2025年中考二轮专题:半角模型与练习(含解析)

资源下载
  1. 二一教育资源

2025年中考二轮专题:半角模型与练习(含解析)

资源简介

专题三、半角模型
基础模型
结论分析
120°含60°结论:① ,;

证明: 以点 为旋转中心,线段 按顺时针方向旋转120°到 ,连接 ,则有 ,。
∵ ,
∴ 。
在 和 中,
∴ ,
∴ ,,
∴ ,,
∴ ,
∴ ,
∴ ,
∴ 三点共线,
∴ ,,
∴ ,
在 和 中,
∴ ,
∴ 。
经典题型:
一、单选题
1.如图所示,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A按顺时针方向旋转90°后得到△AFB,连接EF,有下列结论:①BE=DC;②∠BAF=∠DAC;③∠FAE=∠DAE;④BF=DC.其中正确的有(  )

A.①②③④ B.②③ C.②③④ D.③④
2.如图,在中,,,D、E是斜边上两点,且,若,,,则与的面积之和为( )
A.36 B.21 C.30 D.22
二、解答题
3.如图,梯形ABCD中,AD∥BC,AB = BC = DC,点E、F分别在AD、AB上,且.
(1)求证:;
(2)连结AC,若,求的度数.
4.如图,正方形ABCD中,E、F分别在边BC、CD上,且∠EAF=45°,连接EF,这种模型属于“半角模型”中的一类,在解决“半角模型”问题时,旋转是一种常用的分析思路.例如图中△ADF与△ABG可以看作绕点A旋转90°的关系.这可以证明结论“EF=BE+DF”,请补充辅助线的作法,并写出证明过程.
(1)延长CB到点G,使BG= ,连接AG;
(2)证明:EF=BE+DF
5.如图,在四边形中,,,分别是,上的点,连接,,.
(1)如图①,,,.求证:;

(2)如图②,,当周长最小时,求的度数;
(3)如图③,若四边形为正方形,点、分别在边、上,且,若,,请求出线段的长度.
6.如图,AB=AD=BC=DC,∠C=∠D=∠ABE=∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,过点A作∠GAB=∠FAD,且点G在CB的延长线上.
(1)△GAB与△FAD全等吗?为什么?
(2)若DF=2,BE=3,求EF的长.
7.已知:边长为4的正方形ABCD,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=45°,连接EF.求证:EF=BE+DF.
思路分析:
(1)如图1,∵正方形ABCD中,AB=AD,∠BAD=∠B=∠ADC=90°,
∴把△ABE绕点A逆时针旋转90°至△ADE',则F、D、E'在一条直线上,
∠E'AF=   度,……
根据定理,可证:△AEF≌△AE'F.
∴EF=BE+DF.
类比探究:
(2)如图2,当点E在线段CB的延长线上,探究EF、BE、DF之间存在的数量关系,并写出证明过程;
拓展应用:
(3)如图3,在△ABC中,AB=AC,D、E在BC上,∠BAC=2∠DAE.若S△ABC=14,S△ADE=6,求线段BD、DE、EC围成的三角形的面积.
8.问题背景:“半角模型”问题.如图1,在四边形中,,,,点E,F分别是上的点,且,连接,探究线段之间的数量关系.
(1)探究发现:小明同学的方法是延长到点G.使.连结,先证明,再证明,从而得出结论:_____________;
(2)拓展延伸:如图2,在四边形中,,,E、F分别是边上的点,且,请问(1)中的结论是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由.
(3)尝试应用:如图3,在四边形中,,,E、F分别是边延长线上的点,且,请探究线段具有怎样的数量关系,并证明.
9.如图,四边形是正方形,E是边的中点,,且交正方形外角的平分线于点F.
(1)求证:;
(2)连接,则的值为__________;
(3)连接,设与交于点H,连接,探究之间的关系.
10.如图,在四边形中,,,,,
(1)求的长;
(2)点从点出发以每秒速度沿着射线运动,设运动时间为秒,点在射线上,且.
①如图1,若点E在线段上,判断线段之间的数量关系,并加以证明.
②在整个运动过程中,求的周长(结果可用含的式子表示).
参考答案
1.C
【分析】利用旋转性质可得△ABF≌△ACD,根据全等三角形的性质一一判断即可.
【详解】解:∵△ADC绕A顺时针旋转90°后得到△AFB,
∴△ABF≌△ACD,
∴∠BAF=∠CAD,AF=AD,BF=CD,故②④正确,
∴∠EAF=∠BAF+∠BAE=∠CAD+∠BAE=∠BAC﹣∠DAE=90°﹣45°=45°=∠DAE故③正确
无法判断BE=CD,故①错误,
故选:C.
【点睛】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握基本知识,属于中考常考题型.
2.B
【分析】将关于对称得到,从而可得的面积为15,再根据对称的性质可得,然后根据三角形全等的判定定理证出,从而可得,最后根据与的面积之和等于与的面积之和即可得.
【详解】解:如图,将关于AE对称得到,
则,,



在和中,,


,即是直角三角形,


即与的面积之和为21,
故选:B.
【点睛】本题考查了轴对称的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造全等三角形和直角三角形是解题关键.
3.(1)见解析;(2)20°
【详解】(1)旋转△BCF使BC与CD重合,
∵AD∥BC,AB=DC,即梯形ABCD为等腰梯形,
∴∠A=∠ADC,∠A+∠ABC=180°,
∴∠ADC+∠ABC=180°,
由旋转可知:∠ABC=∠CDF′,
∴∠ADC+∠CDF′=180°,即∠ADF′为平角,
∴A,D,F′共线,

∴∠BCF+∠ECD=∠ECF=∠BCD,
∵FC=F′C,EC=EC,∠ECF'=∠BCF+∠DCE=∠ECF,
∴△FCE≌△F′CE,
∴EF′=EF=DF′+ED,
∴BF=EF-ED;
(2)∵AB=BC,∠B=80°,
∴∠ACB=50°,
由(1)得∠FEC=∠DEC=70°,
又∵AD//BC,
∴∠ECB=70°,
而∠B=∠BCD=80°,
∴∠DCE=10°,
∴∠BCF=30°,
∴∠ACF=∠BCA-∠BCF=20°.
【点睛】本题考查了全等三角形的性质和判定,解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
4.(1)DF;(2)见解析
【分析】(1)由于△ADF与△ABG可以看作绕点A旋转90°的关系,根据旋转的性质知BG=DF,从而得到辅助线的做法;
(2)先证明△ADF≌△ABG,得到AG=AF,∠GAB=∠DAF,结合∠EAF=45°,易知∠GAE=45°,再证明△AGE≌△AFE即可得到EF=GE=BE+GB=BE+DF
【详解】解:(1)根据旋转的性质知BG=DF,从而得到辅助线的做法:延长CB到点G,使BG=DF,连接AG;
(2)∵四边形ABCD为正方形,
∴AB=AD,∠ADF=∠ABE=∠ABG=90°,
在△ADF和△ABG中
∴△ADF≌△ABG(SAS),
∴AF=AG,∠DAF=∠GAB,
∵∠EAF=45°,
∴∠DAF+∠EAB=45°,
∴∠GAB+∠EAB=45°,
∴∠GAE=∠EAF =45°,
在△AGE和△AFE中0
∴△ADF≌△ABG(SAS),
∴GE=EF,
∴EF=GE=BE+GB=BE+DF
【点睛】本题属于四边形综合题,主要考查正方形的性质及全等三角形的判定和性质等知识,解题的关键是学会利用旋转方法提示构造全等三角形,属于中考常考题型.
5.(1)见解析;(2) ;(3).
【分析】(1)延长到点G,使,连接,首先证明,则有,,然后利用角度之间的关系得出,进而可证明,则,则结论可证;
(2)分别作点A关于和的对称点,,连接,交于点,交于点,根据轴对称的性质有,,当点、、、在同一条直线上时,即为周长的最小值,然后利用求解即可;
(3)旋转至的位置,首先证明,则有,最后利用求解即可.
【详解】(1)证明:如解图①,延长到点,使,连接,
在和中,

,,
,,


在和中,

,;
(2)解:如解图,分别作点A关于和的对称点,,连接,交于点,交于点.
由对称的性质可得,,
此时的周长为.
当点、、、在同一条直线上时,即为周长的最小值.


,,

(3)解:如解图,旋转至的位置,

,.
在和中,



【点睛】本题主要考查全等三角形的判定及性质,轴对称的性质,掌握全等三角形的判定及性质是解题的关键.
6.(1)全等,理由详见解析;(2)5
【分析】(1)由题意易得∠ABG=90°=∠D,然后问题可求证;
(2)由(1)及题意易得△GAE≌△FAE,GB=DF,进而问题可求解.
【详解】解:(1)全等.理由如下
∵∠D=∠ABE=90°,
∴∠ABG=90°=∠D,
在△ABG和△ADF中,

∴△GAB≌△FAD(ASA);
(2)∵∠BAD=90°,∠EAF=45°,
∴∠DAF+∠BAE=45°,
∵△GAB≌△FAD,
∴∠GAB=∠FAD,AG=AF,
∴∠GAB+∠BAE=45°,
∴∠GAE=45°,
∴∠GAE=∠EAF,
在△GAE和△FAE中,

∴△GAE≌△FAE(SAS)
∴EF=GE
∵△GAB≌△FAD,
∴GB=DF,
∴EF=GE=GB+BE=FD+BE=2+3=5.
【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.
7.(1)45
(2)DF=BE+EF,证明见解析
(3)2
【分析】(1)把绕点逆时针旋转至,则、、在一条直线上,,再证△,得,进而得出结论;
(2)将绕点逆时针旋转得到,由旋转的性质得,再证△,得,进而得出结论;
(3)将绕点逆时针旋转得到,连接,则,得,因此,同(2)得△,则,,得、、围成的三角形面积,即可求解.
【详解】(1)解:如图1,∵正方形ABCD中,AB=AD,∠BAD=∠B=∠ADC=90°,
∴把△ABE绕点A逆时针旋转90°至,
则F、D、在一条直线上,≌△ABE,
∴=BE,∠=∠BAE,=AE,
∴∠=∠EAD+∠=∠EAD+∠BAE=∠BAD=90°,
则∠=∠﹣∠EAF=45°,
∴∠EAF=∠,
∴△AEF≌△(SAS),
∴,
∵,
∴EF=BE+DF.
故答案为:45;
(2)解:DF=BE+EF 理由如下:
将△ABE绕点A逆时针旋转90°得到△,
∴△≌△ABE,
∴AE=,BE=,∠=∠BAE,
∴∠=∠BAE+∠=∠ +∠=∠BAD=90°,
则∠=∠﹣∠EAF=45°,
∴∠=∠EAF=45°,
在△AEF和△中,

∴△AEF≌△(SAS),
∴,
∵,
∴DF=BE+EF;
(3)解:将△ABD绕点A逆时针旋转得到△,连接,
则△≌△ABD,
∴CD'=BD,
∴,
同(2)得:△ADE≌△(SAS),
∴,,
∴BD、DE、EC围成的三角形面积为、、EC围成的三角形面积.
【点睛】本题是四边形综合题,考查了全等三角形的判定与性质、旋转的性质、正方形的性质以及四边形和三角形面积等知识,本题综合性强,解此题的关键是根据旋转的启发正确作出辅助线得出全等三角形,属于中考常考题型.
8.(1)
(2)成立,理由见解析
(3),证明见解析
【分析】(1)延长到点G.使.连接,利用全等三角形的性质解决问题即可;
(2)延长至M,使,连接.证明,由全等三角形的性质得出.,由全等三角形的性质得出,即,则可得出结论;
(3)在上截取,使,连接.证明.由全等三角形的性质得出.证明,由全等三角形的性质得出结论.
【详解】(1)解:.
延长到点G.使.连接,
∵,
∴.
∴.
∴.
∴.
又∵,
∴.
∴.
∵.
∴.
故答案为:;
(2)解:(1)中的结论仍然成立.
证明:如图②中,延长至M,使,连接.
∵,
∴,
在与中,

∴.
∴.
∵,
∴.
∴,即.
在与中,

∴.
∴,即,
∴;
(3)解:结论:.
证明:如图③中,在上截取,使,连接.
∵,
∴.
在与中,

∴.
∴.
∴.
∴.
∵,
∴,
∴,
∵,
∴.
【点睛】本题是三角形综合题,考查了三角形全等的判定和性质等知识,解题的关键是添加辅助线,构造全等三角形解决问题.
9.(1)见解析
(2)
(3),理由见解析
【分析】(1)取的中点,并连接,通过正方形和等腰直角三角形的基本性质,证明,即可得出结论;
(2)连接后,由点,分别为,的中点,推出为的中位线,再结合全等三角形的性质转换边长,根据中位线定理求解即可;
(3)结合(1)的结论,可得到,从而考虑运用“半角”模型,因此延长至点,使得,连接,运用两次基础全等证明即可得出结论.
【详解】(1)证明:如图所示,取的中点,并连接,
∴,
∵E是边的中点,
∴,
∵四边形是正方形,
∴,
∵,,
∴,,
∴,
∵,
∴,,
∵正方形外角的平分线为,
∴,
∴,
在和中,
∴,
∴;
(2)解:如图所示,连接,
∵点,分别为,的中点,
∴为的中位线,
∴,
由(1)得,
∴,
∴,
∴,
故答案为:;
(3)解:,理由如下:
如图所示,延长至点,使得,连接,
由正方形基本性质得:,,
∴,
∴,,
由(1)知,,且,
∴,
∴,
∴,即:,
在和中,
∴,
∴,
∵,,
∴,
∴.
【点睛】本题考查正方形的性质,全等三角形判定与性质,等腰直角三角形的性质、三角形中位线定理等知识点,在证明第一小问时要合理作出辅助线,才能为后面的问题做良好的铺垫,掌握基本图形的性质,熟练运用基本定理是解题关键.
10.(1)
(2)①它们的关系为.证明见解析;②当秒时周长为,当时,不存在;当秒时,周长为
【分析】本题考查了全等三角形的综合问题,勾股定理的应用,正确理解题意是解题的关键.
(1)由勾股定理直接求解;
(2)①如图1,延长到点G,使,连结,先证明,再证明,即可求解;②依题意得,记的周长,则,故(I)当秒时,点在线段上,点在上,由①知,II)当时,点与点重合,不存在;III)当时,点在延长线上,点在延长线上,如图2,在上取点G,使,连结,同理可得,,.
【详解】(1)解:,,

(2)解:①它们的关系为.理由如下
如图1,延长到点G,使,连结,
图1
又,
,,

又,

②依题意得,记的周长,
,,

(I)当秒时,点在线段上,点在上,
由①知

II)当时,点与点重合,不存在.
III)当时,点在延长线上,点在延长线上,
如图2,在上取点G,使,连结,
图2
同理可得,
综上所述,当秒时周长为,
当时,不存在.
当秒时,周长为.

展开更多......

收起↑

资源预览