10.3 第2课时 图表问题和工程问题导学案(含答案)2024-2025学年人教版七年级数学下册

资源下载
  1. 二一教育资源

10.3 第2课时 图表问题和工程问题导学案(含答案)2024-2025学年人教版七年级数学下册

资源简介

第十章 二元一次方程组
10.3 第2课时 图表问题和工程问题
【学习目标】
1.学会利用二元一次方程组解决图表、工程问题,提高综合素养能力,加强用数学语言描述现实世界的能力,培养模型意识和观念.
2.自主学习,小组合作交流,通过构建等量关系解决实际问题.
【学习重点】能根据具体的数量关系,列出二元一次方程组解决实际问题.
【学习难点】学会利用二元一次方程组解决图表、工程问题.
【自主学习】
据统计资料,甲、乙两种作物的单位面积产量的比是 1:2.现要把一块长 200 m、宽 100 m 的长方形土地,分为两块小长方形土地,分别种植这两种作物.怎样划分这块土地,使甲、乙两种作物的总产量的比是 3∶4 ?
【合作探究】
探究点一、和差倍分问题
问题:将长方形 ABCD 分割为两个小长方形,你有几种分割方法
将一个长方形分成两个小长方形.
① 竖画; ② 横画;
等量关系
【典型例题】
例1 在长为 20 m、宽为 16 m 的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,求每个小长方形花圃的面积.
例2 列二元一次方程组解决下面问题:
为落实教育部门安排的学生社会实践活动,八年级(9)班开展了一次蔬菜售卖体验.其中第一小组花 128 元从蔬菜批发市场批发了豆角和土豆共 55 kg 到蔬菜市场去卖,豆角和土豆当天的批发价与零售价如表所示:
品名 豆角 土豆
批发价(元/kg) 2.4 2.2
零售价(元/kg) 3.8 3.3
探究点二、工程问题
有一批零件共 420 个,如果甲先做 2 天后乙加入合作,那么再做 2 天完成;如果乙先做 2 天后甲加入合作,那么再做 3 天完成. 则甲、乙两人每天分别做多少个零件.
问题1:你能列出工作总量、工作效率、工作时间之间的关系式吗
问题2:设甲每天做 x 个零件,乙每天做 y 个零件那么甲、乙合作一天可以做多少个零件
追问:列方程组求解:
【典型例题】
例3 在某外环公路建设过程中,准备让甲、乙两个工程队接力完成. 已知甲工程队独立完成这项工程需要 20 天,每天要支付甲工程队 2000 元;乙工程队独立完成这项工程需要 15 天,每天要支付乙工程队 3000 元;最后一共支付甲乙工程队 42000 元,请问甲、乙分别工作了多少天
要点归纳:
1. 解决工程问题,有时我们需要把工作总量看做_____________.
2. 工作总量、工作效率和工作时间之间的关系式为:
______________________________________________
______________________________________________
______________________________________________
课堂检测
1. 如图,直线a∥b,∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到的方程组为(  )
(1)(2)
(3)(4)
2. (教材P103练习T2变式)在“幻方拓展课程”探索中,小明在如图的3×3方格填入了一些表示数的代数式.若图中各行、各列及对角线上的三个数之和都相等,则y-x=(  )
A. 2 B. 4 C. -6 D. 6
第2题图 第3题图
3. 根据图中所给的信息,每件T恤和每瓶矿泉水的价格分别是______元和______元.
4. 如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块小长方形的长和宽分别是多少.
5. 为完善某市城市路网结构,营造便捷通畅的城市道路系统,提升城市面貌惠及民生,5月起,该市各道路维修改造工程有序进行.已知甲工程队工作1天和乙工程队工作2天共修路400米,甲工程队工作2天和乙工程队工作3天共修路700米,求甲、乙两工程队每天分别修路多少米.
参考答案
【自主学习】
可以利用面积和产量两个数量关系建立二元一次方程组来解决实际问题
【合作探究】
探究点一、图表问题
问题 水平分割,竖直分割 等量关系 大长方形面积+小长方形面积 = 总面积
大长方形的产量:小长方形的产量=3:4
【典型例题】例1 解:设每个小长方形花圃的长为 x m,宽为 y m.
4×8 = 32 (m2)
答:每个小长方形花圃的面积为 32 m2.
例2 解:设该小组当天购买了 x kg 豆角,y kg 土豆.
(3.8-2.4)×35+(3.3-2.2)×20 = 71(元)
答:该小组当天卖完这些豆角和土豆可赚 71 元.
探究点二、工程问题
问题1 工作效率×工作时间 = 工作总量
问题2 甲乙合做的工作效率之和是每天(x十y)个.
问题3
答:甲每天做 90 个零件,乙每天做 30 个零件.
【典型例题】例3 解:设甲工程队工作了x天,乙工程队工作了y天.
答:甲工程队工作了 12 天,乙工程队工作了 6 天.
要点归纳 1. 单位1
2.工作总量 = 工作效率×工作时间 工作效率 = 工作总量÷工作时间
工作时间 = 工作总量÷工作效率
课堂检测
1.B 2. C 3. 20 2
4.解:设每块小长方形的长是x cm,宽是y cm,
答:小长方形的长为40cm,宽为10cm.
5.解:设甲工程队每天修路x米,乙工程队每天修路y米,
答:甲工程队每天修路200米,乙工程队每天修路100米.

展开更多......

收起↑

资源预览