2025年山东省济南市高新区中考一模数学卷(含答案)

资源下载
  1. 二一教育资源

2025年山东省济南市高新区中考一模数学卷(含答案)

资源简介

绝密★启用前
2025年高新区学考模拟测试数学试题 2025.04
本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共 2页,满分为 40分;第Ⅱ
卷共 4页,满分为 110分.本试题共 6页,满分为 150分.考试时间为 120分钟.答卷前,考生
务必用 0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规
定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.
第 I卷(选择题 共 40分)
注意事项:第Ⅰ卷为选择题,每小题选出答案后,用 2B铅笔把答题卡上对应题目的答案标号涂黑;
如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.
一、选择题(本大题共 10个小题,每小题 4分,共 40分.在每小题给出的四个选项中,只有一
项是符合题目要求的.)
1.有理数﹣2025的相反数是( )
A.2025 B. 1 C.﹣2025 D. 1
2025 2025
2.“月壤砖”是我国科学家模拟月壤成分烧制而成的,呈禅卯结构,有利于采来拼装建造月球基
地.如图,这是“月壤砖”的示意图,其俯视图为( )
A. B. C. D.
3.“中原 2号”等 4颗卫星搭乘长征二号丁运载火箭于 2024年 12月 17日 2时 50分发射升空,“中
原 2号”轨道高度为 522000m.其中数据 522000用科学记数法表示为( )
A.0.522×106 B.5.22×105 C.5.22×104 D.52.2×104
4.如图,已知∠1=∠2,∠3=125°,∠4的度数为( )
A.45° B.55°
C.65° D.75°
5.下列计算正确的是( )
A.a3 a3=a9 B.2a3÷a2=a C.(﹣a2)2=a4 D.a4+a2=a6
6.用配方法解方程 x2﹣6x﹣5=0时,下列配方结果正确的是( )
A.(x﹣3)2=14 B.(x﹣3)2=5 C.(x+3)2=14 D.(x+3)2=5
7.某商场举行投资促销活动,对于“抽到一等奖的概率为 1 ”,下列说法正确的是( )
10
A.抽一次不可能抽到一等奖
B.抽 10次也可能没有抽到一等奖
C.抽 10次奖必有一次抽到一等奖
D.抽了 9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖
第 1页(共 6页)
{#{QQABKYAUggigQgAAAQhCQw0wCgMQkAACAaoOgAAYoAIAABFABAA=}#}
8.某乡镇的 4个村庄 A、B、C、D恰好位于正方形的 4个顶点上,为了解决农民出行难问题,
镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了
如下四个设计方案(实线表示连接的道路)
在上述四个方案中最短的道路系统是方案( )
A.一 B.二 C.三 D.四
9.如图,菱形 ABCD中,点 E是 CD中点,连接 AE,BE,若 BE⊥CD, = 7,则该菱形的
面积是( )
A. 3 B.2 3
B.C. 7 D.2 7
10.关于函数 y=(mx+m﹣1)(x﹣1).下列说法正确的是( )
A.无论 m取何值,函数图象总经过点(1,0)和(﹣1,﹣2)
1
B.当 m≠ 时,函数图象与 x轴总有 2个交点
2
> 1C.若 m ,则当 x<1时,y随 x的增大而减小
2
1
D.当 m>0时,函数有最小值 m+1
4
第Ⅱ卷(非选择题 共 110分)
注意事项:
1.第 II卷必须用 0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位
置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、
胶带纸、修正带.不按以上要求作答的答案无效.
2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.
二、填空题:(本大题共 5个小题,每小题 4分,共 20分.)
3
11.若分式 有意义,则 x的取值范围是 .
1
12.如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖(每次
飞镖均落在纸板上),击中阴影区域的概率是 .
第 2页(共 6页)
{#{QQABKYAUggigQgAAAQhCQw0wCgMQkAACAaoOgAAYoAIAABFABAA=}#}
13.如图所示的图形叫弧三角形,又叫莱洛三角形,是机械学家莱洛首
先进行研究的.弧三角形是这样画的:先画正三角形 ABC,然后分
别以点 A,B,C为圆心,AB长为半径画弧.若正三角形 ABC的边
长为 2cm,则弧三角形的周长为 cm.
14.科技小组为了验证某电路的电压 U(V)、电流 I(A)、电阻 R(Ω)三者之间的关系:I= ,

测得数据如下:
R(Ω) 100 200 220 400
I(A) 2.2 1.1 1 0.55
那么,当电阻 R=55Ω时,电流 I= A.
15.如图,四边形 ABCD是边长为 6的正方形,点 E在边 CD上,DE=2,过点 E作 EF∥BC,
分别交 AC,AB于点 G,F,M,N分别是 AG,BE的中点,则 MN的长是 .
三、解答题:(本大题共 10个小题,共 90分.解答应写出文字说明、证明过程或演算步骤.)
16.(本题满分 7分)计算:| 4| ( 3 1)0 + 2 45° + ( 1 ) 1 + 3 8.
2
4( + 1) ≤ 7 + 10
17.(本题满分 7分)求不等式组 5< 8 的非负整数解.
3
18.(本题满分 7分)已知:如图,在平行四边形 ABCD中,延长 AB至点 E,延长 CD至点 F,
使得 BE=DF,连接 EF,与对角线 AC交于点 O.求证:OE=OF.
19.(本题满分 8分)如图 1是某种云梯车,如图 2是其示意图,当云梯 OD升起时,OD与底盘
OC的夹角为∠1,液压杆 AB与底盘 OC的夹角为∠2.已知液压杆 AB=3m,某一工作时刻,
∠1=31°,∠2=53°.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin31°≈0.52,
cos31°≈0.86,tan31°≈0.60)
(1)求此时液压杆顶端 B到底盘 OC的距离;
(2)求此时 AO的长.(精确到小数点后一位)
第 3页(共 6页)
{#{QQABKYAUggigQgAAAQhCQw0wCgMQkAACAaoOgAAYoAIAABFABAA=}#}
20.(本题满分 8分)如图,AB是⊙O的直径,⊙O交 BC的中点于 D,DE⊥AC.
(1)求证:DE是⊙O的切线.
(2)已知:BC=8cm,AD=3cm,求线段 AE的长.
21.(本题满分 9分)为提高学生的网络认知,筹备“工业互联网”研学活动,请专家作主题报告.
【收集数据】为了解学生的研学意向,在随机抽取的部分学生中下发调查问卷.
“工业互联网”主题日学生研学意向调查问卷请选择
您的研学意向,并在其后“□”内打“√”(每名同学必
选且只能选择其中一项).
A.数字孪生□ B.人工智能□
C.应用 5G□ D.工业机器人□
E.区块链□
【整理数据】所有问卷全部收回且有效,根据调查数据绘制成两幅不完整的统计图.
【分析数据】请根据统计图提供的信息,解答下列问题:
(1)本次调查所抽取的学生人数是 人,并直接补全条形统计图;
(2)扇形统计图中领域“E”对应扇形的圆心角的度数是 °;
【做出决策】请合理安排报告,补全活动日程表
(3)学校有 600名学生参加本次活动,其中选择聆听 B、D的报告学生各有多少?
(4)在确保听取报告的每名学生都有座位的情况下,请你合理安排 B,D两场报告,补全此
次活动日程表.
“工业互联网”主题日活动日程表
地点(座位数)时间 1号多功能厅(200座) 2号多功能厅(100座)
8:00﹣9:30 E A
10:00﹣11:30 C ①
13:00﹣14:30 ② 设备检修暂停使用
第 4页(共 6页)
{#{QQABKYAUggigQgAAAQhCQw0wCgMQkAACAaoOgAAYoAIAABFABAA=}#}
22.(本题满分 10分)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品 1件和乙商
品 1件共需 120元;购进甲商品 3件和乙商品 2件共需 280元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件 50元出售,乙商品以每件 100元出售,为满足市场需求,需购
进甲、乙两种商品共 100件,且甲种商品的数量不少于乙种商品数量的 4倍,请你求出获利
最大的进货方案,并求出最大利润.
23.(本题满分 10分)如图,在平面直角坐标系 xOy中,一次函数图象 y=﹣x+5与 y轴交于点 A,
与反比例函数 y= 的图象的一个交点为 B(a,4),过点 B作 AB的垂线 l.

(1)求点 A的坐标及反比例函数的表达式;
(2)若点 C在直线 l上,且△ABC的面积为 5,求点 C的坐标;
(3)P是直线 l上一点,连接 PA,以 P为位似中心画△PDE,使它与△PAB位似,相似比为
m.若点 D,E恰好都落在反比例函数图象上,求点 P的坐标及 m的值.
24.(本题满分 12分)在平面直角坐标系中,点 O是坐标原点,抛物线 y=ax2+bx(a≠0)经过点
A(3,3),对称轴为直线 x=2.
(1)求 a,b的值;
(2)已知点 B,C在抛物线上,点 B的横坐标为 t,点 C的横坐标为 t+1.过点 B作 x轴的垂
线交直线 OA于点 D,过点 C作 x轴的垂线交直线 OA于点 E.
(i)当 0<t<2时,求△OBD与△ACE的面积之和;
(ii)在抛物线对称轴右侧,是否存在点 B,使得以 B,C,D,E为顶点的四边形的面积为3?
2
若存在,请求出点 B的横坐标 t的值;若不存在,请说明理由.
第 5页(共 6页)
{#{QQABKYAUggigQgAAAQhCQw0wCgMQkAACAaoOgAAYoAIAABFABAA=}#}
25.(本题满分 12分)如图,在矩形 ABCD中,AD=4,M是 AD的中点,点 E是线段 AB上一动
点,连接 EM并延长交线段 CD的延长线于点 F.
(1)如图 1,求证:AE=DF;
(2)如图 2,若 AB=2,过点 M作 MG⊥EF交线段 BC于点 G,判断△GEF的形状,并说
明理由;
(3)如图 3,若 AB= 2 3,过点 M作 MG⊥EF交线段 BC的延长线于点 G.
①直接写出线段 AE长度的取值范围;
②判断△GEF的形状,并说明理由.
第 6页(共 6页)
{#{QQABKYAUggigQgAAAQhCQw0wCgMQkAACAaoOgAAYoAIAABFABAA=}#}2025年高新区学考模拟测试数学试题
参考答案及评分标准2025.04
一、选择题
题号 1 2 3 4 5 6 7 8 9 10
答案 A C B B C A B D B D
二、填空题:(本大题共5个小题,每小题4分,共20分.)
11.x≠1. 12.. 13.2π. 14.4. 15..
三、解答题:(本大题共10个小题,共90分.解答应写出文字说明、证明过程或演算步骤.)
16.(本题7分)
解:原式·····················································································5分
·····························································································································7分
17.(本题7分)
解:解不等式①得:x≥﹣2···········································································································2分
解不等式②得:··············································································································4分
∴不等式组的解集为:·····························································································6分
∴不等式组的所有非负整数解为:0,1,2,3············································································7分
18.(本题7分)
证明:∵平行四边形ABCD,
∴AB∥CD,AB=CD··············································································································2分
∵BE=DF,
∴AB+BE=CD+DF,
∴AE=CF···························································································································4分
∵AB∥CD,
∴∠E=∠F·························································································································5分
在△AOE和△COF中,,
∴△AOE≌△COF(AAS)······································································································6分
∴OE=OF···························································································································7分
19.(本题8分)
解:(1)过B点作BH⊥OC于H点,如图··················································································1分
在Rt△ABH中,∵sin∠2,
∴BH=3×sin53°=3×0.80=2.4(m)··························································································3分
答:此时液压杆顶端B到底盘OC的距离为2.4m;
(2)在Rt△ABH中,∵cos∠2,
∴AH=3×cos53°=3×0.60=1.8(m)··························································································5分
在Rt△OBH中,∵tan∠1,
∴OH4(m)····································································································7分
∴OA=OH﹣AH=4﹣1.8=2.2(m)··························································································8分
答:此时OA的长为2.2m.
20.(本题8分)
(1)证明:连接OD··················································································································1分
∵D是BC的中点,且OA=OB,
∴OD∥AC·························································································································2分
又∵DE⊥AC,
∴OD⊥DE··························································································································3分
∴DE是⊙O的切线···············································································································4分
(2)∵D是BC的中点,
∴BD=CDBC=4(cm)·····································································································5分
∵AB是⊙O的直径,
∴AD⊥BC
∴AC=AB
∵AD=3cm,
∴AC5(cm)··················································································6分
∵DE⊥AC,
∴DE(cm)··································································································7分
∴AE(cm)·············································································8分
21.(本题9分)
解:(1)40··························································································································1分
补全条形统计图如图所示,
··············································································································3分
(2)72°······························································································································5分
(3)选择聆听B:90(人)······················································································6分
选择聆听D:180(人)····························································································7分
(4)①B;②D·····················································································································9分
22.(本题10分)解:(1)设甲、乙两种商品每件的进价分别是x元、y元,
····················································································································2分
解得·························································································································4分
答:甲、乙两种商品每件的进价分别是40元、80元·····································································5分
(2)设购买甲种商品a件,获利为w元,
w=(50﹣40)a+(100﹣80)(100﹣a)=﹣10a+2000································································7分
∵a≥4(100﹣a),
解得a≥80····························································································································9分
∴当a=80时,w取得最大值,此时w=1200,
即获利最大的进货方案是购买甲种商品80件,乙种商品20件,最大利润是1200元··························10分
23.(本题10分)解:(1)令x=0,则y=﹣x+5=5,∴点A的坐标为(0,5)···································1分
将B(a,4)代入y=﹣x+5得,4=﹣a+5,∴a=1,∴B(1,4)··················································2分
将B(1,4)代入y得,4,解得k=4,∴反比例函数的表达式为y······································3分
(2)设直线l与y轴交于M,直线y=﹣x+5与x轴交于N,
令y=﹣x+5=0得,x=5,
∴N(5,0),
∴OA=ON=5,
∵∠AON=90°,
∴∠OAN=45°,
∵A(0,5),B(1,4),
∴,
∵直线l是AB的垂线,即∠ABM=90°,∠OAN=45°,
∴,
∴M(0,3),
设直线l的解析式为y=k1x+b1,
将M(0,3),B(1,4)代入y=k1x+b1得,,解得,
∴直线l的解析式为y=x+3,
设点C的坐标为(t,t+3),
∵ |xB﹣xC|··············································································5分
解得t=﹣4或t=6,
当t=﹣4时,t+3=﹣1,
当t=6时,t+3=9,
∴点C的坐标为(6,9)或(﹣4,﹣1)···················································································7分
(3)∵位似图形的对应点与位似中心三点共线,
∴点B的对应点也在直线l上,不妨设为E点,则点A的对应点为D,
将直线l与双曲线的解析式联立方程组,
解得,或,∴E(﹣4,﹣1),
画出图形如图所示,
∵△PAB∽△PDE,
∴∠PAB=∠PDE,
∴AB∥DE,
∴直线AB与直线DE的一次项系数相等,
设直线DE的解析式为y=﹣x+b2,
∴﹣1=﹣(﹣4)+b2,∴b2=﹣5,
∴直线DE的解析式为y=﹣x﹣5,
∵点D在直线DE与双曲线的另一个交点,
∴解方程组得,或,
∴D(﹣1,﹣4),
则直线AD的解析式为y=9x+5,
解方程组得,,∴P(,)······································································9分
∴,,
∴m·······················································································································10分
24.(本题12分)解:(1)∵抛物线y=ax2+bx(a≠0)经过点A(3,3),对称轴为直线x=2,
∴····················································································································2分
解得:······················································································································4分
(2)由(1)得:y=﹣x2+4x,
∴当x=t时,y=﹣t2+4t,
当x=t+1时,y=﹣(t+1)2+4(t+1),即y=﹣t2+2t+3,
∴B(t,﹣t2+4t),C(t+1,﹣t2+2t+3)·····················································································5分
设OA的解析式为y=kx,将A(3,3)代入,得:3=3k,
∴k=1,
∴OA的解析式为y=x,
∴D(t,t),E(t+1,t+1)·····································································································6分
(i)设BD与x轴交于点M,过点A作AN⊥CE,如图,
则M(t,0),N(t+1,3),
∴S△OBD+S△ACEBD OMAN CE
(﹣t2+4t﹣t) t(﹣t2+2t+3﹣t﹣1) (3﹣t﹣1)
(﹣t3+3t2)(t3﹣3t2+4)
t3t2t3t2+2=2·······································································································7分
(ii)①当2<t<3时,过点D作DH⊥CE于H,如图,
则H(t+1,t),BD=﹣t2+4t﹣t=﹣t2+3t,
CE=t+1﹣(﹣t2+2t+3)=t2﹣t﹣2,
DH=t+1﹣t=1,
∴S四边形DCEB(BD+CE) DH,
即(﹣t2+3t+t2﹣t﹣2)×1··································································································8分
解得:t···························································································································9分
②当t>3时,如图,过点D作DH⊥CE于H,
则BD=t﹣(﹣t2+4t)=t2﹣3t,CE=t2﹣t﹣2,
∴S四边形DBCE(BD+CE) DH,
即(t2﹣3t+t2﹣t﹣2)×1··································································································10分
解得:t11(舍去),t21(舍去)·········································································11分
综上所述,t的值为·············································································································12分
25.(本题12分)解:(1)如图1,
证明:在矩形ABCD中,∠EAM=∠FDM=90°,∠AME=∠FMD··················································1分
∵AM=DM,
∴△AEM≌△DFM················································································································2分
∴AE=DF···························································································································3分
(2)答:△GEF是等腰直角三角形··························································································4分
证明:过点G作GH⊥AD于H,如图2,
∵∠A=∠B=∠AHG=90°,
∴四边形ABGH是矩形.
∴GH=AB=2.
∵MG⊥EF,
∴∠GME=90°.
∴∠AME+∠GMH=90°.
∵∠AME+∠AEM=90°,
∴∠AEM=∠GMH················································································································5分
∴△AEM≌△HMG
∴ME=MG.
∴∠EGM=45°·····················································································································6分
由(1)得△AEM≌△DFM,
∴ME=MF.
∵MG⊥EF,
∴GE=GF···························································································································7分
∴∠EGF=2∠EGM=90°········································································································8分
∴△GEF是等腰直角三角形.
(3)①AE··········································································································10分
②△GEF是等边三角形.
证明:过点G作GH⊥AD交AD延长线于点H,如图3,
∵∠A=∠B=∠AHG=90°,
∴四边形ABGH是矩形.
∴GH=AB=2.
∵MG⊥EF,
∴∠GME=90°.
∴∠AME+∠GMH=90°.
∵∠AME+∠AEM=90°,
∴∠AEM=∠GMH.
又∵∠A=∠GHM=90°,∴△AEM∽△HMG.
∴.在Rt△GME中,∴tan∠MEG.∴∠MEG=60°·····································11分
由(1)得△AEM≌△DFM.∴ME=MF.
∵MG⊥EF,
∴GE=GF·························································································································12分
∴△GEF是等边三角形.绝密★启用前
2025年高新区学考模拟测试数学试题2025.04
本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为40分;第Ⅱ卷共4页,满分为110分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.
第I卷(选择题 共40分)
注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.
一、选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.有理数﹣2025的相反数是(  )
A.2025 B. C.﹣2025 D.
2.“月壤砖”是我国科学家模拟月壤成分烧制而成的,呈禅卯结构,有利于采来拼装建造月球基地.如图,这是“月壤砖”的示意图,其俯视图为(  )
A. B. C. D.
3.“中原2号”等4颗卫星搭乘长征二号丁运载火箭于2024年12月17日2时50分发射升空,“中原2号”轨道高度为522000m.其中数据522000用科学记数法表示为(  )
A.0.522×106 B.5.22×105 C.5.22×104 D.52.2×104
4.如图,已知∠1=∠2,∠3=125°,∠4的度数为(  )
A.45° B.55°
C.65° D.75°
5.下列计算正确的是(  )
A.a3 a3=a9 B.2a3÷a2=a C.(﹣a2)2=a4 D.a4+a2=a6
6.用配方法解方程x2﹣6x﹣5=0时,下列配方结果正确的是(  )
A.(x﹣3)2=14 B.(x﹣3)2=5 C.(x+3)2=14 D.(x+3)2=5
7.某商场举行投资促销活动,对于“抽到一等奖的概率为”,下列说法正确的是(  )
A.抽一次不可能抽到一等奖
B.抽10次也可能没有抽到一等奖
C.抽10次奖必有一次抽到一等奖
D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖
8.某乡镇的4个村庄A、B、C、D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)
在上述四个方案中最短的道路系统是方案(  )
A.一 B.二 C.三 D.四
9.如图,菱形ABCD中,点E是CD中点,连接AE,BE,若BE⊥CD,,则该菱形的面积是(  )
B.
C. D.
10.关于函数y=(mx+m﹣1)(x﹣1).下列说法正确的是(  )
A.无论m取何值,函数图象总经过点(1,0)和(﹣1,﹣2)
B.当m时,函数图象与x轴总有2个交点
C.若m,则当x<1时,y随x的增大而减小
D.当m>0时,函数有最小值m+1
第Ⅱ卷(非选择题 共110分)
注意事项:
1.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.
2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.
二、填空题:(本大题共5个小题,每小题4分,共20分.)
11.若分式有意义,则x的取值范围是   .
12.如图,一块飞镖游戏板由大小相等的小正方形格子构成.向游戏板随机投掷一枚飞镖(每次飞镖均落在纸板上),击中阴影区域的概率是   .
13.如图所示的图形叫弧三角形,又叫莱洛三角形,是机械学家莱洛首
先进行研究的.弧三角形是这样画的:先画正三角形ABC,然后分
别以点A,B,C为圆心,AB长为半径画弧.若正三角形ABC的边
长为2cm,则弧三角形的周长为   cm.
14.科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I,测得数据如下:
R(Ω) 100 200 220 400
I(A) 2.2 1.1 1 0.55
那么,当电阻R=55Ω时,电流I=   A.
15.如图,四边形ABCD是边长为6的正方形,点E在边CD上,DE=2,过点E作EF∥BC,分别交AC,AB于点G,F,M,N分别是AG,BE的中点,则MN的长是    .
三、解答题:(本大题共10个小题,共90分.解答应写出文字说明、证明过程或演算步骤.)
16.(本题满分7分) 计算:.
17.(本题满分7分)求不等式组的非负整数解.
18.(本题满分7分)已知:如图,在平行四边形ABCD中,延长AB至点E,延长CD至点F,使得BE=DF,连接EF,与对角线AC交于点O.求证:OE=OF.
19.(本题满分8分)如图1是某种云梯车,如图2是其示意图,当云梯OD升起时,OD与底盘OC的夹角为∠1,液压杆AB与底盘OC的夹角为∠2.已知液压杆AB=3m,某一工作时刻,∠1=31°,∠2=53°.(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
(1)求此时液压杆顶端B到底盘OC的距离;
(2)求此时AO的长.(精确到小数点后一位)
20.(本题满分8分)如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC.
(1)求证:DE是⊙O的切线.
(2)已知:BC=8cm,AD=3cm,求线段AE的长.
21.(本题满分9分)为提高学生的网络认知,筹备“工业互联网”研学活动,请专家作主题报告.
【收集数据】为了解学生的研学意向,在随机抽取的部分学生中下发调查问卷.
“工业互联网”主题日学生研学意向调查问卷请选择您的研学意向,并在其后“□”内打“√”(每名同学必选且只能选择其中一项). A.数字孪生□ B.人工智能□ C.应用5G□ D.工业机器人□ E.区块链□
【整理数据】所有问卷全部收回且有效,根据调查数据绘制成两幅不完整的统计图.
【分析数据】请根据统计图提供的信息,解答下列问题:
(1)本次调查所抽取的学生人数是 人,并直接补全条形统计图;
(2)扇形统计图中领域“E”对应扇形的圆心角的度数是 °;
【做出决策】请合理安排报告,补全活动日程表
(3)学校有600名学生参加本次活动,其中选择聆听B、D的报告学生各有多少?
(4)在确保听取报告的每名学生都有座位的情况下,请你合理安排B,D两场报告,补全此次活动日程表.
“工业互联网”主题日活动日程表
地点(座位数)时间 1号多功能厅(200座) 2号多功能厅(100座)
8:00﹣9:30 E A
10:00﹣11:30 C    ①
13:00﹣14:30    ② 设备检修暂停使用
22.(本题满分10分)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品1件和乙商品1件共需120元;购进甲商品3件和乙商品2件共需280元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件50元出售,乙商品以每件100元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.
23.(本题满分10分)如图,在平面直角坐标系xOy中,一次函数图象y=﹣x+5与y轴交于点A,与反比例函数y的图象的一个交点为B(a,4),过点B作AB的垂线l.
(1)求点A的坐标及反比例函数的表达式;
(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;
(3)P是直线l上一点,连接PA,以P为位似中心画△PDE,使它与△PAB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.
24.(本题满分12分)在平面直角坐标系中,点O是坐标原点,抛物线y=ax2+bx(a≠0)经过点A(3,3),对称轴为直线x=2.
(1)求a,b的值;
(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1.过点B作x轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E.
(i)当0<t<2时,求△OBD与△ACE的面积之和;
(ii)在抛物线对称轴右侧,是否存在点B,使得以B,C,D,E为顶点的四边形的面积为?若存在,请求出点B的横坐标t的值;若不存在,请说明理由.
25.(本题满分12分)如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.
(1)如图1,求证:AE=DF;
(2)如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,判断△GEF的形状,并说明理由;
(3)如图3,若AB,过点M作 MG⊥EF交线段BC的延长线于点G.
①直接写出线段AE长度的取值范围;
②判断△GEF的形状,并说明理由.

展开更多......

收起↑

资源列表