“重”增加相同的质量,A端会上扬
C.增大“重”时,应把“权”向B端适当移动
D.若将提纽O向B端移动一些,杆秤的测量范围将变小
(2024 象山县模拟)如图所示,轻质杠杆AB可绕O点自由转动。当杠杆A端的甲物块悬空;B端的乙球浸没在水中时(不碰容器底和壁),杠杆恰好水平平衡,A、B两端的细线均不可伸长且处于张紧状态。已知OA:OB=1:2,甲物块重400N,乙球体积为1×10﹣2m3,g取10N/kg。下列说法中正确的是(  )
A.乙球受到的浮力为10N
B.杠杆B端所受的拉力为100N
C.乙球的重力为300N
D.乙球的密度为2×103kg/m3
考向03 杠杆的动态平衡
(2024 象山县模拟)如图,某同学进行实验探究把拉杆箱可以看作一个支点在O点的杠杆。游客在拉杆把手处A点施加一个沿虚线方向的力F,使拉杆箱处于静止状态。其他条件不变时,若仅缩短拉杆的长度,力F将 ;若箱内物品下滑,重心位置由B变至B',力F将 ;若把箱内较重物品远离O点摆放,这样使拉杆箱在图示位置静止的动力将 。(均填“增大”“减小”或“不变”)
(2024 上城区校级一模)如图所示,OA是起重机的吊臂,可绕O点转动。在距O点6m远的B处吊有重3000N的物体。为保证吊臂在水平位置平衡,则绕过定滑轮斜向下的拉力F为 N.将吊臂缓慢拉起,使用A点升高2m的过程中,拉力变 。(绳重、吊臂重、摩擦均不计)
(2024 西湖区校级二模)小科家里进行装修,装修的工人从建材市场运来1张质量均匀的矩形实木板和一桶墙面漆,木板的规格是1.2m×2m×0.015m,密度为0.7×103kg/m3,墙面漆的质量为30kg。
(1)木板的重力为 N。
(2)工人用一个竖直向上的力F将木板的一端匀速抬起到某个位置(如图甲所示),在抬起过程中,力F的变化趋势是 。
A.变大 B.变小 C.先变大后变小 D.不变
(3)小科和工人身形相近,他们一起用一根轻杆将墙面漆抬起,工人抬起轻杆的A端,小科抬着轻杆的B端,两人施力的方向都为竖直向上,且保持轻杆水平(如图乙所示),其中,AB为1.2m,桶悬挂点C离A端为0.4m,则小科对木板的力F2为多少?
考向04 杠杆的最小力分析
(2024 鹿城区二模)籼米是米糕、粉干等食品的原料,温州种植籼稻已有4千多年历史。在环境温度不低于12℃时,将籼稻种子播撒到适宜的土壤中培育成幼苗,再移植到稻田中,在20℃~35℃间生长较快,4个月后可收割。回答下面小题。在古代,籼稻收割后利用前方装有石块的简易杠杆敲击谷粒去壳。下列方案中脚踩踏时最省力的是(  )
A. B.
C. D.
(2023 苍南县模拟)为了拔除外来入侵物种“一枝黄花”,农业专家自制轻质拔草器,如图所示,将拔草器左下端的叉子插入植株根部,用手对拔草器施力,可将植株连根拔起。若拔同一植株,手施力最小的是(  )
A. B.
C. D.
(2024 富阳区一模)如图甲是小金老师坐在钓箱上垂钓时的情景。该钓箱长40cm、宽25cm、高30cm,空箱时,整箱质量仅5kg,轻便易携,还可以安装遮阳伞等配件。(g=10N/kg)
请你计算:
(1)小金把空箱向上搬100cm后放到车上,则向上搬100cm的过程中小金对钓箱做了多少功?
(2)如图乙所示放置在水平地面,对地面的压强为多少?
(3)空箱时,钓箱可以近似看作是一个质量分布均匀的长方体,如图乙所示,试把左侧底边稍微抬离地面需要施加的最小力是多少牛?
题型二 滑轮的相关量计算
(2023 温州模拟)如图所示,用10N的力F沿水平方向拉滑轮,可使物体A以0.2m/s的速度在水平面上匀速运动。弹簧测力计的示数恒为2N(不计滑轮、测力计、绳子的重力,滑轮的转轴光滑)。下列说法错误的是(  )
A.物体A受到地面水平向右3N的摩擦力
B.物体A受到B的摩擦力是2N
C.滑轮移动的速度是0.1m/s
D.拉力F做功功率为4W
(2023 富阳区校级模拟)小柯用图中装置提升重为400牛的物体,不计摩擦和滑轮自重,下列说法正确的是(  )
A.两个滑轮均为定滑轮
B.人将绳子拉过1米,物体也上升1米
C.物体匀速上升时,人对绳子的拉力为200牛
D.使用该装置不能省力,但能改变力的方向
如图甲所示的装置,A是重15N的空吊篮,绳子B和C能承受的最大拉力分别为100N和50N。质量为50kg的小张同学将A提升到高处,施加的拉力F随时间t变化关系如图乙所示,A上升的速度v随时间变化关系如图丙所示。忽略绳重及摩擦。
求:(1)动滑轮的重力;
(2)1~2s内拉力F的功率;
(3)此装置最多能匀速运载多重的货物?
题型三 机械效率
考向01 机械效率的计算
(2023 杭州模拟)如图所示,拉力F为5N,物体A以0.1m/s的速度在物体B表面向左做匀速直线运动(B表面足够长);物体B静止在地面上,受到地面水平向左4N的摩擦力,弹簧测力计示数为12N。下列说法正确的是(  )
A.拉力F的功率为1.0W
B.物体A受到的摩擦力为16N
C.滑轮组的机械效率为75%
D.拉力F增大到10N时,物体B开始向左运动
(2023 鹿城区模拟)如图甲所示,用一个动滑轮匀速提升重为600N的物体,在卷扬机拉力F的作用下,绳子自由端竖直移动的距离随时间变化的关系如图乙所示。已知动滑轮受到的重力为20N,不计绳重和轮与轴间的摩擦。下列说法正确的是(  )
A.以动滑轮为参照物,物体是向上运动的
B.物体上升的速度是20m/s
C.卷扬机拉力F的功率是62W
D.机械效率为90.67%
(2023 拱墅区二模)如图为一举重杠铃。
(1)小明同学在一次体育课上举杠铃的过程中,他觉得自己右手力量要大于左手的力量,如果在举重过程中想让右手再多承担一些压力,则他的右手应该向 (选填“右端”或“左端”)移动。
(2)在一次举重过程中,小明同学双手将杠铃举过头顶,在他举着杠铃站立时左右两手间距离为1m,左手距离左侧杠铃0.4m,右手距离右侧杠铃0.6m,若此时小明左手竖直向上举的力为350N,则小明同学所举杠铃总质量为多少千克?
(3)若小明同学体重50kg,某次举起的杠铃总重只有30kg,在由蹲下到起立的举重过程中,杠铃高度升高了1.8米,而自身重心升高1米,则在该次举重过程中的机械效率是多少?
考向02 机械效率的实验探究
(2024 文成县二模)小文为探究滑轮组的机械效率设计了如图甲所示的创新实验装置,整个装置固定在带有刻度的支撑背景板上,带绕线轮的电机可通过转动拉起重物,压力传感器可测出绳子自由端拉力。
不同物重对应的滑轮组机械效率实验数据
组别 绳子受力段数 G物/N F/N W总/J n
1 n=3 1.96 0.80 0.120 ▲
2 3.92 1.51 0.227 86.5%
3 5.88 2.20 0.330 89.1%
4 n=4 1.96 0.63 0.126 77.8%
5 3.92 1.22 0.244 80.3%
6 5.88 1.75 0.350 84.0%
实验步骤:
①在动滑轮下方挂上钩码,记录重力G物,标记物体的位置。
②闭合电机开关,匀速提升重物0.05m,断开开关,记录拉力F和绳子自由端移动的距离s。
③分别改变G物和滑轮组绕线方式(使绳子受力段数n不同),重复以上操作,并记录数据,结果如表格所示。
(1)请将表格中的数据补充完整 。(保留到0.1%)
(2)根据表中数据可得出的结论是 。
(3)与课本装置(如图乙)相比,该创新实验装置的优点是: 。(写出两点)
(2023 杭州模拟)某实验小组测一滑轮组机械效率的数据如表:
实验次数 动滑轮重G动/N 钩码重G物/N 钩码上升高度h物/m 动力F动/N 动力作用点移动距离s动/m 滑轮组的机械效率η
1 0.53 1 0.1 0.7 0.3 47.6%
2 2 0.1 1.1 0.3 60.6%
3 4 0.1 2 0.3
(1)请在图中画出本实验的绕绳方法,并在表格最后一栏写出正确的机械效率。
(2)用同一滑轮组提升不同重物至同一高度,提升的物重增加时,克服摩擦和绳重所做的额外功变 ,滑轮组的机械效率变大。
(3)多次改变提升的物重测量滑轮组的机械效率,目的是为了 (填字母)。
A.减小摩擦
B.多次测量取平均值减小误差
C.获得多组数据归纳出物理规律
基础巩固
(2024 余姚市模拟)长期低头会对颈部肌肉造成损伤,图中A点为头部重力作用点,B点为颈部肌肉受力点,下列能正确表示人低头时杠杆示意图是(  )
A.B.
C. D.
(2024 上城区校级一模)如图所示,分别使用滑轮或滑轮组匀速提升同一物体,滑轮质量均相等且G动小于G物,在相同的时间内物体被提升的高度也相等,不计绳重和摩擦,下列说法不正确的是(  )
A.三个装置所做的有用功为W甲=W乙=W丙
B.绳子自由端移动的速度关系为v甲<v乙<v丙
C.绳子自由端的拉力大小为F甲>F乙=F丙
D.三个装置的机械效率为η甲>η乙=η丙
(2024 浙江模拟)在实践活动基地,同学们体验使用劳动器具。如图所示,分别用甲、乙两种形式的滑轮组把重为600N的物体匀速向上提起相同的高度。已知每个滑轮重为20N,忽略绳子的重力及滑轮与绳子的摩擦。下列判断正确的是(  )
A.甲方式中车对绳子的拉力为620N
B.乙方式中人对绳子的拉力为300N
C.使用甲、乙两种方式都不能省功
D.甲、乙两种方式的机械效率相等
(2024 温州模拟)如图所示为我国物理学著作《远西奇器图说》所记载的一种机械装置。若小球A的质量为mA,小球B的质量为mB,当两小球匀速移动时,A球竖直上升的高度为hA,B球下降的高度为hB,不考虑摩擦和绳重,则下列有关物理量的比较中正确的是(  )
A.mA>mB、hA<hB B.mA>mB、hA>hB
C.mA<mB、hA<hB D.mA<mB、hA>hB
(2024 杭州模拟)如图所示,在水平拉力F的作用下重100N的物体A,沿水平桌面做匀速直线运动,弹簧秤B的示数为10N,则拉力F的大小为(  )N,物体A与水平桌面的摩擦力大小(  )N。
A.200N;10N B.200N;20N C.20N;10N D.20N;20N
(2024 滨江区二模)如图为某学生用所做的升降电梯模型模拟电梯的工作情况,电动机的拉力为F,动滑轮重为5N,在10s内将重20N的轿箱连同内部5N的物品一起匀速升高了1m,忽略绳重和摩擦,下列说法正确的是(  )
A.与电动机相连的绳端移动的速度为0.2m/s
B.与电动机相连的绳端拉力大小为12.5N
C.拉力F做功的功率为1.5W
D.滑轮组的机械效率为83.3%
(2024 滨江区一模)如图甲所示装置,小欢用力F向下拉绳子,使物体M在水平地面匀速移动,地面ab、bc粗糙程度不同。物体M重为400N,动滑轮重为5N,ab=2m,bc=3m。物体M从a点到c点过程中,拉力F与M移动距离的关系如图乙所示,不考虑物体大小对运动的影响,忽略绳子重力及滑轮转轴摩擦,对此过程的分析,下列结论正确的是(  )
A.拉力F做的功为840J
B.绳子自由端移动的距离为15m
C.物体从ab段到bc段,滑轮组的机械效率变小
D.拉力F在ab段做的额外功等于在bc段做的额外功
(2024 吴兴区模拟)扬州市建设的第一期公共自行车站点140个,投放自行车1000辆,市民可通过办理相关手续租赁自行车,享受绿色出行带来的方便、快捷。从自行车的结构和使用来看,下列说法中不正确的是(  )
A.车把上的刹车把手属于省力杠杆
B.下坡时速度越来越大是由于惯性越来越大
C.车座做的扁而平可以减小臀部所受的压强
D.轮胎和脚踏做有凹凸不平的花纹是为了增大摩擦
(2024 宁波模拟)用如图所示的装置提升重为600N的物体A,动滑轮重为200N。在卷扬机对绳子的拉力F作用下,物体A在8s内竖直匀速上升了1m。在此过程中,不计绳重和摩擦,拉力F的大小为 ,物体A的功率大小为 ,滑轮组的机械效率为 。
能力提升
(2024 上城区校级二模)如图所示,某人用扁担担起两筐质量为m1,m2的货物,当他的肩处于O点时,扁担水平平衡,已知l1>l2,扁担和筐的重力不计。
(1)在O点时,根据杠杆平衡的条件可知,m1 m2(填“>”,“<”或者“=”)
(2)若将两筐的悬挂点向O点移近相同的距离Δl,则扁担 端向下倾斜。(填“左”,或者“右”)
(3)要使扁担恢复水平平衡,需再往某侧筐中加入货物,其质量为 。
(2024 滨江区二模)T型杠铃是一种健身器材,如图甲,小滨在水平地面将杠铃拉至水平静止,杠铃离开地面后,与水平地面平行,可抽象成图乙模型,杠铃的固定轴为O,手对杠铃的拉力作用在B点,杠铃(包括杆和配重)的重心在A点。已知杠铃的总重为600N,OA长1.6m,OB长1.2m。
(1)图乙中,小滨手对杠铃的拉力F1与杠铃垂直,求F1= N。
(2)图丙中,小滨手对杠铃拉力F2始终与杠铃垂直,且仍作用在B点,他将杠铃从水平位置拉至图丙的过程中,拉力F2 (选填“一直变大”、“一直变小”、“始终不变”、“先变小后变大”)。
(2024 杭州二模)如图所示,有一粗细均匀,重为40N,长为4m的长木板AB,置于支架上,支点为O,且AO=1m,长木板的右端用绳子系住,绳子另一端固定在C处,当长木板AB水平时,绳与水平成30°的夹角,且绳子所能承受的最大拉力为60N.一个质量为5kg的体积不计的滑块M在F=10N的水平拉力作用下,从AO之间某处以v=1m/s的速度向B端匀速滑动,求:(g=10N/kg)
(1)滑块匀速运动时所受的摩擦力的大小;
(2)当滑块匀速运动时拉力F做功的功率;
(3)滑块在什么范围内滑动才能使AB保持水平。
(2024 温州三模)小科同学设计了如图所示的装置进行实验,利用小量程弹簧秤测金属的密度,其中杠杆OAB支点为O(杠杆OAB质量不计),OA:OB=1:3。他实验的步骤如下:
步骤一:用一细绳将体积为180cm3的金属块悬挂于A点,然后向容器中加水,使金属块浸没在水中。
步骤二:使杠杆OAB在水平位置静止,读出弹簧测力计此时的读数为12N。请根据题目求出以下信息:
(1)金属块浸没在水中时受到的浮力。
(2)绳子作用在杠杆A上的拉力。
(3)被测金属块密度。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第一部分 物质科学
第22讲 简单机械
01考情透视·目标导航
02知识导图·思维引航
03考点突破·考法探究
考点一 杠杆
实验01 杠杆平衡条件的实验探究
考点二 滑轮
考点三 机械效率
04题型精研·考向洞悉
题型一 杠杆
考向01 杠杆的五要素分析
考向02 杠杆的静态平衡
考向03 杠杆的动态平衡
考向04 杠杆的最小力分析
题型二 滑轮的相关量计算
题型三 机械效率
考向01 机械效率的计算
考向02 机械效率的实验探究
05分层训练·巩固提升
基础巩固
能力提升
考点要求 课标要求 考查频次 命题预测
简单机械 1、知道简单机械(杠杆、滑轮、轮轴、斜面)及其在生产生活中的应用。 2、掌握简单机械的机械效率计算式 24年考查3分 1.杠杆类型的判断主要在选择题中考查,个别地市会在填空题中涉及.试题有时以纯文字的形式进行考查,有时以四幅图的形式进行考查;命题时多结合生活中的一些杠杆(独轮车、镊子等)的应用为背景进行. 2.杠杆平衡条件主要出现在选择题中,有时也会在填空题、实验探究题及计算题中涉及. 在计算题中考查利用杠杆平衡条件计算力或力臂.常结合杠杆在生活中的应用命题; 3.滑轮、斜面特点的理解和相关计算一般在选择题和计算题中考查,个别地市会在填空题中涉及.命题时主要结合滑轮或者斜面考查其特点或功、功率以及机械效率的计算. 4.机械效率是中考的难点.计算时要特别注意绳子的段数与物体移动的距离(速度)及绳子自由端移动的距离(速度)的关系.命题时大多结合滑轮(组)或斜面一起出现,在填空题和计算题中经常结合功或功率的知识综合考查.在选择题、填空题和计算题中均有出现;
考点一 杠杆
一、杠杆
1.认识杠杆
一根硬棒,在力的作用下能绕着固定点O转动,这根硬棒就是杠杆。杠杆可以是直的,也可以是弯的或其他形状,如图所示是生活中常见的几种杠杆。
撬棒 羊角锤 镊子 指甲刀
杠杆在使用中有力作用在杠杆上,因此,杠杆是受力物体,将力作用于杠杆的物体是施力物体。
2.杠杆五要素
五要素 物理含义及表示方法
支点 杠杆绕着转动的点,用“O”表示
动力 使杠杆转动的力,用“F1”表示
阻力 阻碍杠杆转动的力,用“F2”表示
动力臂 从支点到动力作用线的距离,用“l1”表示
阻力臂 从支点到动力作用线的距离,用“l2”表示
二、杠杆平衡条件
1.杠杆平衡
当杠杆处于静止状态或匀速绕支点转动状态时,说明杠杆处于平衡状态。
2.杠杆的平衡条件
杠杆的平衡条件:动力×动力臂=阻力×阻力臂。用字母表示:F l =F l .
3.杠杆最小力作图
要用最小的力使得杠杆AB在如图甲所示的位置平衡,根据杠杆平衡条件F l =F l ,因为此时的阻力和阻力臂是固定的,所以只要此时的动力臂最大,则动力就最小。如图乙所示,当力的作用点在B点,且力垂直于OB,方向向上时,动力臂最大,动力最小。
在求解最小力问题时,我们不能受思维定式的影响,只想到F要作用在AO段,出现如图丙所示的错误。实际上,在讨论杠杆中的最小力问题时,如果力的作用点没有预先设定,可以在杠杆上任意处选择。
实验01制取杠杆平衡条件的实验探究
1.杠杆平衡
当杠杆处于静止状态或匀速绕支点转动状态时,说明杠杆处于平衡状态。
2.实验探究:杠杆的平衡条件
实验目的 (1)知道什么是杠杆的平衡; (2)通过实验得出杠杆的平衡条件; (3)体验利用归纳法得出杠杆平衡条件的过程
提出问题 在学习二力平衡时,如果作用在物体上的几个力相互平衡,物体就处于平衡状态。因为杠杆会转动,所以杠杆在动力和阻力作用下静止时,与二力平衡的情况是不同的,杠杆平衡不仅与力的大小有关,还可能与力的作用位置有关
猜想与假设 一般情况下,当杠杆静止或匀速转动时,我们就说此时杠杆处于平衡状态,对杠杆处于平衡状态时,动力、动力臂、阻力、阻力臂之间存在的关系,我们可作出如下猜想: A.动力+动力臂=阻力+阻力臂 B.动力-动力臂=阻力-阻力臂 C. D.动力×动力臂=阻力×阻力臂
实验设计 杠杆是否平衡是由动力、阻力、动力僻和阻力臂共同决定的。为了探究其平衡条件,可以在杠杆处于静止状态时,分别测出动力F 、阻力F 、动力臂l1和阻力臂l ,然后经过大量数据的对比、分析、归纳得出杠杆的平衡条件
实验步骤 (1)调节杠杆两端的平衡螺母,使杠杆在不挂钩码时,在水平位置保持平衡; (2)在支点两侧挂上不同数量的钩码,移动钩码的位置,使杠杆再一次在水平位置平衡,如图所示。这时杠杆两侧受到的作用力分别等于两侧钩码所受的重力,力臂为悬挂点到支点的距离; (3)设右侧钩码对杠杆施加的力为动力F ,左侧钩码对杠杆施加的力为阻力F ,测出杠杆平衡时的动力臂l 和阻力臂l ,把F 、F 、l 、l 的数值填入表格中。 实验 序号动力F /N动力臂l /cm动力×动力 臂/(N·cm)阻力F /N阻力臂l /cm阻力×阻力臂/(N·cm)11.010100.5201022.015301.5203034.010402.02040…
(4)改变钩码个数和位置,多做几次实验(避免偶然性),将实验得到的数据填入表格中
实验结论 分析实验数据,发现每次杠杆平衡时,动力与动力臂的乘积总是等于阻力与阻力臂的乘积,即动力×动力臂=阻力×阻力臂,或F l =F l
特别提醒 调节杠杆水平的原因
该实验中当杠杆最初不在水平位置平衡时,调节杠杆每次都在同一位置平衡进行实验,也能得出结论,但此时杠杆是倾斜的,力臂的测量会非常困难.所以,实验前一般先调节杠杆使其在水平位置平衡,这样实验时动力臂和阻力臂与杠杆重合,可直接在杠杆尺上读出力臂大小,会大大方便实验操作。
3.杠杆的平衡条件
杠杆的平衡条件:动力×动力臂=阻力×阻力臂。用字母表示:F l =F l ;
三、生活中的杠杆
杠杆的分类
根据动力臂与阻力臂的关系,可将杠杆分为三类——省力杠杆、费力杠杆、等臂杠杆.不同的杠杆可以满足人们不同的需求.
(2024 金华三模)平板支撑属于肌肉等长收缩的运动,人需要用上肢支撑在地面上静止时,如图所示。能正确表示人在平板支撑时的杠杆示意图是(  )
A. B.
C. D.
【解答】解:从图示可知,0是支点,动力和阻力在支点的同一方,故它们的方向应该相反,故选A。
故选:A。
(2024 瑞安市模拟)为拔除外来入侵物种“一枝黄花”,小明自制轻质拔草器,如图甲所示。用该装置拔除同一植株,若l1>l2>l3=l4,下列操作中最省力的是(  )
A. B.
C. D.
【解答】解:用该装置拔除同一植株,则阻力为F阻相同,根据杠杆的平衡条件分别得出A、B、C中动力的大小为:
F阻l1=FAL,F阻l2=FBL,F阻l3=FCL,
因l1>l2>l3,则FA>FB>FC,
D选项中因动力的方向是竖直,则力臂小于L,即:L′<L,
则根据杠杆的平衡条件可得:F阻l3=FDL′,
因l3=l4,则:FD>FC,
所以,操作中最省力的是C。
故选:C。
(2024 上城区校级三模)早在3000多年以前,勤劳智慧的中国人就已经开始使用杠杆。如图甲所示是古人利用桔棒从井里汲水的示意图,它的前端A系一水桶,后端B系一配重物,O1为支点,杆的自重不计。请回答:
(1)当人沿着AC方向向下拉时,拉力F1的力臂是 (填字母);若将支架移到O2点,方向不变的拉力F1大小将 (填“变大”、“变小”或“不变”)。
(2)若O1A=3O1B,配重质量为4.5kg,桶和水总重50牛,请计算使用配重后,从井中汲水时人可以节省用力多少牛?
(3)对于配重物,有人认为越重越好,有人却认为越轻越好,请写出你的观点: 。
【解答】解:(1)根据力臂是从支点到力的作用线的垂直距离,图中O1C为动力臂;
若将支架移到O2点,方向不变的拉力F1的力臂将变小,而配重的力臂变大,根据杠杆的平衡条件知,拉力将变大。
(2)若O1A=3O1B,配重质量为4.5kg,
如果没有配重,拉力F'=G=50N;
有配重时,根据杠杆的平衡条件知,m配g O1B=(G﹣F)O1A;
即 4.5kg×10N/kg×1=(50N﹣F)×3;
解得F=35N,故省力ΔF=F'﹣F=50N﹣35N=15N;
(3)当配重过大时,放入水桶时的力过大,过小时拉起水桶的力过大,要配重适当较好。
故答案为:(1)O1C;变大;(2)井中汲水时人可以节省用力15N;
(3)当配重过大时,放入水桶时的力过大,过小时拉起水桶的力过大,要配重适当较好。
考点二 滑轮
一、定滑轮和动滑轮
1.认识定滑轮和动滑轮
(1)滑轮:周边有槽,可绕中心轴转动的轮
(2)定滑轮和动滑轮:在实际使用时,根据轮的中心轴是否随物体移可分为定滑轮和动滑轮,即轴不随物体一起运动的滑轮叫定滑轮,如乙所示;轴随物体一起运动的滑轮叫动滑轮,如图丙所示。
2.定滑轮和动滑轮的实质
种类 实质 示意图 作用分析
定滑轮 能够连续转动的等臂杠杆 如图所示,定滑轮两边的力的方向与轮相切,定滑轮的中心为杠杆的支点,动力臂和阻力臂相等,且都等于轮的半径r,所以使用定滑轮时不省力
动滑轮 动力臂是阻力臂二倍的杠杆 如图所示,重物的重力作用线通过滑轮中心轴,滑轮的“支点”位于绳与轮相切的点O,因此动力臂等于直径(2r),阻力臂等于半径r,动力臂是阻力臂的二倍,所以理论上动滑轮能省一半的力
二、滑轮组
1.滑轮组
定滑轮和动滑轮组合在一起的装置。使用滑轮组既可以省力,又可以改变力的方向,但要费距离。
2.滑轮组确定承担物重绳子段数n的方法
在动滑轮与定滑轮之间画一条虚线,将它们隔离开,只计算绕在动滑轮上的绳子段数,在图甲中,有两段绳子吊着动滑轮,n=2,图乙中有三段绳子吊着动滑轮,n=3。
3.升力情况
使用滑轮组时,不计绳重及摩擦,则滑轮组用几段绳子提起物体,提起物体所用的力就是物重和动滑轮重的几分之一,即动力,若再忽略动滑轮重,则,其中n为承担物重的绳子段数。
4.费距离情况
用滑轮组提升物体时,虽然省了力,但是费距离,滑轮组用几段绳子提起物体,绳子自由端移动的距离就是物体升高距离的几倍。设物体升高的距离为h,则绳子自由端移动的距离为s=nh(n表示该担物重的绳子段数)。
三、斜面
(1)如图所示,向车上装重物时常用木板搭成斜面,把重物推上车。斜面是一种可以省力的简单机械,但费距离。
(2)特点:如图所示,设斜面长度为l,高为h,重物重力为G,在理想情况下,不考虑斜面摩擦,即斜面是光滑的,则沿斜面向上的推力(即斜面长是斜面高的几倍,推力就是物重的几分之一),因l>h,故F(2024 拱墅区一模)小乐用如图所示的两种方式竖直匀速提升某物体,且都使物体上升了2m。已知物体重200N,滑轮重40N,提升时的拉力分别为F甲和F乙。若不计绳重和摩擦,则在提升过程中(  )
A.F甲=240N
B.F甲做的功为240J
C.F乙向上移动距离为4m
D.F乙所做的功为440J
【解答】解:A、甲图n=2,F甲(G+G动)(200N+40N)=120N,故A错误;
B、根据不计绳重及摩擦,拉力做功W=(G+G动)h=(200N+40N)×2m=480J,故B错误;
C、乙动力作用在轴心,属于费力杠杆,可以省距离,拉力移动的距离是物体高度的一半,即1m,故C错误;
D、根据不计绳重及摩擦,拉力做功W=Gh+G动h动=200N×2m+40N×1m=440J,故D正确。
故选:D。
(2024 余姚市模拟)甲、乙两铁块通过滑轮组用细绳连接,吸附在竖直放置且足够长的固定磁性平板两侧,m甲=1.8kg、m乙=2kg,如图所示。甲以0.2m/s的速度竖直向下做匀速直线运动,磁性平板对甲的摩擦力大小为4N,对乙的摩擦力大小为2N(细绳足够长且始终处于竖直拉伸状态,不计绳重和绳与滑轮的摩擦,磁性平板对其他器材无磁力作用)。下列说法不正确的是(  )
A.动滑轮质量为0.6kg
B.甲所受拉力为22N
C.乙所受拉力的功率为2.2W
D.3s时间内甲、乙克服摩擦力做的功不相等
【解答】解:对甲、乙两物体进行受力分析,如下图所示:
AB.甲受到的重力为:G甲=m甲g=1.8kg×10N/kg=18N,
乙受到的重力为:G乙=m乙g=2kg×10N/kg=20N,
因为甲、乙都做匀速直线运动,
则有:G甲=f甲+F甲,G乙+f乙=F乙,
则:F甲=G甲﹣f甲=18N﹣4N=14N,故B错误;
则:F乙=G乙+f乙=20N+2N=22N,
而对于动滑轮有:2F甲=G动+F乙,则:G动=2F甲﹣F乙=2×14N﹣22N=6N,
由G=mg可知,动滑轮的质量为:m动0.6kg,故A正确;
C.由v甲=2v乙可知,乙运动的速度为:v乙v甲0.2m/s=0.1m/s,
由PFv可知,乙所受拉力的功率为:P乙=F乙v乙=22N×0.1m/s=2.2W,故C正确;
D.由v可知,甲、乙两物体在3s内运动的路程分别为:
s甲=v甲t=0.2m/s×3s=0.6m,
s乙=v乙t=0.1m/s×3s=0.3m,
由W=fs可知,3s时间内甲、乙克服摩擦力做的功分别为:
W甲=f甲s甲=4N×0.6m=2.4J,
W乙=f乙s乙=2N×0.3m=0.6J,
所以3s时间内甲、乙克服摩擦力做的功不相等,故D正确。
故选:B。
(2024 江北区模拟)如图所示,F1=8N,F2=6N,此时物体A相对于地面静山,物体B以0.1m/s的速度在物体A表面向左做匀速直线运动(不计弹簧测力计、滑轮和绳子的自重及滑轮和绳子之间的摩擦)。
(1)弹簧测力计读数为 N。
(2)物体A和地面之间的摩擦力 N。
(3)如果增大F2,物体A是否有可能向左运动?请说明理由 。
【解答】解:(1)不计弹簧测力计、滑轮和绳子的自重及滑轮和绳子之间的摩擦,由力的平衡条件可得,弹簧测力计的示数F=3F2=3×6N=18N;
(2)由图知,水平使用滑轮组,n=2,fB=2F2=2×6N=12N,根据B向左做匀速直线运动可知物体A对B的摩擦力的方向向右,根据力的作用是相互的可知物体B对物体A的摩擦力向左,大小为12N;
物体A做匀速直线运动,受到的合力为0,因此物体A和地面之间的摩擦力:F4=F3﹣F1=12N﹣8N=4N;
(3)如果增大F2,B将做加速运动,B对A的压力和接触面的粗糙程度不变,B与A之间的摩擦力不变,A受力不变,同理可知,A受到地面的摩擦力也不变,即A的受力情况不变,还是处于静止状态。
故答案为:(1)18; (2)4; (3)不可能,AB间,以及A与地面间摩擦力不变,A仍旧静止。
考点三 机械效率
一、有用功、额外功和总功
1.有用功、额外功和总功
(1)有用功:在上面的实验中,无论是否使用滑轮,钩码都被提升了,这部分功是必须要做的,叫做有用功,用W有表示。若重物的重力为G,提升的高度为h,则W有=Gh。
(2)额外功:若用滑轮组提升钩码,我们还不得不克服动滑轮本身所受的重力以及摩擦力等因素而多做一些功,这部分功叫做额外功,用表示W额。额外功是对人们没有用但不得不做的功。
(3)总功:有用功与额外功之和是总共做的功,叫做总功,用W总表示。总功、有用功和额外功之间的关系为W总=W有+W额。
(4)总功、有用功、额外功的单位都是焦(J)。
2.三种简单机械的有用功、额外功和总功
种类 杠杆 滑轮组 斜面
图示
有用功 W有=Gh W有=Gh W有=Gh
额外功 若不计摩擦:W额=G杆·h杆 若不计绳重及摩擦:W额=G动h W额=fl
总功 W总=Fs W总=Fs W总=Fl
三者关系 W总=W有+W额
二、机械效率
1.使用机械时额外功不可避免
使用机械做功时,额外功是不可避免的。由于额外功是我们不需要的,它白白浪费能量,因此使用不同机械来对物体做功时,人们总是希望额外功越少越好,或者说有用功在总功中所占的比例越大越好。有用功占总功的比例反映了机械的一项性能,在物理学中用机械效率来表示这一性能。
2.机械效率
定义 物理学中,将有用功跟总功的比值叫做机械效率,用η表示
公式 (机械效率是一个比值,它没有单位,通常用百分数表示)
物理意义 机械效率越高,做的有用功占总功的比例就越大
可变性 机械效率不是固定不变的,机械效率反映的是机械在一次做功过程中有用功跟总功的比值,同一机械在不同的做功过程中,有用功不同,机械效率也会不同
特点 因为使用机械时,不可避免地要做额外功,故任何机械的机械效率都小于1,只有在理想情况下机械效率才为1
注意 机械效率的高低与是否省力、滑轮组绳子的绕法、物体被提升的高度及速度等无关
3.功、功率、机械效率的比较
物理量 意义 定义 符号 公式 单位 说明
功 做功,即能量的转化 力与物体在力的方向上移动距离的乘积 W W=Fs J (1)功率大小由功和时间共同决定,单独强调任何一方面都是错误的。 (2)功率和机械效率是两个不同的物理量,它们之间没有直接关系
功率 表示物体做功的快慢 功与做功时间之比 P W
机械效率 反映机械做功性能的好坏 有用功与总功之比 η 无
4.机械效率的计算
机械效率的表达式为,三种简单机械的机械效率总结如下:
装置图 计算公式
杠杆
滑轮组 竖直提升物体 (1)已知拉力、物重及绳子段数时: (2)不计绳重及摩擦时:
水平匀速拉动物体 η==(f为物体在地面上的摩擦力)
斜面
5.影响滑轮组机械效率的主要因素与改进措施
影响因素 分析 改进措施(提高效率)
被提升物体的重力 同一滑轮组,被提升物体的重力越大,做的有用功越多,机械效率越大 在机械承受的范围内,尽可能增加被提升物体的重力
动滑轮的自重 有用功不变时,减小提升动滑轮时做的额外功,可提高机械效率 改进滑轮结构,减轻滑轮自重
滑轮组自身部件的摩擦 机械自身部件的摩擦力越大,机械效率越低 对机械进行保养,保持良好的润滑,减小摩擦
功率和机械效率是两个不同的概念,功率表示物体做功的快慢,即单位时间内所做的功;机械效率表示机械做功的效率,即所做的总功中有多大比例的功是有用的。它们之间的物理意义不同,也没有直接联系,功率大的机械,机械效率不一定大;机械效率高的机械,功率也不一定大。
(2024 舟山模拟)如图所示,滑轮组悬挂在水平钢架上,某工人站在水平地面上,竖直向下拉动绳子自由端,5s内使物体A匀速上升1.5m,提升过程中拉力F的功率为180W。已知物体A重540N,该工人重700N。不计绳重和摩擦,下列关于该过程的说法正确的是(  )
A.绳子自由端移动的速度为0.3m/s
B.动滑轮重160N
C.该工人对地面的压力为400N
D.工人利用该滑轮组提升物体的最大机械效率为90%
【解答】解:A、由图可知n=2,绳子自由端移动的距离:s=nh=2×1.5m=3m,
绳子自由端移动的速度:v0.6m/s,故A错误;
B、由PFv可知,绳子自由端的拉力:F300N,
因为不计绳重和摩擦时F(G+G动),所以动滑轮的重力:G动=nF﹣G=2×300N﹣540N=60N,故B错误;
C、此时工人受到竖直向下的重力、竖直向上的拉力和支持力,由力的平衡条件可知,工人受到的支持力:F支=G人﹣F=700N﹣300N=400N,
工人对地面的压力与工人受到的支持力是一对相互作用力,因此工人对地面的压力:F压=F支=400N,故C正确;
D、人通过定滑轮向下拉绳子时的最大拉力等于人自身的重力,即绳子自由端的最大拉力:F最大=G人=700N,
因为不计绳重和摩擦时F(G+G动),所以此时能提升的最大物重:G最大=nF最大﹣G动=2×700N﹣60N=1340N,
滑轮组的最大机械效率:η最大100%≈95.7%,故D错误。
故选:C。
(2024 杭州模拟)如图甲所示,小金到滑雪场进行滑雪圈滑雪运动,小金的质量为M。滑雪圈如图乙所示,其质量为m,滑雪场是一个高H,长L的斜坡。
(1)当小金从滑道顶端一直滑到水平终点,在斜坡上的时受到的摩擦力为f1,在水平轨道时受到的摩擦力为f2,由此可知f1 f2(填“大于”、“小于”或“等于”)。
(2)小金坐在滑雪圈里被电动机从斜面底部拉到了顶端,已知电动机的拉力F,上坡过程中的机械效率是 。(用题目中的已知量表示)
【解答】解:(1)当小金在斜坡上滑行时对斜坡的压力小于其总重力,在水平轨道对水平轨道的压力等于其总重力,在接触面粗糙程度一定时,压力越大,摩擦力越大,由此可知在斜坡上的时受到的摩擦力为f1小于在水平轨道时受到的摩擦力为f2,
(2)W有用=G总h=(M+m)g×H,
W总=Fs=FL,
η。
故答案为:(1)小于;(2)。
(2024 宁波模拟)如图甲是建筑工地上的“塔吊”示意图,其配重箱A重4000kg,起重臂上有一个可以沿水平方向左右移动的滑车B,图乙为滑车B及滑轮组中钢绳的穿绳示意图,滑车B内装的电机可卷动钢绳提升重物C。现用该装置吊起重8×103N的物体C,若不计起重臂、滑车、钢绳、动滑轮重及摩擦,g取10N/kg,请完成以下问题。
(1)滑车B中定滑轮的作用是 。
(2)若配重箱A到支点O的距离为5m,则滑车B可向右移动的最远距离是多少?
(3)若电机在25s内将物体C竖直向上匀速吊起10m,则该电机克服物体C重力做功的功率为多少?若此时电机工作的实际功率为5000W,则该电机的机械效率为多少?
【解答】解:(1)滑车B中定滑轮的作用:改变拉力方向,但不省力;
(2)配重箱的重力相当于动力,即F1=G=mg=4000kg×10N/kg=4×104N,重物的重力相当于阻力F2=G′=8×103N,根据杠杆平衡条件可知:F1L1=F2L2,滑车B可向右移动的最远距离为:L225m;
(4)该电机克服物体C重力做功:W=G′h=8×103N×10m=8×104J;
该电机克服物体C重力做功的功率为:P3200W;
电机所做的功为W电机=Pt=5000W×25s=1.25×105J;
该电机的机械效率为η64%。
故答案为:(1)改变拉力方向;(2)滑车B可向右移动的最远距离是25m;(4)电机克服物体C重力做功的功率为3200W;电机的机械效率为64%。
题型一 杠杆
考向01 杠杆的五要素分析
(2023 衢江区二模)如图中的皮划艇运动员一手支撑住桨柄的末端,另一手用力划桨,此时的船桨可看作是一个杠杆。下图中的船桨模型中最合理的是(  )
A.B. C. D.
【解答】解:由题意可知,撑住桨柄的末端为支点,下面的手给浆向后的力,这时水给浆一个向前的力,所以船前进。
故选:B。
如图是实验常用的试管夹,O是支点,使用时用力向下按图示按压处可打开试管夹。下列能正确表示使用该试管夹时的杠杆示意图是(  )
A. B. C. D.
【解答】解:据图可知,当用力按压试管夹的短柄B点时,会绕着中间的固定点O转动,即O为支点;所按压点B为动力的作用点,F1方向向下;而短柄受到弹簧向下的阻力F2,A点就是阻力F2的作用点,故D正确、ABC错误。
故选:D。
(2023 嵊州市模拟)某实验小组用飞镖的镖盘做了一个圆心固定且可以绕圆心O转动的圆盘,圆盘的直径上AB两端各有1个平衡螺母,A、B、C是在镖盘以O为圆心的同一个圆上的三个点,BD垂直于AB。接下来用这个装置探究杠杆力臂的具体概念。
①调节圆盘两端的平衡螺母让A、B在水平位置平衡。
②在圆盘A点挂两个钩码(总重1牛),B点挂两个钩码,杠杆平衡,再将B点的两个钩码分别挂在C点和D点,结果挂在D点时杠杆能保持平衡,挂在C点时杠杆不能平衡。
(1)步骤①之前,若A比B低,为使AB在水平位置平衡,平衡螺母应向 调节。(选填“左”或“右”)
(2)通过实验发现影响杠杆平衡的是支点到 的距离,科学上将这个距离定义为力臂。(选填“力的作用点”或“力的作用线”)
(3)取下右侧两个钩码后,若小明想用作用在C点的拉力使杠杆再次平衡,则拉力的大小至少为 牛。
【解答】解:(1)若杠杆的A比B低,即左端向下倾斜,说明这一侧的自重与力臂的乘积大,应将平衡螺母向右调节,使杠杆在水平位置平衡;
(2)力臂是支点到力的作用线的距离;
(3)取下右侧两个钩码后,若小明想用作用在C点的拉力使杠杆再次平衡,根据杠杆的平衡条件,FALOA=FCLOC得拉力的大小至少为:
FCFA=1×1N=1N。
故答案为:(1)右;(2)力的作用线;(3)1。
考向02 杠杆的静态平衡
(2024 黄岩区二模)如图所示,现有一张质地均匀的纸(O为重心),如果只用一枚大头针将其固定在墙上,要求使其尽可能保持稳定,受到左右晃动也能回归原位,则大头针的位置是(  )
A.① B.② C.③ D.④
【解答】解:纸张的重心在O点,根据杠杆平衡的条件可知,为使纸张在水平位置平衡,纸张的支点只能在①的位置。
故选:A。
(2024 瓯海区一模)我国古代《墨经》最早记述了秤的杠杆原理(如图所示),此时杠杆处于平衡状态(忽略杆的质量),有关它的说法正确的是(  )
A.杠杆在图示的位置平衡时,“权”的质量小于“重”的质量
B.“权”和“重”增加相同的质量,A端会上扬
C.增大“重”时,应把“权”向B端适当移动
D.若将提纽O向B端移动一些,杆秤的测量范围将变小
【解答】解:A、杠杆在图示的位置平衡时,根据杠杆平衡条件可得“权”ד标”=“重”ד本”,由图可知“标”大于“本”,则“权”的质量小于“重”的质量,故A正确;
B、设增加的质量为Δm,由图可知,杠杆平衡时“标”大于“本”,则Δmד标”>Δmד本”即“权+Δm”ד标”>“重+Δm”ד本”,A端会下沉,故B错误;
C、在“权”不变时,“重”增大,需要“标”增大,即把“权”向A端适当移动,故C错误;
D、将提纽O向B端移动一些,“标”增大,则“权”和“标”的乘积增大,而“本”变小,由杠杆平衡可知“重”增大,即杆秤测量范围增大,故D错误。
故选:A。
(2024 象山县模拟)如图所示,轻质杠杆AB可绕O点自由转动。当杠杆A端的甲物块悬空;B端的乙球浸没在水中时(不碰容器底和壁),杠杆恰好水平平衡,A、B两端的细线均不可伸长且处于张紧状态。已知OA:OB=1:2,甲物块重400N,乙球体积为1×10﹣2m3,g取10N/kg。下列说法中正确的是(  )
A.乙球受到的浮力为10N
B.杠杆B端所受的拉力为100N
C.乙球的重力为300N
D.乙球的密度为2×103kg/m3
【解答】解:A、根据阿基米德原理,乙球浸没在水中受到的浮力:F浮=ρ水gV排=1×103kg/m3×10N/kg×10﹣2m3=100N,故A错误;
B、杠杆B端所受的拉力为F′,杠杆恰好水平平衡。根据杠杆的平衡条件:G甲×OA=F′×OB;即F′200N,故B错误;
C、杠杆B端所受的拉力为F′,根据物体间力的作用是相互的,则乙球受到杠杆B端的拉力大小也为F′,乙球浸没在水中时处于平衡状态,G乙=F′+F浮=200N+100N=300N,故C正确;
D、由C我们知道G乙=300N,根据密度的公式:ρ乙3×103kg/m3,故D错误。
故选:C。
考向03 杠杆的动态平衡
(2024 象山县模拟)如图,某同学进行实验探究把拉杆箱可以看作一个支点在O点的杠杆。游客在拉杆把手处A点施加一个沿虚线方向的力F,使拉杆箱处于静止状态。其他条件不变时,若仅缩短拉杆的长度,力F将 ;若箱内物品下滑,重心位置由B变至B',力F将 ;若把箱内较重物品远离O点摆放,这样使拉杆箱在图示位置静止的动力将 。(均填“增大”“减小”或“不变”)
【解答】解:如图所示,其他条件不变时,仅缩短拉杆的长度,动力臂变小,在阻力、阻力臂不变时,根据杠杆平衡条件可知,拉力F增大;箱内物体下滑,重心位置由B变至B'时,阻力不变,阻力臂变小,动力臂不变,根据杠杆平衡条件可知,拉力F减小;常把箱内较重物品远离O点摆放,这样阻力臂增大,阻力不变,动力臂不变,根据杠杆平衡条件可以判断,动力将增大。
故答案为:增大;减小;增大。
(2024 上城区校级一模)如图所示,OA是起重机的吊臂,可绕O点转动。在距O点6m远的B处吊有重3000N的物体。为保证吊臂在水平位置平衡,则绕过定滑轮斜向下的拉力F为 N.将吊臂缓慢拉起,使用A点升高2m的过程中,拉力变 。(绳重、吊臂重、摩擦均不计)
【解答】解:(1)杠杆阻力为物重G=3000N,阻力臂为OB=6m,由图可知绳子绕过定滑轮只改变了力的方向,因此动力臂为5m。根据杠杆平衡条件F1l1=F2l2即F×5m=3000N×6m。所以F=3600N。
(2)在动态提升的过程中阻力(物重)不变,阻力臂变小,动力臂同时变大。由杠杆平衡条件可知拉力变小。
故答案为:3600、变小。
(2024 西湖区校级二模)小科家里进行装修,装修的工人从建材市场运来1张质量均匀的矩形实木板和一桶墙面漆,木板的规格是1.2m×2m×0.015m,密度为0.7×103kg/m3,墙面漆的质量为30kg。
(1)木板的重力为 N。
(2)工人用一个竖直向上的力F将木板的一端匀速抬起到某个位置(如图甲所示),在抬起过程中,力F的变化趋势是 。
A.变大 B.变小 C.先变大后变小 D.不变
(3)小科和工人身形相近,他们一起用一根轻杆将墙面漆抬起,工人抬起轻杆的A端,小科抬着轻杆的B端,两人施力的方向都为竖直向上,且保持轻杆水平(如图乙所示),其中,AB为1.2m,桶悬挂点C离A端为0.4m,则小科对木板的力F2为多少?
【解答】解:(1)木板的重力为G=mg=ρgV=0.7×103kg/m3×10N/kg×1.2m×2m×0.015m=252N;
(2)如图所示:

如图,杠杆在A位置,LOA=2LOC,
根据杠杆平衡可知:FLOA=GLOC,则FG;
杠杆在B位置,OA′为动力臂,OC′为阻力臂,阻力不变为G,
由ΔOC′D∽ΔOA′B得:,
根据杠杆平衡条件可知F′LOA′=GLOC′,则F′G。
由此可知当杠杆从A位置匀速提到B位置的过程中,力F的大小不变,故选D。
(3)墙面漆的重力为:G'=m'g=30kg×10N/kg=300N;
以A为支点,根据杠杆的平衡条件可知:G'LG=F2L2,则F2100N;
故答案为:(1)252;(2)D;(3)100N。
考向04 杠杆的最小力分析
(2024 鹿城区二模)籼米是米糕、粉干等食品的原料,温州种植籼稻已有4千多年历史。在环境温度不低于12℃时,将籼稻种子播撒到适宜的土壤中培育成幼苗,再移植到稻田中,在20℃~35℃间生长较快,4个月后可收割。回答下面小题。在古代,籼稻收割后利用前方装有石块的简易杠杆敲击谷粒去壳。下列方案中脚踩踏时最省力的是(  )
A. B.
C. D.
【解答】解:A、用脚踏碓舂米过程中,动力臂小于阻力臂,属于费力杠杆,故A错误;
BD、用脚踏碓舂米过程中,动力臂等于阻力臂,属于等臂杠杆,故BD错误;
C、用脚踏碓舂米过程中,动力臂大于阻力臂,属于省力杠杆,故C正确。
故选:C。
(2023 苍南县模拟)为了拔除外来入侵物种“一枝黄花”,农业专家自制轻质拔草器,如图所示,将拔草器左下端的叉子插入植株根部,用手对拔草器施力,可将植株连根拔起。若拔同一植株,手施力最小的是(  )
A. B.
C. D.
【解答】解:如图所示,拔草器相当于一个杠杆,拔草时支点在O点,若拔同一植株,则草对拔草器的阻力一定,由杠杆平衡条件F1L1=F2L2可知,阻力臂越小,动力臂越大,动力越小。A、B、C图相比,动力臂相等,C图中的阻力臂更小,所以C图动力更小;C图与D图相比,阻力臂相等,D图的动力臂更小,所以C图动力更小,符合要求的只有C图。
故选:C。
(2024 富阳区一模)如图甲是小金老师坐在钓箱上垂钓时的情景。该钓箱长40cm、宽25cm、高30cm,空箱时,整箱质量仅5kg,轻便易携,还可以安装遮阳伞等配件。(g=10N/kg)
请你计算:
(1)小金把空箱向上搬100cm后放到车上,则向上搬100cm的过程中小金对钓箱做了多少功?
(2)如图乙所示放置在水平地面,对地面的压强为多少?
(3)空箱时,钓箱可以近似看作是一个质量分布均匀的长方体,如图乙所示,试把左侧底边稍微抬离地面需要施加的最小力是多少牛?
【解答】解:(1)空钓箱的重力为:G=mg=5kg×10N/kg=50N;
向上搬h=100cm=1m的过程中,对钓箱做的功为:W=Gh=50N×1m=50J;
(2)压力F=G=50N;
受力面积S=40cm×25cm=1000cm2=0.1m2;
对地面的压强
p500Pa;
(3)钓箱可以近似看作是一个质量分布均匀的长方体,把左侧底边稍微抬离地面时,要使施加的力最小,则动力臂应该是最大的,如图所示:
当AB为动力臂时,此时的动力臂最大;L1=AB50cm;
钓箱重力的力臂为:L240cm=20cm;
根据杠杆的平衡条件可知,所需的最小动力为:F20N。
答:(1)小金把空箱向上搬100cm后放到车上,则向上搬100cm的过程中小金对钓箱做了50J功;
(2)如图乙所示放置在水平地面,对地面的压强为500Pa;
(3)把左侧底边稍微抬离地面需要施加的最小力是20N。
题型二 滑轮的相关量计算
(2023 温州模拟)如图所示,用10N的力F沿水平方向拉滑轮,可使物体A以0.2m/s的速度在水平面上匀速运动。弹簧测力计的示数恒为2N(不计滑轮、测力计、绳子的重力,滑轮的转轴光滑)。下列说法错误的是(  )
A.物体A受到地面水平向右3N的摩擦力
B.物体A受到B的摩擦力是2N
C.滑轮移动的速度是0.1m/s
D.拉力F做功功率为4W
【解答】解:
AB、不计滑轮的摩擦和重力,以动滑轮为研究对象,则两段绳子向右的拉力与向左的拉力平衡,所以2F拉=F,则A物体对滑轮的拉力F拉F10N=5N;力的作用是相互的,所以滑轮对A的拉力也为5N;
弹簧测力计的示数恒为2N,因拉滑轮时,物体B始终处于静止状态,则测力计对B向右的拉力与A对B向左的摩擦力平衡,所以fA对B=F示=2N;力的作用是相互的,所以,物体B对A的摩擦力为2N,方向向右,故B正确;
物体A向左匀速运动,同时地面对物体A还有向右的摩擦力,由力的平衡条件可得:F拉=fB对A+f地,
所以物体A受到地面的摩擦力:f地=F拉﹣fB对A=5N﹣2N=3N,方向水平向右,故A正确;
C、因拉力F作用在动滑轮的轴上,费力但省一半的距离,所以拉力端的移动速度(滑轮移动的速度)等于物体A移动速度的,则滑轮移动的速度vvA0.2m/s=0.1m/s,故C正确;
D、拉力F做功功率:PFv=10N×0.1m/s=1W,故D错误。
故选:D。
(2023 富阳区校级模拟)小柯用图中装置提升重为400牛的物体,不计摩擦和滑轮自重,下列说法正确的是(  )
A.两个滑轮均为定滑轮
B.人将绳子拉过1米,物体也上升1米
C.物体匀速上升时,人对绳子的拉力为200牛
D.使用该装置不能省力,但能改变力的方向
【解答】解:
A、由图可知,该装置由一个动滑轮和一个定滑轮组成,故A错误;
B、使用动滑轮时,物体上升1m,则绳子的自由端会通过2m,故B错误;
C、不计摩擦和滑轮自重,使用动滑轮能省一半的力,物体的重力为400N,则拉力为200N,故C正确;
D、使用动滑轮能省力,使用定滑轮能改变力的方向,故D错误。
故选:C。
如图甲所示的装置,A是重15N的空吊篮,绳子B和C能承受的最大拉力分别为100N和50N。质量为50kg的小张同学将A提升到高处,施加的拉力F随时间t变化关系如图乙所示,A上升的速度v随时间变化关系如图丙所示。忽略绳重及摩擦。
求:(1)动滑轮的重力;
(2)1~2s内拉力F的功率;
(3)此装置最多能匀速运载多重的货物?
【解答】解:(1)由图丙可知,在1~2s内(第2s内)A被匀速提升,由图乙可知拉力F=10N,
由图知,n=2,忽略绳重及摩擦,拉力F(GA+G动),则动滑轮重力:
G动=nF﹣GA=2×10N﹣15N=5N;
(2)由图丙可知,第2s内A上升的速度vA=2m/s,拉力端移动速度v=2vA=2×2m/s=4m/s,
第2s内拉力F的功率:
PFv=10N×4m/s=40W;
(3)忽略绳重及摩擦,C处绳子拉力:FC(FB+G动)(FB+5N),
则当C处最大拉力为50N时,B处拉力为95N,小于绳子B能承受的最大拉力100N;
当B处最大拉力为100N时,C处拉力为52.5N,大于绳子C能承受的最大拉力50N;
所以要以C处最大拉力为准,此时B处的拉力:
FB=GA+G货物=95N,
此装置最多能匀速运载货物的重力:
G货物=FB﹣GA=95N﹣15N=80N。
答:(1)动滑轮的重力为5N。
(2)1~2s内拉力F的功率为40W。
(3)此装置最多能匀速运载80N的货物。
题型三 机械效率
考向01 机械效率的计算
(2023 杭州模拟)如图所示,拉力F为5N,物体A以0.1m/s的速度在物体B表面向左做匀速直线运动(B表面足够长);物体B静止在地面上,受到地面水平向左4N的摩擦力,弹簧测力计示数为12N。下列说法正确的是(  )
A.拉力F的功率为1.0W
B.物体A受到的摩擦力为16N
C.滑轮组的机械效率为75%
D.拉力F增大到10N时,物体B开始向左运动
【解答】解:
A、由图知,水平使用滑轮组,n=2,拉力端移动速度:v=2v物=2×0.1m/s=0.2m/s,则拉力做功的功率:PFv=5N×0.2m/s=1.0W,故A正确;
B、物体B静止在地面上,处于平衡状态;则水平方向上物体B受到向右的弹簧拉力等于地面对它向左的摩擦力与物体A对它向左的摩擦力之和,即fAB+4N=12N,则fAB=8N;由于力的作用是相互的,物体A受到的摩擦力为f=fAB=8N,故B错误;
C、由图知,水平使用滑轮组,滑轮组的机械效率:η100%=80%,故C错误;
D、若拉力F增大到10N时,A在运动过程中,A对B的压力不变、接触面的粗糙程度不变,则A和B之间的摩擦力不变,所以物体B的运动状态不会改变,即物体B仍然静止,不会向左运动,故D错误。
故选:A。
(2023 鹿城区模拟)如图甲所示,用一个动滑轮匀速提升重为600N的物体,在卷扬机拉力F的作用下,绳子自由端竖直移动的距离随时间变化的关系如图乙所示。已知动滑轮受到的重力为20N,不计绳重和轮与轴间的摩擦。下列说法正确的是(  )
A.以动滑轮为参照物,物体是向上运动的
B.物体上升的速度是20m/s
C.卷扬机拉力F的功率是62W
D.机械效率为90.67%
【解答】解:A、在图甲中,物体相对于动滑轮的位置保持不变,以动滑轮为参照物,物体是静止的,故A错误;
B、由图象可知,提升物体时,绳子自由端移动的距离s=40cm=0.4m,用时t=2s,速度为:v20cm/s=0.2m/s,
则物体上升的速度:v物v0.2m/s=0.1m/s,故B错误;
C、不计绳重和轮与轴间的摩擦,卷扬机拉力F(G物+G动)(600N+20N)=310N,
则卷扬机拉力F的功率:PFv=310N×0.2m/s=62W,故C正确;
D、因为不计绳重和摩擦,所以滑轮组的机械效率:
η100%≈96.7%,故D错误。
故选:C。
(2023 拱墅区二模)如图为一举重杠铃。
(1)小明同学在一次体育课上举杠铃的过程中,他觉得自己右手力量要大于左手的力量,如果在举重过程中想让右手再多承担一些压力,则他的右手应该向 (选填“右端”或“左端”)移动。
(2)在一次举重过程中,小明同学双手将杠铃举过头顶,在他举着杠铃站立时左右两手间距离为1m,左手距离左侧杠铃0.4m,右手距离右侧杠铃0.6m,若此时小明左手竖直向上举的力为350N,则小明同学所举杠铃总质量为多少千克?
(3)若小明同学体重50kg,某次举起的杠铃总重只有30kg,在由蹲下到起立的举重过程中,杠铃高度升高了1.8米,而自身重心升高1米,则在该次举重过程中的机械效率是多少?
【解答】解:(1)如图所示,杠杆的支点为O,动力为F,动力臂为OD,阻力为G,阻力臂为OC,
根据杠杆平衡条件可知,在动力和动力臂一定的情况下,阻力臂越短,阻力越大,因此,则他的右手应该向左端移动。
(2)如图,C为杠铃重心,OD=1m,AD=0.4m,OB=0.6m,
则AB=2m,AC=CB=1m,
则OC=CB﹣OB=1m﹣0.6m=0.4m,
设杠铃的重力为G,根据杠杆平衡条件可得,F×OD=G×OC,即:350N×1m=G×0.4m,
解得G=875N,
杠铃的质量m87.5kg;
(3)将杠铃举高做的功为有用功:
W有用=G杠铃h=m杠铃gh=30kg×10N/kg×1.8m=540J,
小明同学克服自身重力所做的功:
W=G小明h=m小明gh=50kg×10N/kg×1m=500J,
在该次举重过程中的总功:
W总=W有用+W=540J+500J=1040J,
在该次举重过程中的机械效率:
η100%100%≈51.9%。
故答案为:(1)左端;
(2)小明同学所举杠铃总质量为87.5kg;
(3)在该次举重过程中的机械效率是51.9%。
考向02 机械效率的实验探究
(2024 文成县二模)小文为探究滑轮组的机械效率设计了如图甲所示的创新实验装置,整个装置固定在带有刻度的支撑背景板上,带绕线轮的电机可通过转动拉起重物,压力传感器可测出绳子自由端拉力。
不同物重对应的滑轮组机械效率实验数据
组别 绳子受力段数 G物/N F/N W总/J n
1 n=3 1.96 0.80 0.120 ▲
2 3.92 1.51 0.227 86.5%
3 5.88 2.20 0.330 89.1%
4 n=4 1.96 0.63 0.126 77.8%
5 3.92 1.22 0.244 80.3%
6 5.88 1.75 0.350 84.0%
实验步骤:
①在动滑轮下方挂上钩码,记录重力G物,标记物体的位置。
②闭合电机开关,匀速提升重物0.05m,断开开关,记录拉力F和绳子自由端移动的距离s。
③分别改变G物和滑轮组绕线方式(使绳子受力段数n不同),重复以上操作,并记录数据,结果如表格所示。
(1)请将表格中的数据补充完整 。(保留到0.1%)
(2)根据表中数据可得出的结论是 。
(3)与课本装置(如图乙)相比,该创新实验装置的优点是: 。(写出两点)
【解答】解:(1)此次滑轮组机械效率η81.7%;
(2)由1、2、3或4、5、6可知,同一滑轮组,提升重物越重,机械效率越高;
由1、4或2、5或3、6可知,提升物重相同时,绳子受力段数越少,机械效率越高;
综合得出:滑轮组机械效率与子受力段数和提升物体重力有关,绳子受力段数越少,提升物重越重,滑轮组机械效率越大;
(3)板上有刻度,方便直接读出物体升高高度;电机可匀速提升物体;力传感器可精确测出拉力大小且读数方便。
故答案为:(1)81.7%;(2)滑轮组机械效率与绳子受力段数和提升物体重力有关,绳子受力段数越少,提升物重越重,滑轮组机械效率越大;(3)板上有刻度,方便直接读出物体升高高度;电机可匀速提升物体;力传感器可精确测出拉力大小且读数方便。
(2023 杭州模拟)某实验小组测一滑轮组机械效率的数据如表:
实验次数 动滑轮重G动/N 钩码重G物/N 钩码上升高度h物/m 动力F动/N 动力作用点移动距离s动/m 滑轮组的机械效率η
1 0.53 1 0.1 0.7 0.3 47.6%
2 2 0.1 1.1 0.3 60.6%
3 4 0.1 2 0.3
(1)请在图中画出本实验的绕绳方法,并在表格最后一栏写出正确的机械效率。
(2)用同一滑轮组提升不同重物至同一高度,提升的物重增加时,克服摩擦和绳重所做的额外功变 ,滑轮组的机械效率变大。
(3)多次改变提升的物重测量滑轮组的机械效率,目的是为了 (填字母)。
A.减小摩擦
B.多次测量取平均值减小误差
C.获得多组数据归纳出物理规律
【解答】解:
(1)根据绳子自由端移动的距离与物体上升高度的关系s=nh,结合表中数据,则绳子的有效段数:n=3,
根据“奇动偶定”的原则,则绳子应先系在动滑轮上面的挂钩上,然后依次绕线,如下图所示:
第3次实验的机械效率为:
η366.7%;
(2)提升的物重增加时,绳子对滑轮的压力会增大,则绳子与滑轮间的摩擦也会增大,而绳子自由端移动的距离不变,所以可知克服摩擦和绳重所做的额外功变大;
由表中数据可知,提升的物重增加时,滑轮组的机械效率变大;
(3)多次改变提升的物重测量滑轮组的机械效率,是为了进行多次测量,获得多组数据,总结实验规律,使实验结论具有普遍性,故选C。
故答案为:(1)见上图;66.7%;(2)大;(3)C。
基础巩固
(2024 余姚市模拟)长期低头会对颈部肌肉造成损伤,图中A点为头部重力作用点,B点为颈部肌肉受力点,下列能正确表示人低头时杠杆示意图是(  )
A.B.
C. D.
【解答】解:由题意知,头部重力方向是竖直向下,颈部肌肉拉力的方向应垂直于OB向下,如图所示:
故选:B。
(2024 上城区校级一模)如图所示,分别使用滑轮或滑轮组匀速提升同一物体,滑轮质量均相等且G动小于G物,在相同的时间内物体被提升的高度也相等,不计绳重和摩擦,下列说法不正确的是(  )
A.三个装置所做的有用功为W甲=W乙=W丙
B.绳子自由端移动的速度关系为v甲<v乙<v丙
C.绳子自由端的拉力大小为F甲>F乙=F丙
D.三个装置的机械效率为η甲>η乙=η丙
【解答】解:A、克服物体重力做的功为有用功,甲、乙、丙三种装置做的有用功都为W有用=G物h,故A正确;
B、从图中可知,甲为定滑轮(n=1),乙为动滑轮(n=2),丙为滑轮组(n=3),在相同的时间内物体被提升的高度均为h,则绳子自由端移动的距离s甲=h,s乙=2h,s丙=3h,因此s甲<s乙<s丙,运动时间相同,根据v可知绳子自由端移动的速度关系为v甲<v乙<v丙,故B正确;
C、不计绳重和摩擦,F甲=G物,F乙(G物+G动),F丙(G物+G动),滑轮质量均相等且G动小于G物,故F甲>F乙>F丙,故C错误;
D、不计绳重和摩擦,甲的有用功与总功相等,机械效率为100%,乙和丙克服动滑轮的重力做的功为额外功,W额=G动h,乙、丙两种装置的机械效率η,则η乙=η丙,故D正确。
故选:C。
(2024 浙江模拟)在实践活动基地,同学们体验使用劳动器具。如图所示,分别用甲、乙两种形式的滑轮组把重为600N的物体匀速向上提起相同的高度。已知每个滑轮重为20N,忽略绳子的重力及滑轮与绳子的摩擦。下列判断正确的是(  )
A.甲方式中车对绳子的拉力为620N
B.乙方式中人对绳子的拉力为300N
C.使用甲、乙两种方式都不能省功
D.甲、乙两种方式的机械效率相等
【解答】解:A、因为图甲中两个滑轮都是定滑轮,忽略绳子的重力及滑轮与绳子的摩擦,绳子的拉力应该为600N。故A错。
B、乙方式人对绳子的拉力F(G+G动)(600N+20N)=310N;故B错误。
C、根据功的原理,使用任何机械都不省功,所以C正确。
D、甲方式两个滑轮都是定滑轮,不计绳重和摩擦,不用做额外功,机械效率100%;乙方式有一个动滑轮,需要做额外功,机械效率小于100%,故D错误。
故选:C。
(2024 温州模拟)如图所示为我国物理学著作《远西奇器图说》所记载的一种机械装置。若小球A的质量为mA,小球B的质量为mB,当两小球匀速移动时,A球竖直上升的高度为hA,B球下降的高度为hB,不考虑摩擦和绳重,则下列有关物理量的比较中正确的是(  )
A.mA>mB、hA<hB B.mA>mB、hA>hB
C.mA<mB、hA<hB D.mA<mB、hA>hB
【解答】解:不考虑摩擦和绳重,定滑轮即不省力又不省距离,则绳子对A的拉力等于B的重力,当B下降时,B下降的高度hB等于A沿斜面上升的距离LA大于A竖直上升的高度hA,根据功的原理可知,重力对B做的功等于绳子的拉力对A做的功,也等于克服A的重力做的功,即mAghA=mBghB,因hA<hB,所以mA>mB,故A正确,BCD错误。
故选:A。
(2024 杭州模拟)如图所示,在水平拉力F的作用下重100N的物体A,沿水平桌面做匀速直线运动,弹簧秤B的示数为10N,则拉力F的大小为(  )N,物体A与水平桌面的摩擦力大小(  )N。
A.200N;10N B.200N;20N C.20N;10N D.20N;20N
【解答】解:如图所示,弹簧测力计B测出了动滑轮上的绳子上的拉力为10N;则物体A受到拉力为10N;又因物体A做匀速直线运动,则物体A与水平桌面的摩擦力与物体A受到拉力是一对平衡力,则摩擦力大小也是10N;
拉力F=2f=2×10N=20N。
故选:C。
(2024 滨江区二模)如图为某学生用所做的升降电梯模型模拟电梯的工作情况,电动机的拉力为F,动滑轮重为5N,在10s内将重20N的轿箱连同内部5N的物品一起匀速升高了1m,忽略绳重和摩擦,下列说法正确的是(  )
A.与电动机相连的绳端移动的速度为0.2m/s
B.与电动机相连的绳端拉力大小为12.5N
C.拉力F做功的功率为1.5W
D.滑轮组的机械效率为83.3%
【解答】解:A、由图可知,n=2,绳子自由端移动的速度为:
v绳=nv物0.2m/s,故A正确;
B、忽略绳重和摩擦,与电动机相连的绳端拉力大小为:
F(G+G箱+G动)(5N+20N+5N)=15N,故B错误;
C、拉力F做功的功率为:
PFv绳=15N×0.2m/s=3W,故C错误;
D、该滑轮组的机械效率为:
η100%≈16.7%,故D错误。
故选:A。
(2024 滨江区一模)如图甲所示装置,小欢用力F向下拉绳子,使物体M在水平地面匀速移动,地面ab、bc粗糙程度不同。物体M重为400N,动滑轮重为5N,ab=2m,bc=3m。物体M从a点到c点过程中,拉力F与M移动距离的关系如图乙所示,不考虑物体大小对运动的影响,忽略绳子重力及滑轮转轴摩擦,对此过程的分析,下列结论正确的是(  )
A.拉力F做的功为840J
B.绳子自由端移动的距离为15m
C.物体从ab段到bc段,滑轮组的机械效率变小
D.拉力F在ab段做的额外功等于在bc段做的额外功
【解答】解:
AB、物体M从a点到c点过程中,通过的距离为2m+3m=5m,绳子的有效段数为2,故绳子自由端移动的距离:s=2h=2×5m=10m;
ab=2m,bc=3m,绳子自由端移动的距离分别为:s1=2×2m=4m,s2=2×3m=6m,由图乙知绳子的拉力分别为60N和100N,拉力做的总功为:W=W1+W2=F1s1+F2s2=60N×4m+100N×6m=840J,故A正确、B错误;
C、使物体M在水平地面匀速移动,根据二力平衡,物体受到的滑动摩擦力等于水平面上绳子的拉力的大小,因绳端拉力100N大于60N,由f=F水平=nF绳﹣G动可知bc段物体受到的滑动摩擦力大,滑轮组的机效率为:η,动滑轮的重力不变,物体从ab段到bc段,滑动摩擦力变大,所以滑轮组的机械效率变大,故C错误;
D、本题中,克服摩擦力做的功为有用功,忽略绳子重力及滑轮转轴摩擦,故克服动滑轮的重力做的功为额外功,ab段和在bc段动滑轮提升的高度不同,根据W=Gh可知,拉力F在ab段做的额外功小于在bc段做的额外功,故D错误。
故选:A。
(2024 吴兴区模拟)扬州市建设的第一期公共自行车站点140个,投放自行车1000辆,市民可通过办理相关手续租赁自行车,享受绿色出行带来的方便、快捷。从自行车的结构和使用来看,下列说法中不正确的是(  )
A.车把上的刹车把手属于省力杠杆
B.下坡时速度越来越大是由于惯性越来越大
C.车座做的扁而平可以减小臀部所受的压强
D.轮胎和脚踏做有凹凸不平的花纹是为了增大摩擦
【解答】解:A、刹车装置在使用过程中,动力臂大于力臂,是省力杠杆,故A说法正确;
B、惯性的大小只与物体的质量有关,速度越来越大,但惯性的大小不变,故B说法错误;
C、车座做的扁而平是通过增大受力面积来减小压强的,故C说法正确;
D、轮胎和脚踏做有凹凸不平的花纹是通过增大接触面的粗糙程度来增大摩擦的,故D说法正确。
故选:B。
(2024 宁波模拟)用如图所示的装置提升重为600N的物体A,动滑轮重为200N。在卷扬机对绳子的拉力F作用下,物体A在8s内竖直匀速上升了1m。在此过程中,不计绳重和摩擦,拉力F的大小为 ,物体A的功率大小为 ,滑轮组的机械效率为 。
【解答】解:由图可知,n=2,不计绳重和摩擦,拉力F的大小为:
F(G+G动)(600N+200N)=400N;
克服物体A的重力做的有用功为:
W有=Gh=600N×1m=600J,
物体A的功率大小为:
P75W;
拉力做的总功为:
W总=Fs=Fnh=400N×2×1m=800J,
则滑轮组的机械效率为:
η100%=75%。
故答案为:400N;75W;75%。
能力提升
(2024 上城区校级二模)如图所示,某人用扁担担起两筐质量为m1,m2的货物,当他的肩处于O点时,扁担水平平衡,已知l1>l2,扁担和筐的重力不计。
(1)在O点时,根据杠杆平衡的条件可知,m1 m2(填“>”,“<”或者“=”)
(2)若将两筐的悬挂点向O点移近相同的距离Δl,则扁担 端向下倾斜。(填“左”,或者“右”)
(3)要使扁担恢复水平平衡,需再往某侧筐中加入货物,其质量为 。
【解答】解:(1)在O点时,扁担水平位置平衡,
由杠杆的平衡条件可得:m1gl1=m2gl2,
由l1>l2可知,m1<m2;
(2)将两筐的悬挂点向O点移近相同的距离Δl时,
左边:m1g(l1﹣Δl)=m1gl1﹣m1gΔl,
右边:m2g(l2﹣Δl)=m2gl2﹣m2gΔl,
因为m1<m2,
所以,m1Δlg<m2Δlg,即m1g(l1﹣Δl)>m2g(l2﹣Δl),
则扁担左端向下倾斜;
(3)因m1g(l1﹣Δl)>m2g(l2﹣Δl),
所以,要使扁担恢复水平平衡,应向右侧筐中加入货物,
由杠杆的平衡条件可得:m1g(l1﹣Δl)=(m2+m)g(l2﹣Δl),且m1gl1=m2gl2,
解得:m。
故答案为:(1)<;(2)左;(3)。
(2024 滨江区二模)T型杠铃是一种健身器材,如图甲,小滨在水平地面将杠铃拉至水平静止,杠铃离开地面后,与水平地面平行,可抽象成图乙模型,杠铃的固定轴为O,手对杠铃的拉力作用在B点,杠铃(包括杆和配重)的重心在A点。已知杠铃的总重为600N,OA长1.6m,OB长1.2m。
(1)图乙中,小滨手对杠铃的拉力F1与杠铃垂直,求F1= N。
(2)图丙中,小滨手对杠铃拉力F2始终与杠铃垂直,且仍作用在B点,他将杠铃从水平位置拉至图丙的过程中,拉力F2 (选填“一直变大”、“一直变小”、“始终不变”、“先变小后变大”)。
【解答】解:(1)杠铃离开地面后,小滨手对杠铃的拉力F1与杠铃垂直,动力臂等于OB长,而阻力臂等于OA长,根据杠杆平衡条件可得F1lB=GlA,代入数据可得F1×1.2m=600N×1.6m,解得F1=800N;
(2)小滨手对杠铃拉力F2始终与杠铃垂直,且仍作用在B点,转动过程中动力臂大小不变,阻力大小不变,阻力臂减小,根据杠杆的平衡条件可知,动力减小,即拉力F2一直变小。
答:(1)800;(2)一直变小。
(2024 杭州二模)如图所示,有一粗细均匀,重为40N,长为4m的长木板AB,置于支架上,支点为O,且AO=1m,长木板的右端用绳子系住,绳子另一端固定在C处,当长木板AB水平时,绳与水平成30°的夹角,且绳子所能承受的最大拉力为60N.一个质量为5kg的体积不计的滑块M在F=10N的水平拉力作用下,从AO之间某处以v=1m/s的速度向B端匀速滑动,求:(g=10N/kg)
(1)滑块匀速运动时所受的摩擦力的大小;
(2)当滑块匀速运动时拉力F做功的功率;
(3)滑块在什么范围内滑动才能使AB保持水平。
【解答】解:(1)滑块匀速运动时处于平衡状态,水平方向的拉力和受到的摩擦力是一对平衡力,
所以根据二力平衡条件可知:f=F=10N;
(2)当滑块匀速运动时拉力F=10N,v=1m/s,拉力F做功的功率为:P=Fv=10N×1m/s=10W;
(3)滑块的重力G=mg=5kg×10N/kg=50N,当M在O点左侧离O点L1米,且绳子的拉力T=0,则
G L1+GOA LOA=GOB LOB,即50N×L1+10N1m=30N3m,
解得:L1=0.8m;
当M在O点右侧离O点L2米时,且绳子的拉力T=60N,则
GOA LOA=G L2+GOB LOB﹣T LOBsin30°,即10N1m=50N×L2+30N3m﹣60N×3m,
解得:L2=1m,
故滑块在O点左侧0.8m到右侧1m范围内滑动才能使AB保持水平。
(2024 温州三模)小科同学设计了如图所示的装置进行实验,利用小量程弹簧秤测金属的密度,其中杠杆OAB支点为O(杠杆OAB质量不计),OA:OB=1:3。他实验的步骤如下:
步骤一:用一细绳将体积为180cm3的金属块悬挂于A点,然后向容器中加水,使金属块浸没在水中。
步骤二:使杠杆OAB在水平位置静止,读出弹簧测力计此时的读数为12N。请根据题目求出以下信息:
(1)金属块浸没在水中时受到的浮力。
(2)绳子作用在杠杆A上的拉力。
(3)被测金属块密度。
【解答】解:(1)金属块浸没在水中,故V排=V物=180cm3=1.8×10﹣4m3,
此时受到的浮力F浮=ρgV排=1×103kg/m3×10N/kg×1.8×10﹣4m3=1.8N;
(2)根据杠杆平衡条件可得:根据杠杆平衡条件得到:FB×OB=FA×OA,
得:36N;
(3)A浸没V排=V物=180cm3,A受到的浮力为F浮=ρgV排=1×103kg/m3×10N/kg×180×10﹣6m3=1.8N;
对A进行受力分析可得:GA=F浮+FA=1.8N+36N=37.8N,
2.1×104kg/m3。
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)

展开更多......

收起↑

资源列表